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Electrical control of the RKKY interaction in bilayer graphene

N. Klier,1 S. Sharma,2 O. Pankratov,1 and S. Shallcross1,*

1Lehrstuhl für Theoretische Festkörperphysik, Staudtstrasse 7-B2, 91058 Erlangen, Germany
2Max-Planck-Institut fur Mikrostrukturphysik Weinberg 2, D-06120 Halle, Germany

(Received 11 July 2016; revised manuscript received 28 October 2016; published 28 November 2016)

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between impurity spins is calculated for bilayer
graphene in the presence of a layer symmetry-breaking external electric field. We find that for intercalated
impurities (i.e., impurity atoms between the two constituent layers of the bilayer) the interaction is extraordinarily
sensitive to such a field. In particular, (i) the form of the RKKY interaction may be tuned between oscillatory,
ferromagnetic, and antiferromagnetic simply by varying the external field, and (ii) the strength of the RKKY
interaction may be increased by an order of magnitude by application of an external field. This sensitivity arises
directly from the “Mexican hat” form that the low-energy spectrum takes in an applied field. These finding
suggest that heterostructures of intercalated magnetic atoms in bilayer graphene may represent a possible system
for electrical control over magnetic structure.
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I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion [1–3] in graphene [4–26] possesses a number of features
that render it very different from the familiar RKKY interaction
found, for example, on the (111) surface of Cu [27]. These
differences arise from two distinct features of the electronic
structure: the multivalley nature of the low-energy spectrum
and the Dirac-Weyl cones situated at each of these valleys.
The former leads to anisotropic fast oscillations in the RKKY
interaction [4,10,14,25], while the latter is responsible for an
unusual R−3 asymptotic decay of the interaction when the
Fermi energy coincides with the Dirac point [4,10,14].

The AB-stacked graphene bilayer, a prototypical example
of a van der Waals heterostructure, also features a novel RKKY
interaction [5,15,16,21,25]. In particular, it was recently shown
that intercalated impurities—that occupy the open spaces be-
tween the layers of the bilayer (see Fig. 1)–have a remarkably
rich behavior close to the band edges of the high-energy
bonding and antibonding bands, where a sudden transition of
the RKKY interaction from oscillatory to antiferromagnetic
occurs [25].

This interesting RKKY physics of graphene and bilayer
graphene arises directly from the form of the single-particle
band structure in these materials, suggesting that modification
of the electronic structure by external variables, such as an
electric field or strain, may have interesting consequences for
the RKKY interaction. One of the most well-known such
effects is the opening of a band gap in bilayer graphene
by application of a layer symmetry-breaking electric field
[28–31], which has been shown to sensitively impact the
RKKY interaction in bilayer graphene leading to a ferro-
magnetic to antiferromagmetic switching for plaquette im-
purities [15]. In this work we will explore the impact of such
a field on the RKKY interaction of intercalated impurities,
finding that it is highly sensitive to an applied electric field.

By tuning an electric field such that the band edge moves
from below to above the Fermi energy we show that the
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RKKY interaction evolves from oscillatory at low bias, to
antiferromagnetic, and finally when the Fermi energy is in the
gap, to ferromagnetic. Close to the gap edge the low-energy
band manifold resembles that of a “Mexican hat,” and this
energy region is associated with an order of magnitude increase
in the strength of the RKKY interaction. Finally, if the Fermi
energy is pinned in the band gap, yet is not too far from the
gap edge, finite-temperature calculations reveal a most unusual
change in the RKKY interaction as a function of temperature.
We find that the interaction changes its qualitative form with
temperature but does not significantly reduce in strength: A
low-temperature (T < 50 K) ferromagnetic interaction goes
over to a antiferromagnetic interaction at room temperature.

II. THEORY

A. Basic theory and notation

Formalism of the RKKY interaction. The coupling of two
impurity spins to the itinerant Dirac gas is described by the
Hamiltonian

H = H 0 − λ(S1 · s1 + S2 · s2), (1)

FIG. 1. Two intercalated impurities in AB-stacked bilayer
graphene. Each impurity spin couples via a contact interaction to
the ten surrounding carbon atoms of the bilayer (light shaded/green
atoms).
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where H 0 is the Hamiltonian of the biased bilayer system, Si

denotes the spin of the impurity, and si = �

2

∑
μ,ν c

†
iμτμνciν

is taken for the itinerant quasiparticle spin density. By
convention, the operator c

†
iμ generates an quasiparticle at site i

with spin μ and τ represents the vector of Pauli matrices. The
interaction energy between two impurities that are separated
by the distance vector R = (R,θ ) = r′ − r is given by the
well-known expression

ERKKY = (S1 · S2)Jαlα′
l′ (R). (2)

Note that the index α ∈ {A,B} stands for the sublattice and
l ∈ {1,2} for the layer of each impurity. In the zero-temperature
formalism the exchange integral Jαlα′

l′ (R) is given by the
expression

Jαlα′
l′ (R) = −λ2

�
2

2π

∫ EF

−∞
dEIm

[
G0

αlα′
l′ (−R,E)

×G0
α′

l′αl
(R,E)

]
, (3)

where G0
α′

l′αl
(R,E) is the Dirac gas propagator at zero

temperature. Additionally, we will discuss the effects of
finite temperature on the RKKY interaction for which the
appropriate expression is the Matsubara sum

Jαlα′
l′ (R) = λ2

2β

∑
n

G0
αlα′

l′ (−R,iωn)G0
α′

l′αl
(R,iωn), (4)

whereG0
αlα′

l′
(R,iωn) is the finite-temperature propagator in real

space, and where we have introduced the Matsubara frequency
ωn = (2n + 1)π/(�β), with β = 1/(kBT ) and the Boltzmann
constant kB .

