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ABSTRACT

An algorithm for time propagation of the time-dependent Kohn-Sham equations is presented. The
algorithm is based on dividing the Hamiltonian into small time steps and assuming that it is constant
over these steps. This allows for the time-propagating Kohn-Sham wave function to be expanded in the
instantaneous eigenstates of the Hamiltonian. The method is particularly efficient for basis sets which
allow for a full diagonalization of the Hamiltonian matrix. One such basis is the linearized augmented
plane waves. In this case we find it is sufficient to perform the evolution as a second-variational step alone,
so long as sufficient number of first variational states are used. The algorithm is tested not just for non-
magnetic but also for fully non-collinear magnetic systems. We show that even for delicate properties,
like the magnetization density, fairly large time-step sizes can be used demonstrating the stability and
efficiency of the algorithm.

Spin-dynamics

© 2016 Elsevier B.V. All rights reserved.

In the 1990s, light-induced demagnetization in Ni was exper-
imentally demonstrated [1]. The field of femtomagnetism [2] has
since grown [3-13] and there is a lot of research to achieve light-
induced control of spins. However, the physics of light-spin in-
teractions remains highly debated [14-16] largely because of lack
of ab-initio calculations. Time-dependent density functional the-
ory (TDDFT) [17], which extends density functional theory into the
time domain, is a formally exact ab-initio method for describing the
real-time dynamics of interacting electrons under the influence of
alaser field. In order to study femtomagnetism a fully non-collinear
extension of TDDFT is required. Within this extension Kohn-Sham
(KS) states need to be treated as Pauli spinors and the magnetiza-
tion density as an unconstrained vector field. Since such a vector
field requires very little energy to alter its direction, a highly pre-
cise time-evolution algorithm is required for reliable results.

Such an algorithm is required to propagate the time-dependent
Schrodinger equation:

ad N
i |@i(t)) = H(t) |i(1)) (1)

where H is the Hamiltonian and @ the wave function of interacting
electrons. By the virtue of the Runge-Gross theorem [17], one
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can obtain the exact time-propagation of the density of this fully
interacting system by solving single particle time-dependent KS
equations. In our particular case, where the orbitals are Pauli
spinors, these are
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where A o (t) is an external vector potential, ¢ are the Pauli
matrices and ; are the KS orbitals. The KS effective potential
Us(T, t) = Vexe (T, t) + vy(r, t) + vx(r, t) is decomposed into the
external potential vey, the classical electrostatic Hartree potential
vy and the exchange-correlation (XC) potential vyc. Similarly the
KS magnetic field is written as Bs(r, t) = Bex(t) + By (T, t) where
By (t) is an external magnetic field and By (r, t) is the XC magnetic
field. The final term of Eq. (2) is the spin—orbit coupling term.
Some of the important requirements for accurate [18,19] time-
propagation algorithm for solving Eq. (2) are (a) stability: the errors
do not build up as the system is propagated for longer times,
(b) efficiency: time propagation is performed by dividing the total
time interval into steps and it is essential for an efficient algorithm
to allow for large time steps and (c) unitarity: which is required for
maintaining the normalization of the wave function at each time-
step. In the following we outline one such algorithm which satisfies
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Fig. 1. (Color online) Hamiltonian as a function of time (full line) and
approximation to this Hamiltonian (step function).

all the above criteria and is particularly suited for computer codes
that deal with dual basis like linearized augmented plane waves
(LAPW) and perform exact diagonalization of the Hamiltonian.

The solution of the KS equations can be represented by means
of the time evolution operator:

[yi(T)) = U(T, 0)[:(0)), 3)

where U (T, 0) is the time evolution operator that propagates all
TD-KS states from time t = O to the final time t = T and satisfies
the decomposition law:

U(T,0) = U(T, T — At)...UQAt, At) U(At, 0) (4)

which allows for division of the total time propagation into small
steps of step length At. In the limit At — 0 this time propagation
operator can be approximated as:

O(t + At, t) = e~ hs©a, (5)

In principle this exponential expression can be used to stepwise
propagate all TD-KS states, in practice however, such an exponen-
tial expression of an operator is nearly impossible to calculate ex-
actly (except in certain trivial cases) and iterative schemes like
polynomial expansion [20-23], Krylov subspace projection [24,25]
and splitting techniques are used [26-34]. All these techniques
have been tried and tested, mainly for finite systems, and each one
has its own set of advantages and disadvantages [19].

