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Kondo physics of the Anderson impurity model by distributional exact diagonalization
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The distributional exact diagonalization (DED) scheme is applied to the description of Kondo physics in
the Anderson impurity model. DED maps Anderson’s problem of an interacting impurity level coupled to an
infinite bath onto an ensemble of finite Anderson models, each of which can be solved by exact diagonalization.
An approximation to the self-energy of the original infinite model is then obtained from the ensemble-averaged
self-energy. Using Friedel’s sum rule, we show that the particle number constraint, a central ingredient of the DED
scheme, ultimately imposes Fermi liquid behavior on the ensemble-averaged self-energy, and thus is essential for
the description of Kondo physics within DED. Using the numerical renormalization group (NRG) method as a
benchmark, we show that DED yields excellent spectra, both inside and outside the Kondo regime for a moderate
number of bath sites. Only for very strong correlations (U/� � 10) does the number of bath sites needed to
achieve good quantitative agreement become too large to be computationally feasible.
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I. INTRODUCTION

The Anderson impurity model (AIM) [1] plays a central
role in the understanding of one of the most intriguing
many-body phenomena, the Kondo effect [2], and is also at
the heart of dynamical mean-field theory (DMFT) [3–6]. The
numerical renormalization group (NRG) method [7] solves
the model exactly, but is computationally very demanding and
unable to make use of the strongest form of parallelization.
Another numerically exact method for solving the AIM is the
continuous-time quantum Monte Carlo (CTQMC) algorithm
[8], which can be parallelized efficiently, but has the disadvan-
tage of working in imaginary time. The necessary analytical
continuation back to the real axis brings about artifacts in
the spectral function. Another serious drawback of CTQMC
is its restriction to relatively high temperatures, making this
approach of limited use for the study of low-temperature
phenomena such as the Kondo effect.

A number of approximate methods for solving the An-
derson model exist as well. The noncrossing approximation
(NCA) [9,10] and one-crossing approximation (OCA) [11,12],
for example, consist of a diagrammatic expansion around
the atomic limit, summing only a subset of diagrams to
infinite order. Both NCA and OCA yield qualitatively correct
spectra for not too low temperatures. While the simpler NCA
strongly underestimates the width of the Kondo peak, the
vertex corrections within OCA lead to a quantitatively correct
estimate of the Kondo scale. At lower temperatures, both NCA
and OCA show spurious non-Fermi-liquid behavior, leading
to artifacts in the spectra [13,14]. Many other approximate
schemes for solving the AIM exist [15–19], though all are
burdened with some kind of limitation.

Common to most approximation schemes is the solution of
the infinite AIM, consisting of an impurity level coupled to an
infinite and continuous bath representing a conduction electron
band. A different route is to replace the infinite AIM by a
finite one that can then be solved by numerical diagonalization
[20,21]. The infinite and continuous conduction electron bath
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is approximated by a finite number of discrete bath levels.
When this approach is adopted in DMFT as an impurity
solver, it yields thermodynamic and static quantities in very
good agreement with, e.g., numerically exact CTQMC, but
often leads to artifacts in the spectral functions stemming
from finite-size effects. Especially in the Kondo regime,
the discrete nature of the conduction electron bath in the
exact-diagonalization approach seriously compromises the
correctness of the impurity density of states, a key observable
[22] in the scanning tunneling spectroscopy of surface Kondo
systems such as Ce on silver [23] or Co on gold [24] and
copper [25–33] surfaces.

Recently, Granath and Strand have proposed a method
for solving the AIM that overcomes the problem of dis-
cretization artifacts. The distributional exact diagonalization
(DED) approach [34,35] maps the infinite Anderson model
onto an ensemble of finite Anderson models instead of a
single effective finite Anderson model. The ensemble average
of the self-energies of the finite Anderson models provides a
smooth approximation to the self-energy of the original infinite
Anderson model that is also free of finite-size artifacts. An
advantage of the DED method in comparison with NRG is its
straightforward and efficient large-scale parallelization. Dif-
ferent strategies for improving direct diagonalization methods
have been proposed recently. In one, a careful selection of
basis states makes it possible to include a large number of bath
levels [36]. In another, the parameters of an effective finite
Anderson model are variationally optimized [37].