Hamiltonian. Bilayer graphene consists of two graphene
layers in an AB-stacked (graphitic) configuration. In this work
we consider the simplest possible tight-binding scheme of (i) a
nearest-neighbor hopping in plane and (ii) interlayer hopping
only along the bonding vector. The strength of this interlayer
coupling is described by the constant t⊥, which has a value of
≈0.38 eV. Additionally, we apply a layer symmetry-breaking
bias voltage V between both layers. Note that as a consequence
of our simple choice of tight-binding scheme we do not capture
the three satellite Dirac points which trigonally decorate
the K-centered Dirac point, for which momentum-dependent
layer off-diagonal blocks in the Hamiltonian are required.
Including these low-energy Dirac points may change details
of the RKKY interaction in the Mexican hat region, but
will certainly not change the qualitative features of the field
dependence of the RKKY that we will describe here, and for
that reason we omit this detail of the spectrum.

In a low-energy expansion close to the mth corner of the
hexagonal Brillouin zone we find the Hamiltonian of the
biased bilayer is given by

H 0
m(k) =

⎛
⎜⎜⎜⎝

V
2 	̃m(k) −t⊥ 0

	̃∗
m(k) V

2 0 0

−t⊥ 0 −V
2 	̃∗

m(k)

0 0 	̃m(k) −V
2

⎞
⎟⎟⎟⎠, (5)

where 	̃m(k) = �vF kei(γm+δmφk), with φk = tan−1 ky/kx , and
vF is the Fermi velocity of the Dirac cone. The two phases δm

and γm depend on the particular high-symmetry K-point used

TABLE I. Coefficients for the low-energy expansion at each of
the six high-symmetry K points of the graphene Brillouin zone.

K1 K2 K3 K4 K5 K6

γm 0 π − π

3
2π

3
π

3 − 2π

3

δm −1 +1 +1 −1 +1 −1

for the expansion and are given in Table I; for the relation be-
tween the high-symmetry Km point and the graphene Brillouin
zone, see Fig. 2. Diagonalization of the Hamiltonian Eq. (5)
leads to the four energy bands described by the eigenvalues

Eσ1σ2 (k) = σ1

⎡
⎣v2

F k2 + t2
⊥
2

+ V 2

4

+ σ2

√
t2
⊥
4

+ v2
F k2(t2

⊥ + V 2)

⎤
⎦

1/2

, (6)

where σ1 = ±1 and σ2 = ±1 label the four bands of bilayer
graphene.

B. RKKY interaction at T = 0

1. Green’s function

The full real-space Green’s function is given by

G0(R,E) = 1

3

6∑
m=1

G0
m(R,E)eiKm·R, (7)

where we have introduced G0
m(R,E) that may be obtained

from a Fourier transform of the retarded momentum space
Green’s function G0

m(k,E) = [E + iη − H 0
m(k)]−1. The real-

space Green’s function at the mth K point is given by the
expression

G0
m(R,E) = − iπ2

8�2v2
F �BZu

M(R,E), (8)

FIG. 2. Hexagonal Brillouin zone of bilayer graphene with the
high-symmetry K-points labeled.
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TABLE II. Elements of the T = 0 Green’s function of bilayer
graphene in the presence of a layer symmetry-breaking field. The
function 	m(R) = ei(γm+δmθ) with the parameters γm and δm are given
Table II.

αlα
′
l′ Mαlα

′
l′
(R,E)

A1A1 2B(−V )[A(−V )H 1
0 (z+R) + A(V )H 1

0 (z−R)]

A1B1 4i�vF 	m(R)[A(−V )z+H 1
1 (z+R) + A(V )z−H 1

1 (z−R)]

A1A2 t⊥B(V )B(−V )[H 1
0 (z+R) − H 1

0 (z−R)]

A1B2 2i�vF 	∗
m(R)t⊥B(−V )[z+H 1

1 (z+R) − z−H 1
1 (z−R)]

B1B1 2B(−V )[F+(V )H 1
0 (z+R) + F−(V )H 1

0 (z−R)]

B1A2 2i�vF 	∗
m(R)t⊥B(V )[z+H 1

1 (z+R) − z−H 1
1 (z−R)]

B1B2 −4�
2v2

F 	∗2
m (R)t⊥[z+2H 1

2 (z+R) − z−2H 1
2 (z−R)]

A2A2 2B(V )[A(V )H 1
0 (z+R) + A(−V )H 1

0 (z−R)]

A2B2 4i�vF 	∗
m(R)[A(V )z+H 1

1 (z+R) + A(−V )z−H 1
1 (z−R)]