In the present work we propose a method for time propagation
in which the Hamiltonian is divided into time steps (At) and it is
assumed that the Hamiltonian remains constant between time ¢t
and t + At (see Fig. 1). If this can be done then the time evolution
operator in the basis of the instantaneous eigenstates of H trivially
becomes

U(t + At, t) = e~ €OAL, (6)

where €(t) = diag(eq(t), ..., €;(t)) are the instantaneous eigen-
values. Thus if the Hamiltonian can be diagonalized at each time
step, the time propagating KS states can be expanded in instanta-
neous eigenstates of the Hamiltonian. This algorithm is particularly
suited for codes where full diagonalization is performed and can be
outlined as follows. Let x;(r) be the ground state Kohn-Sham or-
bitals at t = 0 and set ¢;(t = 0) = §j.

s Sety(r, ) = Y () xi(x),j=1...N

: Compute p(r, t) and m(r, t)

: Compute vy(r, t), Bs(r, t), As(r, t) to give H(t)

: Compute Hy = (xi|H(¢)|x;)

Solve Hyay; = €ja; for aand €

: Compute ¢;(t + At) = >, ax e “*tatcp(t),j=1...N
: Ift < T goto step 1

N A W N =

Here N is the total number of occupied states, p is the charge
density and m is the magnetization density; and the potentials
vs, B and Ay are functionals of these two densities. All the indices
run over all basis states except where indicated. It is important to
mention that this algorithm is unitary and thus the KS orbitals are
orthonormal at each time-step.

For demonstrating the validity of the algorithm outlined above,
various extended systems are studied [35] using the full-potential
LAPW method [36] as implemented within the Elk code [37]. The
single-electron problem is solved using an augmented plane wave
basis without using any shape approximation for the effective
potential. Likewise, the magnetization and current densities and
their conjugate fields are all treated as unconstrained vector fields
throughout space. The deep lying core states (3 Ha below the
Fermi level) are treated as Dirac spinors and valence states as
Pauli spinors. To obtain the Pauli spinor states, the Hamiltonian
containing only the scalar fields is diagonalized in the LAPW
basis: this is the first-variational step. The scalar states thus
obtained are then used as a basis to set up a second-variational
Hamiltonian with spinor degrees of freedom, which consists of
the first-variational eigenvalues along the diagonal, and the matrix
elements obtained from the external and effective vector fields.
This is more efficient than simply using spinor LAPW functions, but
care must be taken to ensure there are a sufficient number of first-
variational eigenstates for convergence of the second-variational
problem. Spin-orbit coupling is also included at this stage.

The second-variational approach is also used for time evolution,
namely the coefficients c; in the algorithm above actually refer to
the second-variational states. The first-variational states remain
fixed to their ground-state values. This has the advantage of high
efficiency but it is essential to check that the number of ground
state orbitals is sufficient to accurately describe the evolving
orbitals.

Results presented in this work are calculated usinga 8 x 8 x
8 k-point set for Ni and Diamond and a 6 x 6 x 6 K-point
set for Fe. 138 Kohn-Sham states per k-point were needed to
obtain converged results. We have used adiabatic local density
approximation (ALDA) for exchange-correlation potential. 1600
time steps per fs were used. This required a computational time
of 1.6 s per time step per k-point on Intel Xeon E5-2670 v2. This
computation time scales linearly with the number of k-points and
almost quadratically with the number of states.

The efficiency of this algorithm depends upon the step length
At aswell as how easy it is to diagonalize the Hamiltonian in step 5.
In the limit At — 0 the algorithm is exact. It still remains to be
seen how large the time step can be chosen so that small errors do
not build up as the system is propagated for long times. In order to
test this, we first design quantities which will provide a stringent
check for efficiency and stability of the algorithm. In the following
we present one such quantity,

1
F() = ﬁ/d3r 018, ) — pa(x. )] ™)

where N is the number of electrons and p; and p, are the time-
dependent charge densities from two different time propagations
of the same Hamiltonian. The difference between these two time
propagations is the length of the time step At. In the extreme case
where the two densities are so different that they do not overlap
at any space point then F(t) = 1 and if the two densities are
exactly the same then F(t) = 0. Thus deviation of F(t) from
0 is an indicator of the instability of the algorithm. In Fig. 2 are
plotted F(t) for solid Fe under the influence of a time-dependent
external vector potential corresponding to an intense laser pulse.
The smallest step length used for time propagation was 0.06
attoseconds (as) (this determines the pq). It is clear from these
results that the error for step sizes below 5 as are negligible and
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Fig. 2. (Color online) Upper panel: vector potential, A(t), of the applied laser
field. Lower panel: function F(t) (as defined in Eq. (7)), for various time steps,
as a function of time (in femtoseconds). The laser pulse used has peak intensity
of 2 x 10'5 W/cm?, frequency of 8.26/fs, fluence of 935 mJ/cm? and the pulse
is linearly polarized along the x-axis perpendicular to the direction of the spin
magnetic moment.
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Fig. 3. Function F(t) integrated over time as a function of time step size (At).

can easily be used to obtain reliable results. The errors also do not
build up as the system is time propagated over longer times. For
step sizes of 6 as or greater, the error is large and builds up as the
Hamiltonian is propagated for longer times.

While doing large scale practical calculations, it is difficult to
look at quantity like F (t) for each case. It is much more convenient
to integrate F(t) over time and look at this single number as a
function of At. This is plotted in Fig. 3. These results again indicate
that time step up to 2.5 as can easily be used. It is important to
mention that for studying time-dependent phenomena in the few
hundred femtoseconds regime, a typical step size of ~1 as is used.
Usually such systems are studied without taking the magnetization
density into account, which is much more sensitive quantity than
charge density itself. Despite this we find that large step sizes
(~2.5 as) can be used for the time propagation which indicates
the stable nature of this algorithm. Similar tests for Diamond (see
Fig. 6), a non-magnetic material, reveal that a step size as large as
~6 as can reliably be used.