Here we show that the DED approach gives an excellent
description of the Anderson model inside and outside the
Kondo regime, except for very strong correlations. We find
that already for a very small number of 1–2 bath sites, the
spectra are in good qualitative agreement with exact spectra
calculated by NRG. For a moderate number of 5–7 bath sites
the agreement becomes excellent, also with regard to the width
of the Kondo peak. Only for very strong correlation strength
(U/� � 10) does the number of bath sites necessary to obtain
quantitative results become computationally prohibitive due
to the exponential growth of the Kondo screening cloud with
correlation strength.
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The paper is organized as follows. In Sec. II we first review
the DED method, originally introduced by Granath and Strand,
and then elucidate the role of the particle number constraint
that is needed to make the method work. In Sec. III we apply
the DED method to the single-orbital AIM, both in the particle-
hole (ph) symmetric case (Sec. III A) and in the presence of
asymmetry (Sec. III B). Finally, in Sec. IV we conclude the
paper with a discussion of the results and a perspective on using
DED for more general types of Anderson impurity models.

II. METHOD

A. Review of the DED algorithm

We consider the AIM of a single interacting impurity level
coupled to an infinite bath of conduction electrons:

H = εdnd + Und↑nd↓ +
∑
σ,k

εk c
†
kσ ckσ

+
∑
σ,k

Vk (d†
σ ckσ + c

†
kσ dσ ) (1)

with dσ (d†
σ ) the annihilation (creation) operator for the

impurity level d and spin σ , ckσ (c†kσ ), the annihilation
(creation) operators for bath levels k and spin σ , ndσ = d†

σ dσ ,
nd = ∑

σ ndσ , εd the bare impurity level energy, U the on-
site Coulomb repulsion at the impurity, εk the band energy
of conduction electrons, and Vk the coupling between the
impurity level d and conduction electron k. The chemical
potential μ is assumed to be zero throughout the paper.

The general idea of the DED approach is to map the
infinite Anderson model to an ensemble of relatively small
finite Anderson models that can be diagonalized exactly. Our
starting point is the noninteracting retarded Green’s function:

G0(ω) = 1

ω+ − εd − �0 − �(ω)
, (2)

where �(ω) is the hybridization function �(ω) = ∑
k

(Vk )2

ω+−εk
,

describing the renormalization (real part) and broadening
(imaginary part) of the impurity level due to the coupling to the
conduction electron bath. For all calculations presented here
we assume a flat hybridization function, i.e., �(ω) = −i�

(wide-band limit), but the approach is not limited in that
respect.

The parameter �0 can be understood as an effective
one-body potential for the noninteracting reference system.
Its exact role will be elucidated later in the context of the
constraint (see Sec. II B). Anticipating our later discussion, we
mention here that Fermi liquid theory considerations suggest
that �0 should be the real part of the interacting self-energy
at the Fermi level. In including �0 already at this stage,
and interpreting it as an effective one-body potential, our
approach deviates somewhat from the one originally proposed
by Granath and Strand [34] (see Sec. II B for a detailed
discussion).

Next, G0 is represented by a large number M of poles bi on
the real axis, thereby effectively discretizing the conduction

electron bath:

G0(ω) =
M∑
i=1

ai

ω+ − bi

. (3)

Here ai are the residues corresponding to the poles bi which
have to be normalized according to

∑
ai = 1. We then divide

the poles into N groups of size n (Nn = M):

G0(ω) = 1

N

N∑
ν=1

n∑
i=1

aν
i

ω+ − bν
i

= 1

N

∑
ν

Gν
0(ω), (4)

where n is a relatively small integer number that ultimately
determines the size of the finite AIM, and N the number of
finite-size Anderson model samples in the ensemble. Now the
residues in each group have to be normalized according to∑n

i=1 aν
i = 1 for all ν = 1 . . . N .