B2B2 2B(V )[F+(−V )H 1
0 (z+R) + F−(−V )H 1

0 (z−R)]

where �BZ stands for the area of the Brillouin zone and the
elements of the matrix M(R,E) are presented in Table II. We
have introduced in the expressions of this table the functions
of the interlayer bias,

A(V ) = u + (E + iη)V, (9)

B(V ) = 2(E + iη) + V, (10)

Fs(V ) = u − s(E + iη)V + s
2(E + iη) + V

2(E + iη) − V
t2
⊥, (11)

with s ∈ {±} and u defined as follows:

u =
√

(E + iη)2(V 2 + t2
⊥) − V 2t2

⊥/4. (12)

The arguments of the Hankel functions, z+R and z−R, are
given by

z+ = 1

�vF

√
(E + iη)2 + V 2

4
+ u, (13)

z− = 1

�vF

√
(E + iη)2 + V 2

4
− u. (14)

By definition, the square roots in Eqs. (12), (13), and (14) are
taken so that the imaginary part is positive valued. Taking the
η → 0 limit of u, z+, and z− yields

z+|η→0 = 1

�vF

sgn

⎛
⎝E +

√
V 2 + 4t2

⊥
2

⎞
⎠√

E2 + V 2

4
+ u,

(15)

z−|η→0 = 1

�vF

sgn

(
E − V

2

)√
E2 + V 2

4
− u, (16)

u|η→0 = sgn

⎛
⎝E + V t⊥

2
√

V 2 + t2
⊥

⎞
⎠

×
√

E2(V 2 + t2
⊥) − V 2t2

⊥
4

. (17)

In the limit V → 0 and η → 0 these functions take the
following simple forms: A(0) = Et⊥, B(0) = 2E, Fs(0) =
t⊥(E + st⊥), u = Et⊥, z+ = sgn(E + t⊥)

√
E2 + Et⊥/(�vF ),

and z− = sgn(E)
√

E2 − Et⊥/(�vF ). Hence, we recover under
these circumstances the Green’s function that was found for
the bilayer without bias [25].

Energy E Spectrum DOS ρ(E)

E ≥ V2 + 4t2
⊥/2 16E

V2 + 4t2
⊥/2 > E > V/2

Δk Eg

K

4E 2 + V2 + t2
⊥ /|u(E)|

V/2 ≥ E ≥ Vt⊥/(2 V2 + t2
⊥) 8|E| V2 + t2

⊥ /u(E)

Vt⊥/ 2 V2 + t2
⊥ > E > −Vt⊥/ 2 V2 + t2

⊥ 0

−Vt⊥/(2 V2 + t2
⊥) ≥ E ≥ −V/2 8 |E| V2 + t2

⊥ /u(E)

−V/2 > E > − V2 + 4t2
⊥/2 4E 2 + V2 + t2

⊥ /|u(E)|

E ≤ − V2 + 4t2
⊥/2 16E

FIG. 3. The total density of states of biased bilayer graphene ρ(E) = ∑
i ρi(E) (right) and a schematic illustration of the low-energy

spectrum in vicinity of the K point (middle). The two low-energy bands are separated by a band gap Eg = V t⊥/
√

V 2 + t2
⊥ and the distance

between the two minima (maxima) is given by �k = V
√

(V 2 + 2t2
⊥)/(V 2 + t2

⊥)/(2�vF ). The DOS is defined piecewise in the energy intervals
on the left. The function u(E) must be inserted in its η → 0 limit as defined in Eq. (17).
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TABLE III. The density of states of biased bilayer graphene on sites A1, B1, A2, and B2. The energy range of applicability of each expression
is indicated by the expression at the top of each column. The function u(E) must be inserted in the η → 0 limit as defined in Eq. (17).

|E| < V t⊥
2
√

V 2+t2
⊥

V t⊥
2
√

V 2+t2
⊥

� |E| � V

2
V

2 < |E| <

√
V 2

4 + t2
⊥ |E| �

√
V 2

4 + t2
⊥

ρA1 (E) 0 −2 |E|V
u(E) (2E − V ) (2E − V )[1 − |E|V

u(E) ] 2(2E − V )

ρB1 (E) 0 −2 sgn(E)
u(E) [(2E − V )EV − (2E + V )t2

⊥] (2E − V )[1 − EV

|u(E)| ] + t2
⊥

|u(E)| (2E + V ) 2(2E − V )

ρA2 (E) 0 2 |E|V
u(E) (2E + V ) (2E + V )[1 + |E|V

u(E) ] 2(2E + V )

ρB2 (E) 0 2 sgn(E)
u(E) [(2E + V )EV + (2E − V )t2

⊥] (2E + V )[1 + EV

|u(E)| ] + t2
⊥

|u(E)| (2E − V ) 2(2E + V )

2. Density of states

The density of states (DOS) on site α ∈ {A,B} and layer
l ∈ {1,2} may be obtained from the real-space Green’s function
by

Dαl
(E) = − 1

π
lim
R→0

Im
[
G0

αlαl
(R,E)

]
. (18)