One can make the test conditions for the algorithm even more
stringent by performing similar tests for a fully non-collinear
system with spin-orbit coupling [38,39]. Results for the magnetic
moment per atoms for solid Ni under the influence of external
time-dependent vector potential of an intense laser pulse are
shown in Fig. 4. Here the tests are performed for Ni rather than
Fe simply because Ni has delocalized electrons with very small

A field

Time (fs)

Fig.4. (Color online) Upper panel: vector potential, A(t), of the applied laser pulse.
Lower panel: magnetic moment (in Bohr magnetons) per Ni atom as a function of
time (in femtoseconds) for three different time step sizes. The laser pulse used has
peak intensity of 2 x 10'5 W/cm?, frequency of 4.12/fs, fluence of 935 mJ/cm? and
the pulse is linearly polarized along the x-axis perpendicular to the direction of the
spin magnetic moment.
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Fig. 5. Magnetic moment (in Bohr magnetons) per Ni atom as a function of
time (in femtoseconds) obtained using forward (black) and backward (red) time
propagation. Results obtained using two different time steps (upper panel 0.6 as
and lower panel 2.4 as) are presented. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

moment and is highly sensitive to computational details. The
system is non-collinear and undergoes demagnetization due to
the presence of spin-orbit coupling term in Eq. (1). The plotted
magnetic moment shows that the step size as large as 2.5 as can be
used in this case. Not surprisingly, the intensity of the external laser
pulse can play an important role in determining the step length.
The more intense the pulse the smaller the required step length.
To give the algorithm a stringent test, the pulse intensity in the
present case is (10> W/cm?) chosen to be the highest used for
such calculations [38,39]. It is important to note that in the present
work we have used pulses with wave length in the optical regime.
For extreme ultraviolet pulses, obviously, the time step At has to
be chosen small enough to resolve the wave length.
The time evolution operator satisfies the following relation

Ut + At, t) = U(¢, t + At), (8)

a property which is not strictly satisfied in the present algorithm.
One may then ask how this affects the time propagation. Since
this property of the time evolution operator involves time reversal
symmetry, in Fig. 5 we plot the magnetic moment in Ni (same as in
Fig. 4) obtained using forward and backward time propagation. It is
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Fig.6. (Color online) Dielectric function for Diamond as a function of energy (ineV).
Results are obtained using linear response (black line) and real time propagation
(red line). For obtaining the data shown as red line Kohn-Sham system was time
propagated for 500 fs.

clear from Fig. 5 that the error arising from not satisfying Eq. (8) is
very small and does not substantially affect the time propagation.
Interestingly, we find that even for a time step of 2.4 as, where this
error is large (see lower panel Fig. 5), magnetization dynamics is
still described accurately (see Eq. (8)).

Yet another test for the robustness of the algorithm is its
performance in long time limit (i.e. the stability of the algorithm
against error accumulations). This can be tested by performing
linear response calculations. The linear response of a system can
be calculated in two different ways: (a) using the perturbation
theory expression [40,41] and (b) real time propagation under the
influence of a small external field. This field has to be small enough
to ensure that the system responds linearly. The latter scheme
is computational expensive as it requires a time propagation for
several 100 s of fs. This is done in order to perform an accurate
Fourier transform of the time dependent current to frequency
space (for details see Ref. [42]). One can compare the two responses
in order to check the robustness of any time propagation scheme.
We have done so for the case of Diamond, by time-propagating
for 500 fs, and the results are presented in Fig. 6. To give the
time propagation algorithm a stringent test the calculations are
performed for a large time step of 2.4 as. It is clear from the
Fig. 6 that the errors accumulated are indeed very small and the
dielectric function is very well reproduced despite the use of large
time for time propagation.

To summarize: we present an efficient algorithm for time
propagating the Kohn-Sham equations. The algorithm is based on
dividing the full time into small time steps and assuming that
the Hamiltonian remains constant over each step. This allows
for expansion of the time-propagating orbitals in the basis of
instantaneous eigenstates of the Hamiltonian. This algorithm is
ideally suited for codes where full diagonalization is performed. By
performing stringent tests for collinear and non-collinear magnetic
systems we demonstrate the efficiency of the algorithm. It is
important to emphasize that because the fully unconstrained
magnetization vector field requires very little energy to alter its

direction, a highly precise time-evolution algorithm is required
for reliable results. Present algorithm provides just such precision
and stability. A further development of this algorithm would be
to include nuclear motion in the time evolution. In this case one
would have to incorporate changes in first variational basis since
the basis itself depends on the atomic positions. This would require
the inclusion of the incomplete basis set corrections, which would
be an extension of the work of Yu et al. to the time evolving
case [43].
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