The poles representing G0(ω) are generated randomly using
the noninteracting spectral density ρ0(ω) = −Im[G0(ω)]/π as
the probability distribution. Each set ν of n such randomly
chosen poles then uniquely defines the noninteracting part of
a finite-size (n sites) Anderson model:

Hν
0 = εν

0

∑
σ

d†
σ dσ +

n−1∑
σ,k=1

V ν
k (d†

σ ckσ + c
†
kσ dσ )

+
n−1∑

σ,k=1

εν
k c

†
kσ ckσ . (5)

The mapping from the set of poles to the parameters of the
finite Anderson model is achieved by equating Gν

0(ω) and the
impurity Green’s function (GF) corresponding to Hν

0 :

n∑
i=1

aν
i

ω+ − bν
i

=
(

ω+ − εν
0 −

n−1∑
k=1

(
V ν

k

)2

ω+ − εν
k

)−1

, (6)

where the residues are taken to be constant with aν
i = 1/n.

Note that since the poles bν
i are chosen to be distributed

randomly according to the probabilities ρ0(bν
i ), the seemingly

reasonable choice aν
i ∼ ρ0(bν

i ) for the residues is actually
wrong as it would lead to a sampled noninteracting DOS
different from ρ0(ω). The bath energy levels εν

k can now be
found from the roots of Gν

0,

Gν
0

(
ω = εν

k

) = 0 ∀ k = 1, . . . ,n − 1, (7)

while the hoppings V ν
k between the impurity and the bath

levels are obtained from the derivative of Gν
0 at the bath level

energies as

dGν
0

dω

∣∣∣∣
εν
k

= − 1(
V ν

k

)2 ∀ k = 1, . . . ,n − 1. (8)

Finally, the impurity level energy is obtained from the mean
value of sampled poles:

εν
0 =

n∑
i=1

aν
i b

ν
i = 1

n

n∑
i=1

bν
i . (9)

In the next step, the interacting finite Anderson model is
obtained by adding the interaction part, and, importantly,
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FIG. 1. Schematic representation of the DED method. The noninteracting density of the impurity level ρ0(ω) is interpreted as a probability
distribution for the poles of the noninteracting Green’s function G0(ω). A finite number of poles bν

i is then generated randomly according
to the distribution ρ0(ω). The selected n poles uniquely define a finite Anderson model Hν with n − 1 bath sites. Diagonalization of Hν

yields the self-energy �ν(ω) corresponding to the finite Anderson model. This process is repeated many times (N ). An approximation to the
self-energy of the original infinite Anderson model (1) is obtained from the ensemble average of the self-energies of the finite Anderson model
samples (13).

subtracting out the effective one-body potential �0, to avoid
double counting of interactions:

Hν = Hν
0 + Und↑nd↓ − �0nd. (10)

Hence we see that �0 does not really play a role yet. The role
of �0 will become clear later in the context of the constraint
(see Sec. II B). For later convenience we also define the bare
impurity level εν

d = εν
0 − �0 of the finite model. Note that

εν
d → εd in the limit of n → ∞.

The finite Anderson model Hamiltonian Hν is now diag-
onalized numerically. This yields the many-body eigenstates
|mν〉 and corresponding eigenenergies Eν

m. The GF for the im-
purity level is then obtained from the Lehmann representation:

Gν
σ (ω) =

∑
m

|〈mν |dσ |0ν〉|2
ω+ + Eν

m − Eν
0

+
∑
m

|〈mν |d†
σ |0ν〉|2

ω+ + Eν
0 − Eν

m

,

(11)

where |0ν〉 and Eν
0 denote the ground state and corresponding

ground state energy [38]. In the case of a degenerate ground
state the GF would be obtained from the corresponding
ensemble average over the ground state manifold. Note,
however, that the particle constraint discussed in Sec. II B
ensures that the ground state is actually a singlet state. The
corresponding self-energy of the finite Anderson model is

�ν
σ (ω) = [

Gν
0(ω)