Surprisingly, given the rather complex form of the Green’s
function, this expression can be manipulated to yield a very
compact analytical form for the DOS of the bilayer in the
presence of a layer symmetry-breaking electric field. This
expression is useful for model work and appears not to have
been noticed before (a more complex expression involving
elliptical functions can be found in the appendix of Ref. [31]).
In the low-energy band structure in the vicinity of the K

point, shown in Fig. 3, there are four regions to distinguish:
the band gap around the K point, the Mexican hat region,
the gap between the low- and the high-energy bands, and,
finally, at high energies, the two-band region. In these four
regions the argument of the Green’s function z+ or z− is either
purely real, purely imaginary, or complex and this has dramatic
consequences on the form of the DOS. Use of the Sokhotski-
Plemelj theorem and the identity limR→0 Im[iH 1

0 (z±R)] =
sgn(z±) allows one to obtain an expression for the density
of states at site α of layer l

Dαl
(E) = sgn(E)

π

4�2v2
F �BZ

ραl
(E), (19)

where ραl
(E) is given by Table III. The total density of states,

D(E) = ∑
α,l Dαl

(E), is shown in the last column in Fig. 3.

3. Number of states

The number of occupied states and the density of states
are connected by integration: N (EF ) = ∫ EF

−∞ dED(E). After
making use of particle-hole symmetry, D(E) = D(−E), the
number of states can be rewritten as

N (EF ) = N0 + sgn(EF )�N (EF ), (20)

where we defined the constant N0, equal to number of states
at Dirac point, and the function �N (EF ) = ∫ |EF |

0 dED(E).
With help of D(E), given by the last column of Fig. 3, we may
calculate the integral �N (EF ), finding

�N (EF ) = π

�2v2
F �BZ

ξ (EF ), (21)

with the function ξ (EF ) defined by Table IV. This expression
may easily be inverted to obtain the Fermi energy given a

fixed particle density and bias. In the calculation of the RKKY
interaction at fixed particle density this analytical procedure
significantly improves the efficiency of the calculation.

4. RKKY interaction

In order to calculate the exchange integral, we use Eq. (3)
and insert the Green’s function given by Eq. (8). As shown in
previous works [4,10,14,25] the exchange integral separates
into the product of an intravalley and intervalley terms and so
can be written as

Jαlα′
l′ (R) = CIαlα

′
l′
(R)fαlα′

l′ (R), (22)

with C = − λ2
�

2a2

64πt2 . In the absence of bias there are six
inequivalent substitutional RKKY interactions [25]; however,
due to the symmetry breaking by the applied bias this becomes
10 distinct functions Jαlα′

l′ (R) (the maximum possible), which
we present in Table V. From the expressions in Table V it is
now clear that the functions defined in Eqs. (9) to (12) encode
the layer symmetry breaking of the bias potential as they
always occur in ± combinations, which in the limit V → 0
for each case become a simple multiplicative factor for the I

function. The intervalley part of the interaction is much the
simpler part of the RKKY and is always defined by the three
functions,

fA1A1 (R) = 1 + cos [2K2 · R], (23)

fB1A1 (R) = 1 + cos [2K2 · R + π − 2θ ], (24)

fB2B1 (R) = 1 + cos [2K2 · R + 4θ ], (25)

where θ is the polar angle of the vector R. The relevant member
of these three functions for each type of substitutional RKKY
interaction is also shown in Table V. Note that this intervalley

TABLE IV. Number of states function ξ (EF ). The function u(EF )
must be inserted in its η → 0 limit.

Fermi energy range ξ (EF )

|EF | �
√

V 2

4 + t2
⊥ 2(E2

F + V 2

4 )√
V 2

4 + t2
⊥ > |EF | > V

2 E2
F + V 2

4 + |u(EF )|
V

2 � |EF | � V t⊥
2
√

V 2+t2
⊥

2|u(EF )|
|EF | < V t⊥

2
√

V 2+t2
⊥

0

205436-4



ELECTRICAL CONTROL OF THE RKKY INTERACTION IN . . . PHYSICAL REVIEW B 94, 205436 (2016)

TABLE V. Intralayer part of the RKKY interaction at T = 0; the expression for the full RKKY interaction is given in Eq. (22).

αlα
′
l′ Iαlα

′
l′
(R) fαα′ (R)

A1A1
1

4�2v2
F

∫ ∞
EF

dEIm{B(−V )2

u2 [A(−V )H 1
0 (z+R) + A(V )H 1

0 (z−R)]2} fA1A1 (R)

A2A2
1

4�2v2
F

∫ ∞
EF

dEIm{B(V )2

u2 [A(V )H 1
0 (z+R) + A(−V )H 1

0 (z−R)]2} fA1A1 (R)

B1B1
1

4�2v2
F

∫ ∞
EF

dEIm{B(−V )2

u2 [F+(V )H 1
0 (z+R) + F−(V )H 1

0 (z−R)]2} fA1A1 (R)

B2B2
1

4�2v2
F

∫ ∞
EF

dEIm{B(V )2

u2 [F+(−V )H 1
0 (z+R) + F−(−V )H 1

0 (z−R)]2} fA1A1 (R)

B1A1

∫ ∞
EF

dEIm{ 1
u2 [A(−V )z+H 1

1 (z+R) + A(V )z−H 1
1 (z−R)]2} fB1A1 (R)