]−1 − [
Gν

σ (ω)
]−1 + �0. (12)

This process of generating finite Anderson model Hamilto-
nians Hν and calculating their self-energies �ν

σ is repeated
N times. Finally, an approximation to the self-energy of the
original infinite Anderson model is obtained from the ensemble
average

�̄σ (ω) = 1

N

N∑
ν=1

�ν
σ (ω). (13)

An approximation to the corresponding interacting GF is
obtained from Gσ (ω) = [ω+ − εd − �̄σ (ω) − �(ω)]−1. As
observed by Granath and Strand, obtaining an approximation
to the GF of the infinite Anderson model by directly averaging

the Gν
σ (ω) is not an option, since the sample-averaged in-

teracting and noninteracting GFs Ḡσ (ω) = 1
N

∑
ν Gν

σ (ω) and
Ḡ0(ω) = 1

N

∑
ν Ḡν

σ (ω), respectively, do not form a proper pair
of interacting and noninteracting GFs connected by the Dyson
equation [34]. Figure 1 shows a schematic representation
summarizing the main steps of the DED procedure.

B. Role of the constraint

Granath and Strand found that in order to obtain valid
spectra not all randomly generated Anderson models can
be accepted. As can be seen in Fig. 2(a) (red dashed line),
the Kondo peak is practically nonexistent and the Hubbard
side peaks are overestimated when all randomly generated
finite Anderson model samples contribute equally. In order
to deal with this problem, Granath and Strand introduced a
constraint comparing the number of particles in the interacting
and noninteracting systems. More precisely, a sample ν is only
accepted if

Nν (!)= Nν
0 , (14)

where Nν is the number of particles of the ground state of
the interacting model Hν and Nν

0 that of the noninteracting
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FIG. 2. Effect of constraint: (a) Comparison of spectra calculated
with (blue line) and without (red dashed line) imposing the particle
number constraint for n = 4 sites, � = 0.3, U = 3, εd = −U/2.
(b) Comparison of sampled noninteracting DOS ρ̄0(ω) =
−ImḠ0(ω)/π for different number of sites with original Lorentzian
noninteracting DOS ρ0(ω).
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model Hν
0 . As can be seen in Fig. 2(a) (blue line), applying the

constraint indeed recovers the full height of the Kondo peak
at the Fermi level and lowers the Hubbard side peaks. The
effect of the constraint on the sampled noninteracting DOS is
to deplete the DOS around the Fermi level as can be seen in
Fig. 2(b). As the number of sites n increases the effect of the
constraint becomes smaller.

In order to elucidate the role played by the constraint,
we now consider Friedel’s sum rule for the Anderson model
[2,39,40] which relates the impurity charge nimp,σ to the
scattering phase shift at the Fermi level. For a finite Anderson
model sample ν we can write

nν
imp,σ = ην

σ (εF)/π, (15)

where the scattering phase shift ην
σ is given by

ην
σ (ω) = π

2
− tan−1

(
ω − εν

d − Re �ν
σ (ω) − Re �ν(ω)

Im �ν
σ (ω) + Im �ν(ω)

)
.

(16)

As we are considering a finite Anderson model, the hybridiza-
tion function

�ν(ω) =
∑

k

∣∣V ν
k

∣∣2

ω+ − εν
k

, (17)

which describes the coupling of the impurity level with the
bath levels, is the sum of a finite number of poles, and thus
nonconstant by construction. In this case the impurity charge
nν

imp,σ comprises not only the impurity level occupancy nν
d,σ

but also the additional scattering-induced charge δnimp,σ :

nν
imp,σ =nν

d,σ + δnν
imp,σ

= −
∫ εF

−∞

dω

π
Im

(
Gν

σ (ω) +
∑

k

[
gν

k (ω)
]2

T ν
kσ (ω)