A2B2

∫ ∞
EF

dEIm{ 1
u2 [A(V )z+H 1

1 (z+R) + A(−V )z−H 1
1 (z−R)]2} fB1A1 (R)

B2A1
t2
⊥
4

∫ ∞
EF

dEIm{B(−V )2

u2 [z+H 1
1 (z+R) − z−H 1

1 (z−R)]2} fB1A1 (−R)

A2B1
t2
⊥
4

∫ ∞
EF

dEIm{B(V )2

u2 [z+H 1
1 (z+R) − z−H 1

1 (z−R)]2} fB1A1 (−R)

A2A1
t2
⊥

16�2v2
F

∫ ∞
EF

dEIm{B(V )B(−V )
u2 [H 1

0 (z+R) − H 1
0 (z−R)]2} fA1A1 (R)

B2B1 �
2v2

F t2
⊥

∫ ∞
EF

dEIm{ 1
u2 [z+2H 1

2 (z+R) − z−2H 1
2 (z−R)]2} fB2B1 (R)

scattering cannot change the sign of the RKKY interaction
and that the periodicity of these functions, and the fact that R
must be a lattice vector R = n1a1 + n2a2 with ni ∈ Z, ensure
trigonal symmetry of Eqs. (23)–(25).

C. RKKY interaction at finite temperature

1. Green’s function

The finite-temperature Green’s function in momentum
space is defined by G0(k,iωn) = [i�ωn + μ − H 0(k)]

−1
. Af-

ter a Fourier transform we find the real-space Green’s function,

G0(R,iωn) = 1

3

6∑
m=1

G0
m(R,iωn)eiKm·R, (26)

where

G0
m(R,iωn) = − iπ2

8�v2
F �BZu

M(R,iωn). (27)

In this expression we have introduced the matrix M(R,iωn),
the elements of which are presented in Table VI and in

which we have defined three functions of the interlayer bias,
analogous to those of the T = 0 formalism,

A(V ) = u + [i�ωn + μ]V, (28)

B(V ) = 2i�ωn + 2μ + V, (29)

Fs(V ) = u − s[i�ωn + μ]V + s
2i�ωn + 2μ + V

2i�ωn + 2μ − V
t2
⊥, (30)

where the three variables z+, z−, and u are defined by

z+ = 1

�vF

√
(i�ωn + μ)2 + V 2

4
+ u, (31)

z− = 1

�vF

√
(i�ωn + μ)2 + V 2

4
− u, (32)

u =
√

(i�ωn + μ)2(V 2 + t2
⊥) − V 2t2

⊥
4

. (33)

Note that all three square roots are taken so that the imaginary
part is positive valued.

TABLE VI. Elements of the finite-temperature Green’s function of bilayer graphene in the
presence of a layer symmetry-breaking field.

αlα
′
l′ Mαlα

′
l′
(R,E)

A1A1 2B(−V )[A(−V )H 1
0 (z+R) + A(V )H 1

0 (z−R)]

A1B1 4i�vF 	m(R)[A(−V )z+H 1
1 (z+R) + A(V )z−H 1

1 (z−R)]

A1A2 t⊥B(V )B(−V )[H 1
0 (z+R) − H 1

0 (z−R)]

A1B2 2i�vF 	∗
m(R)t⊥B(−V )[z+H 1

1 (z+R) − z−H 1
1 (z−R)]

B1B1 2B(−V )[F+(V )H 1
0 (z+R) + F−(V )H 1

0 (z−R)]

B1A2 2i�vF 	∗
m(R)t⊥B(V )[z+H 1

1 (z+R) − z−H 1
1 (z−R)]

B1B2 −4�
2v2

F 	∗2
m (R)t⊥[z+2H 1

2 (z+R) − z−2H 1
2 (z−R)]

A2A2 2B(V )[A(V )H 1
0 (z+R) + A(−V )H 1

0 (z−R)]

A2B2 4i�vF 	∗
m(R)[A(V )z+H 1

1 (z+R) + A(−V )z−H 1
1 (z−R)]

B2B2 2B(V )[F+(−V )H 1
0 (z+R) + F−(−V )H 1

0 (z−R)]
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TABLE VII. Intralayer part of the RKKY interaction at finite temperature; the expression for the full RKKY interaction is given in Eq. (34).

αlα
′
l′ Iαlα

′
l′
(R) fαα′ (R)

A1A1
π

4�2v2
F

β

∑
n

B(−V )2

u2 [A(−V )H 1
0 (z+R) + A(V )H 1

0 (z−R)]2 fA1A1 (R)

A2A2
π

4�2v2
F

β

∑
n

B(V )2

u2 [A(V )H 1
0 (z+R) + A(−V )H 1

0 (z−R)]2 fA1A1 (R)

B1B1
π

4�2v2
F

β

∑
n

B(−V )2

u2 [F+(V )H 1
0 (z+R) + F−(V )H 1

0 (z−R)]2 fA1A1 (R)

B2B2
π

4�2v2
F

β

∑
n

B(V )2

u2 [F+(−V )H 1
0 (z+R) + F−(−V )H 1

0 (z−R)]2 fA1A1 (R)