)
, (18)

where gν
k (ω) = 1/(ω+ − εν

k ) is the propagator for the isolated
(i.e., not connected to the impurity) bath level k, and T ν

kσ (ω) =
V ν

k Gν
σ (ω)V ν

k is the scattering T matrix.
The total number of electrons Nν for sample ν is given by

the sum of the impurity charge nν
imp,σ and the occupation of

the the isolated bath levels nν
bath = −Im

∫ εF

−∞ dω
∑

k gk(ω)/π .
Since the occupation of the isolated bath levels is the same
in the interacting and noninteracting system, the particle
constraint ultimately imposes that the impurity charge and
in turn the phase shifts are the same for the interacting and
noninteracting models:

nν
imp,σ = ην

σ (εF)

π

constr.= nν
imp,σ,0 = ην

σ,0(εF)

π
, (19)

where the phase shift of the noninteracting system is given by

ην
0,σ (ω) = π

2
− tan−1

(
ω − εν

0 − Re�ν(ω)

Im�ν(ω)

)
. (20)

It is here that the effective potential �0 included in the
noninteracting GF (2) enters in the constraint: Since εν

0 = εν
d +

�0 it determines the phase shift ην
0,σ (εF) and consequently

the impurity charge nν
imp,σ,0 of the noninteracting reference

system.

Hence the constraint guarantees that only self-energies
�ν

σ (ω) which have the same phase shift as the corresponding
noninteracting model contribute to the ensemble average (13).
A closer look at the phase shifts ην

σ and ην
0,σ of individual finite

Anderson model samples ν further reveals that the constraint
really establishes a 1:1 correspondence between the excitations
of the interacting Hamiltonian Hν and the corresponding
noninteracting one Hν

0 , as required by Fermi liquid theory (see
Appendix A for details). When the constraint is not fulfilled,
the 1:1 correspondence with the noninteracting system cannot
be established, because the ground state of the interacting
system has an odd number of electrons (Nν = Nν

0 ± 1) and
thus is a doublet state (S = 1/2), while the noninteracting
system must have an even number of electrons (single-particle
levels are either doubly occupied or unoccupied), and thus has
a singlet ground state (S = 0). Thus the constraint ultimately
enforces that individual Anderson model samples contributing
to the self-energy average (13) comply with Nozieres’ Fermi
liquid picture [41] of the Kondo effect in the strong-coupling
regime: the impurity spin locks into a total spin singlet state
with a few conduction electron bath levels, and the remaining
conduction electrons interact weakly with the singlet state,
thus leading to Fermi liquid behavior. Since Friedel’s sum
rule is directly related to the height of the Kondo peak at
the Fermi energy, the particle constraint ultimately leads to
the recovery of the unitary limit for the interacting spectral
function, and consequently to the recovery of Fermi liquid
behavior.

The interpretation of the constraint as a sample-wise en-
forcement of Fermi liquid behavior suggests that the parameter
�0 should be interpreted as an effective one-body potential that
can be identified with the real part of the (yet to be determined)
many-body self-energy:

�0 ≡ Re�̄(εF). (21)

This conjecture can be further justified by considering the exact
limit of the DED approach: taking the number of poles n →
∞, the original infinite Anderson model is recovered. Since
now there is only one sample, the constraint must be fulfilled
for this one sample, hence the phase shift of the interacting
and corresponding noninteracting model must match exactly,
leading to

tan−1

(
εd + Re�(εF) − εF

�

)
(!)= tan−1

(
εd + �0 − εF

�

)
,

which implies (21).
Since the self-energy itself is not known prior to the

calculation, �0 has to be determined self-consistently, starting
with some initial guess for �0, for example the Hartree
shift �0 ≡ Und/2 with nd being the Hartree-Fock occupancy.
This is where our approach slightly differs from the one
originally proposed by Granath and Strand, which takes �0

as an adjustable parameter to be fixed by demanding that the
interacting and noninteracting impurity occupancy nd be the
same.

III. RESULTS

In the following we present results for the AIM described
by Eq. (1), assuming a constant hybridization function �(ω) =
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−i�. The noninteracting density of states ρ0(ω) is thus a
Lorentzian centered at εd + �0 of width 2�. To resolve the
interacting spectral functions we use a logarithmic mesh, and
a frequency-dependent Lorentzian broadening scheme where
an imaginary part proportional to the frequency is added to
the frequency argument in the denominators of the Green’s
functions, i.e., ω+ = ω + iη1|ω| with η1 = 0.02. The NRG
calculations were performed with the NRG Ljubljana code
[42], using the z-averaging technique [43] with z = 64. For
all calculations, we set the conduction-band half-width to
D = 10, the logarithmic discretization parameter to  = 2,
and determined the number of states kept at each iteration
by an energy cutoff of 10ωN (ωN is the characteristic energy
scale of iteration N ); the maximum number of states kept was
6600 counting multiplicities. Log-Gaussian broadening [44]
was used in the calculation of the spectral functions with a
width parameter of α = 0.2 for the asymmetric AIM. For the
symmetric AIM, α was varied between 0.15 for small � and
0.35 for large �.

A. Symmetric Anderson model

First, we study the AIM at particle-hole symmetry, εd =
−U/2 and 〈nd〉 = 1. In this case the real part of the self-energy
at the Fermi level is known prior to calculation, �0 = U/2,
and hence does not have to be determined self-consistently.
Figure 3(a) shows the impurity spectral function ρ(ω) =
−ImG(ω)/π for U = 3 and � = 0.3 calculated by DED with
n = 8 sites, in comparison with the NRG spectrum. The
DED and NRG spectra are in excellent overall agreement.
The Anderson model is in the Kondo regime, where the
spectral function is characterized by three resonances: The
sharp Kondo resonance at the Fermi level and two Hubbard
side peaks on either side of the Fermi level close to the
excitation energies εd and εd + U . In Fig. 3(b), we show DED
spectra for different numbers of sites n in comparison with
NRG for the same set of parameters as in Fig. 3(a). In order
to better resolve the spectra at low energies, the energies are
plotted on a logarithmic scale. Even for very small models
(n = 2) there is good qualitative agreement with the NRG
spectrum, but the width of the Kondo peak is overestimated
by a factor of almost 3 [see also Fig. 3(h)], and the height
of the Hubbard side peaks is slightly underestimated. Note,
however, that the height of the Kondo peak 1/π� is always
exact, independent of the number of sites n, since it is imposed
by the particle constraint, as discussed in Sec. II B. As the
number of sites n increases, the quantitative agreement with
NRG improves considerably, becoming excellent for n = 8
sites. The quantitative improvement with increasing number
of sites can also be seen in Fig. 3(h), where we show the
half-width of the Kondo peak as a function of the model size
n in comparison to the NRG value.

The number of randomly generated samples contributing
to the ensemble average of the self-energy (13) generally
determines the amount of noise in the spectra. For a fixed model
size n, the noise can be reduced by increasing the number of
samples N ; it vanishes in the limit N → ∞. On the other
hand, the larger the number of sites n of the finite size, the
fewer samples are needed to achieve the same level of noise,
since the number of poles in the spectrum of individual samples
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FIG. 3. Comparison between DED and NRG spectra for the
symmetric Anderson model (U = 3, εd = −1.5). (a) DED (n = 8)
and NRG spectra for � = 0.3. (b) NRG and DED spectra with
different number of sites n on a half-log scale for � = 0.3. (c) DED
(n = 6) and NRG spectra for � = 0.9. (d) DED (n = 6) and NRG
spectra for � = 0.5. (e) DED (n = 8) and NRG spectra for � = 0.2.
(f) NRG and DED spectra for different number of sites n on a half-log
scale for � = 0.2. (g) Half-width of Kondo peak estimated by fitting
with Frota line shapes [45] versus � calculated by DED (n = 8 for
� � 0.3 and n = 6 for � � 0.5) compared to NRG and the exact
expression [46] on half-log scale. (h) Half-width of Kondo peak
versus number of sites n compared to NRG for � = 0.3.