B1A1
π

β

∑
n

1
u2 [A(−V )z+H 1

1 (z+R) + A(V )z−H 1
1 (z−R)]2 fB1A1 (R)

A2B2
π

β

∑
n

1
u2 [A(V )z+H 1

1 (z+R) + A(−V )z−H 1
1 (z−R)]2 fB1A1 (R)

B2A1
πt2

⊥
4β

∑
n

B(−V )2

u2 [z+H 1
1 (z+R) − z−H 1

1 (z−R)]2 fB1A1 (−R)

A2B1
πt2

⊥
4β

∑
n

B(V )2

u2 [z+H 1
1 (z+R) − z−H 1

1 (z−R)]2 fB1A1 (−R)

A2A1
πt2

⊥
16�2v2

F
β

∑
n

B(V )2B(−V )2

u2 [H 1
0 (z+R) − H 1

0 (z−R)]2 fA1A1 (R)

B2B1
π�

2v2
F

t2
⊥

β

∑
n

1
u2 [z+2H 1

2 (z+R) − z−2H 1
2 (z−R)]2 fB2B1 (R)

2. RKKY interaction

The RKKY interaction at finite temperature may be
obtained from Eq. (4) by direct insertion of the appropriate
Green’s function, to obtain the ten inequivalent RKKY
interactions of the biased bilayer at finite temperature:

Jαlα′
l′ (R) = CIαlα

′
l′
(R)fαlα′

l′ (R). (34)

The functions Iαlα
′
l′

are presented in Table VII.

III. RESULTS

A. Numerical method

Rather than use the T = 0 formalism, it turns out to
be significantly more numerically efficient to evaluate the
finite-temperature formalism RKKY Matsubara sums at a low
temperature (T = 10 K). This, of course, simply reflects the
fact that the Matsubara sums of Table VII are evaluated in the
complex plane, while the exchange integrals of Table V are
taken on the real axis and, therefore, are highly oscillatory for
large impurity separations. For the Matsubara sums we find
that 4001 poles are sufficient for convergence of the RKKY
interaction for all impurity separations. The RKKY interaction
we present, in all results, in terms of the coupling constant C.

B. Coupling scheme

We will consider the RKKY interaction between interca-
lated impurities, i.e., impurities that occupy one of the open
interlayer spaces of the AB-stacked lattice. Our motivation
for this choice is that this geometry offers the best chance
of significant exchange coupling of the impurity to the
electron gas of the bilayer, as evidenced by the fact that
intercalation of graphite yields significant such coupling. In
this context it is worth noting also that the twist bilayer [32]
may present an interesting system for such intercalation [33].
The impurity center is positioned along the vertical vector

connecting the center of a honeycomb of one layer and a
carbon atom in the second layer and there are, therefore, 10
nearest-neighbor carbon atoms to the impurity (see Fig. 1).
The impurity exchange field will be significant only on these
nearest-neighbor atoms and if we consider the intercalated
impurity RKKY interaction as simply a superposition of all
the RKKY interactions between these ten neighboring carbon
atoms, the so-called incoherent coupling scheme, then there
are 102 = 100 substitutional type impurity RKKY interactions
that must be summed over.

In contrast to the usual RKKY interaction in which the long-
range behavior is determined solely by the Fermi surface, the
multivalley nature of the electronic structure in graphene and
bilayer-graphene means that the RKKY interaction depends
on both the Fermiology and on the local structure of the
impurity. The precise nature of the coupling scheme must
therefore be considered in any investigation of the RKKY
interaction in these materials. For the intercalated impurity
there are, in principle, 10 different coupling constants λi that
must be fixed. These will depend on the detailed electronic
structure of the impurity-bilayer interaction, and in particular
the orbital structure of the impurity atom, and such information
can only be obtained ab initio on a case-by-case basis for each
impurity type. We will not consider the ab initio approach here
but rather follow Ref. [25], in which a detailed investigation
was performed of how a particular coupling scheme may
impact on the long-range RKKY interaction. In that work,
in which both the incoherent superposition scheme as well as
the so-called coherent coupling scheme that involves four-site
exchange interactions were considered, it was found that while
the form of the RKKY interaction can be qualitatively changed
by the coupling scheme, for many cases the simplest incoherent
coupling scheme captures the behavior reproduced by a wide
range of the more complex coupling schemes. For that reason
we will use this scheme here. As in Refs. [25] and [26]
we take λ to depend only on the separation of the impurity
center and the neighboring carbon atom; in this was we have
two parameters, λ1 and λ2 = 1.2λ1. It should also be noted
that in Ref. [15] the RKKY interaction of impurities in a

205436-6



ELECTRICAL CONTROL OF THE RKKY INTERACTION IN . . . PHYSICAL REVIEW B 94, 205436 (2016)

FIG. 4. Overview of the RKKY interaction for a fixed Fermi energy of 100 meV. The left panel presents a density plot of the spin coupling
type—ferromagnetic or antiferromagnetic—as a function of impurity separation and interlayer bias. The low-energy band structure for three
representative values of this interlayer bias (0.1, 0.2, and 0.3 eV) is displayed in the associated panels indicated by arrows; the dashed lines
on the density plots correspond to these bias values. The right panel shows the magnitude of the RKKY interaction plotted over the same
variables, with the interaction clearly massively enhanced for values of the interlayer bias that place the Fermi energy in the Mexican hat
region. The connection vector between the impurities is assumed to be in the armchair direction, and thus the intervalley scattering factors f