increases. For example, in Fig. 3(b) for n = 2,4,8 sites about
5.8 × 104, 3.6 × 104, and 1.7 × 104 samples, respectively,
were used to generate the spectra. In the limit n → ∞ we
would recover the continuous conduction band of the original
Anderson model, and hence a single sample would already
yield the exact and thus noiseless spectrum. In Table II
in Appendix B we report the number of samples used in
calculating the spectra shown in Figs. 3 and 4.
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FIG. 4. Comparison between DED and NRG spectra for the
asymmetric Anderson model (U = 3, εd < −1.5, � = 0.3). (a) DED
(for n = 8 sites) and NRG spectra for εd = −2. (b) Half-width of
Kondo peak versus number of sites n compared to NRG (εd = −2). (c)
NRG and DED spectra with different number of sites n for εd = −2
on a half-log scale for negative energies. (d) NRG and DED spectra
with different number of sites n for εd = −2 on a half-log scale for
positive energies. (e) DED (for n = 8 sites) and NRG spectra for
εd = −2.5. (e) DED (for n = 8 sites) and NRG spectra for εd = −3.

Next we investigate how the quality of the DED spectra
changes when the correlation strength controlled by U/�

is altered. In Fig. 3(c) and 3(d) we show a comparison of
spectra calculated by DED and NRG for higher values of
the broadening � than before. For weak correlation strength
[� = 0.9, Fig. 3(c)], the system is no longer in the Kondo
regime: the spectra are characterized by a single peak, though
different from the Lorentzian of the noninteracting system
due to interaction effects. Here the agreement with NRG is
excellent already for n = 2 (not shown). As the correlation
strength increases, more sites are necessary to achieve good
quantitative agreement. For � = 0.5 [Fig. 3(d)], we approach
the Kondo regime, and the three-peak structure starts to
emerge. Now excellent quantitative agreement with NRG can
be achieved for n = 6 sites. We have discussed the case � =
0.3 [Figs. 3(a), 3(b), 3(h)] already in the Kondo regime, where
excellent agreement with NRG is reached for n = 8 sites.
Figures 3(e) and 3(f) show DED spectra in comparison with
NRG for � = 0.2, on a normal energy scale [Fig. 3(e)], and
on a logarithmic energy scale [Fig. 3(f)] for better resolution
of the low-energy features. The overall qualitative agreement

with the NRG spectrum is again quite good, as can be seen
from Fig. 3(e). However, the quantitative agreement, especially
of the low-energy features, i.e., the Kondo peak, is not very
good anymore: the width of the Kondo peak is still strongly
overestimated by almost a factor of 2 even for n = 8 sites.
The high-energy features on the other hand are captured quite
well, although the height of the Hubbard side peaks is slightly
overestimated.

This behavior of decreasing quality of the DED at a fixed
number of sites with increasing correlation strength U/�

is summarized in Fig. 3(g) which shows the half-width of
the Kondo peak as a function of �, comparing DED for
n = 8 sites and NRG. For not too strong correlations, i.e.,
� � 0.3 (U/� � 10), DED for n = 8 sites yields an excellent
approximation to the width of the Kondo peak, but begins
to deviate from NRG as the correlations become stronger
(decreasing �). For very strong correlations (i.e., U/� � 10),
the width of the Kondo peak becomes strongly overestimated,
by orders of magnitude [see also Fig. 3(e) and Fig. 3(f)].
This behavior can be understood by considering the Kondo
screening cloud, whose spatial extension grows exponentially
with increasing correlation strength [47]: ξK ∝ 1/TK ∝ e�/U .
Thus the number of bath sites necessary to correctly describe
the Kondo screening cloud grows exponentially with the
correlation strength, leading generally to an overestimation
of the Kondo temperature for too small bath sizes. Hence
for very strong correlation strengths the DED method cannot
provide a quantitatively satisfactory description of the spectra
with a computationally feasible number of bath sites. Yet for
correlation strengths up to and including U/� ≈ 10 DED
yields an excellent description of the spectra for small to
moderate numbers of bath sites.