[see Eqs. (23)–(25)] are all unity. The temperature is set to 10 K.

plaquette geometry were considered and a ferromagnetic to
antiferromagnetic switching shown to be possible by tuning
the gate bias; while our work will consider in much more detail
both the field and temperature dependence of intercalated
impurities, the fact that a sensitive dependence on field is
found also for the plaquette geometry supports the view that
a diverse range of local coupling schemes are represented by
the results presented here.

C. RKKY interaction with a fixed Fermi energy

We will first consider the case in which the Fermi energy is
pinned at some fixed level for all values of the interlayer bias,
as is the case in graphene epilayers grown by sublimation of Si
from the Si face of SiC [34,35]. For that system the dangling
bonds of the buffer layer pin the Fermi energy at approximately
0.1 eV, and we will use this value here. Qualitatively similar
results, however, are obtained for Fermi energies 0 eV <

|EF | < 0.2 eV, with the only difference that the larger the
Fermi energy the greater the interlayer bias required to see
the full range of behavior of the RKKY interaction. In Fig. 4
we present an overview of the RKKY interaction for a range
of interlayer bias potentials and impurity separations. For a
complete picture of the effects of an interlayer bias, we present
values up to 0.4 eV, which correspond to a rather high field of
114 mV/Å, although, as may be seen, the interesting effects
correspond to much lower physically achievable fields of less
than 30 mV/Å.

In the left panel of Fig. 4 the type of coupling—
ferromagnetic or antiferromagnetic—is displayed as a density
plot for 10a < R < 100a and 0 eV < V < 0.4 eV. Three
qualitatively different regions as a function of the interlayer
bias may be seen: For low bias an oscillatory form of the
RKKY is observed, which on increasing the bias becomes
an antiferromagnetic interaction for all R > 10a, before a
ferromagnetic interaction sets in at all impurity separations
for V > 0.26 eV. These changes are easily correlated with

corresponding changes in the band structure of the bilayer
that occur due to the applied field, as displayed in the three
panels accompanying this figure. For low bias the Fermi energy
is in the single-band region, and the Fermi vector kF of the
circular Fermi surface drives an oscillatory RKKY interaction.
This behavior is qualitatively similar to that seen for zero bias.
Increasing the bias opens the band gap further and the Mexican
hat region of the spectrum then crosses the Fermi energy. This
band structure is qualitatively different from the low-energy
band structure at zero bias, but shares features in common
with the band edge of the high-energy antibonding band [25].
In particular, both feature regions in which the band velocity
vanishes are associated with zeros of the arguments of the
Bessel functions of the integrand of the RKKY forms shown
in Table V. These divergences are integrable but lead to a
pronounced increase in the RKKY interaction in the Mexican
hat region. This may be seen in the right panel of Fig. 4. For
interlayer bias greater than EF /2 = 50 meV the Fermi energy
is in the band gap and the RKKY is ferromagnetic for all R

and assumes an exponential decay.
A closer look at this evolution of RKKY forms as a function

of bias is provided in Fig. 5, in which we plot the RKKY
interaction as a function of separation for four representative
values of bias. Clearly, when the interlayer bias places the
Fermi energy in the Mexican hat region, V = 0.20 eV and
V = 0.22 eV, the RKKY interaction is massively enhanced. It
is also noteworthy that for the case where the Fermi energy
is in the band gap, V = 0.27 eV, the RKKY interaction,
while possessing an asymptotically exponential decay, is in
the region R < 25a comparable or greater in magnitude to
the oscillatory RKKY interaction found in the single band
(V = 0.10 eV).

The rapid change in form of the RKKY interaction observed
in the Mexican hat region as a function of energy signals the
existence of interesting RKKY physics at finite temperatures.
As the temperature is increased the Fermi window kBT

expands to take in energy regions of the propagator having
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FIG. 5. The RKKY interaction for a fixed Fermi energy of
100 meV and a selection of bias potentials representative of the
behavior seen in Fig. 4. The form of the RKKY interaction
evolves from oscillatory at low bias, through a massively enhanced
antiferromagnetic coupling, to a ferromagnetic form. The RKKY
interaction is evaluated at 10 K and the connection vector of the
impurities R is taken to be in the armchair direction, and thus the
intervalley scattering factors [Eqs. (23)–(25)] are all unity.

very different behavior to that found on the T = 0 energy
shell, and this can lead to dramatic changes in the form of
the RKKY interaction as a function of temperature [26]. In
Fig. 6 we present the RKKY interaction for a Fermi energy of
100 meV and an interlayer bias of 0.26 eV and calculated as a
function of R for temperatures between 10 K and 300 K. The
shaded area of the figure signals the region of interest, within
which one may observe a change in the form of the RKKY
interaction as a function of temperature which evolves from a
low-temperature ferromagnetic coupling to a high-temperature
antiferromagnetic coupling. This behavior is remarkably at
variance with the usual RKKY interaction in which tempera-
ture merely suppresses the interaction strength, but does not
lead to a change in the form of the interaction [6,9,26,36].

FIG. 6. Effect of finite temperature on the RKKY interaction. The
Fermi energy is pinned to a value of 100 meV and the interlayer bias
is fixed at 0.26 eV. While the RKKY interaction changes form from
antiferromagnetic to ferromagnetic, it does not significantly reduce
in magnitude. The connection vector of the impurities R is taken to
be in the armchair direction and thus the intervalley scattering factors
[Eqs. (23)–(25)] are all unity.

FIG. 7. RKKY interaction at fixed particle density. The particle
density at EF = 100 meV and zero bias is maintained for all finite
values of the interlayer bias. The inset displays the large R behavior.
The connection vector of the impurities R is taken to be in the armchair
direction and thus the intervalley scattering factors [Eqs. (23)–(25)]
are all unity.

D. RKKY interaction at a fixed particle density

How does this physics change if we consider, instead of the
Fermi energy, the particle density to be the fixed parameter
as the interlayer bias changes? This is the physical scenario
which occurs when the bilayer is deposited on a nonpolar
insulator. An obvious difference is that increasing the bias can
no longer result in a situation in which the Fermi energy is in
the band gap; instead the Fermi energy itself changes as the
gap opens with increasing bias, such that the particle density
is maintained at a fixed value. In Fig. 7 is shown the effect of
increasing the interlayer bias from a value of zero. The Fermi
energy is set to 100 eV at zero bias, and for all finite bias values
the particle density is held fixed at the zero bias density. The
most important difference from the previous case we studied
(compare with Fig. 5) is that RKKY interaction never evolves
to the monotonic ferromagnetic interaction found when the
Fermi energy is in the band gap. Instead, once the bias is
such that the Fermi energy is in the Mexican hat region it
will stay there, and further increases in the bias simply result
in a greater strength of the antiferromagnetic coupling for
separations 10a < R < 30a; see Fig. 7.

E. RKKY interaction with the Fermi level pinned
at the Dirac point

Finally, we consider the RKKY interaction for the case in
which the Fermi energy is pinned at the Dirac point, a situation
that arises, for example, in suspended bilayer graphene
samples or bilayer graphene deposited on SiO2. In the absence
of an applied bias the RKKY interaction at the Dirac point
for intercalated impurities is antiferromagnetic for R > 14a

and with a monotonic R−2 asymptotic decay envelope [25].
When the interlayer bias is switched on the Fermi energy
immediately enters the gap. The RKKY interaction, however,
smoothly evolves in the near-field region and evolves from an
antiferromagnetic to a ferromagnetic interaction, as may be
seen in Fig. 8.
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FIG. 8. The RKKY interaction at the Dirac point for a range of
bias potentials, T = 10 K. The connection vector of the impurities
R is taken to be in the armchair direction, and thus the intervalley
scattering factors [Eqs. (23)–(25)] are all unity.

IV. SUMMARY AND CONCLUSIONS

We find that the RKKY interaction of the Bernal stacked
bilayer may be tuned between a variety of qualitatively
different forms by application of a layer symmetry-breaking
field. We consider three scenarios within which this can be
realized: (i) a Fermi energy pinned at a value similar to that
found in graphene on the (0001) face of SiC, (ii) a fixed particle
density, and (iii) a Fermi energy pinned at the Dirac point. For
the SiC scenario we find the RKKY interaction in zero bias
assumes an oscillatory form, but that this can be tuned to be
antiferromagnetic by increasing the bias, with the magnitude
of the interaction enhanced by almost an order of magnitude.
Higher values of the bias result in the Fermi energy entering
the band gap and a ferromagnetic RKKY interaction with

an asymptotic exponential decay. Thus, simply by tuning an
applied field we can access the full range of interaction types:
oscillatory, antiferromagnetic, and ferromagnetic. For the case
in which the particle density is fixed a similar behavior is
seen, with the key difference that the gap region ferromagnetic
coupling is never reached; instead increasing the interlayer bias
simply increases in strength the antiferromagnetic interaction
for impurity separations 10a < R < 40a.

In the case in which the Fermi energy is pinned at the
Dirac point we find that the RKKY interaction evolves from
antiferromagnetic to ferromagnetic with applied bias. As soon
as the bias is switched on the Fermi enters resides within the
band gap, and the asymptotic decay of the RKKY interaction
is exponential. This exponential decay might be thought to
indicate a much reduced strength of the RKKY interaction.
However, for impurity separations R < 60a the magnitude
of the ferromagnetic RKKY interaction at an interlayer bias
of 50 meV is comparable to that of the antiferromagnetic
interaction found at zero bias.

In conclusion, we find that the RKKY interaction in bilayer
graphene exhibits a number of ways in which it may be
manipulated with an external field, both in the case of a
pinned Fermi energy as well as the case of a fixed electron
density. Bilayer graphene heterostructures formed from a
dilute intercalation of magnetic impurities may therefore
represent a system in which, by tuning an applied field, a
considerable degree of control may be exercised over the
magnetic structure.
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