B. Asymmetric Anderson model

We now consider the AIM away from particle-hole symme-
try, εd < −U/2 and 〈nd〉 > 1. As explained before in Sec. II B,
the parameter �0 has to be determined self-consistently since
we identified it with the real part of the self-energy at the
Fermi level, �0 ≡ Re�̄(εF), which is unknown prior to the
DED calculation. We thus start with some reasonable initial
guess, for example the Hartree shift �0 ≡ U 〈nd〉/2, calculated
within Hartree-Fock, �0 ≡ U/2, or simply �0 ≡ −εd . Using
this �0 in the DED procedure we calculate the self-energy
�̄(1)(ω) and thus obtain a new guess for �0 → Re�̄(1)(εF),
and repeat until self-consistency is reached. This procedure
usually converges within a few cycles (3–4) to an accuracy
of under 1%. We find that the effect of the self-consistency
on the overall spectrum is relatively small. The main effect is
to improve the position of the Kondo peak and to recover the
exact height of the Kondo peak. Hence if the fine details of the
spectrum are less important, it suffices to compute �̄(ω) for
some reasonable guess, for example �0 = U/2. More details
on the self-consistent determination of �0 can be found in
Appendix C.

In Fig. 4(a) we show the impurity spectral density for U =
3, � = 0.3, and εd = −2, calculated by DED for n = 8 sites
in comparison with the NRG spectrum. The DED spectrum
is in very good overall agreement with the NRG spectrum.
For as much as we are in the Kondo regime the three-peak
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structure is retained (see Sec. III A). As in the symmetric case,
in order to better resolve the spectra at low energies, we use a
logarithmic scale for the energy axis. Since here we are dealing
with asymmetric spectra, we represent the spectral density
on the logarithmic scale for negative and positive energies in
Fig. 4(c) and Fig. 4(d), respectively. As in the ph-symmetric
case, we observe quantitative improvement of the DED spectra
with increasing n. Especially the position and width of the
Kondo peak improve considerably: While for small n the peak
is considerably offset from the Fermi level, the pinning of
the Kondo peak to the Fermi level as seen in NRG is almost
completely recovered for n = 8. As can be seen from Fig. 4(b),
similarly to the symmetric case (see Sec. III A), the width of
the Kondo peak is strongly overestimated for n = 2 by almost
a factor of 3, but decreases rapidly with increasing n, until
for n = 8 the width is only slightly overestimated by a few
percent.

Next we investigate the quality of the DED spectra when
moving away from the Kondo regime, by further decreasing
εd such that εd + U approaches the Fermi level. In Figs. 4(e)
and 4(f) we compare spectra calculated by DED (for n =
8 sites) and by NRG in the intermediate valence regime
εd + U − εF ≈ �. In this regime the charge of the impurity
level fluctuates strongly between single and double occupation,
leading to a significant deviation of 〈nd〉 from unity. The
spectral density is characterized by two resonances, one at
≈εd + U of width ≈�, and a much less pronounced resonance
at εd . Upon further decreasing εd the resonance at εd becomes
more strongly suppressed [compare Fig. 4(f) with Fig. 4(e)],
as we get closer to the nonmagnetic regime (εd + U − εF �
−�) where the impurity level is almost doubly occupied, and
the resonance finally vanishes (not shown). As can be seen
from Figs. 4(e) and 4(f), the DED spectra are in excellent
agreement with the NRG ones even for strong asymmetry,
capturing all the described features very well.

Finally, we also calculate the occupancy of the impurity
level 〈nd〉 for different values of εd and compare with NRG.
We investigate two different ways of calculating 〈nd〉 within
DED. On the one hand we can calculate the occupancy from
the ensemble average (ENS) over accepted finite Anderson
model samples:

〈nd〉 ≈ n̄d = 1

N

∑
ν

〈0ν |nd |0ν〉. (22)

On the other hand we can make use of Friedel’s sum rule
(FSR), and calculate 〈nd〉 from the self-energy at the Fermi
level:

〈nd〉 = 1 − 2

π
tan−1

(
εd + Re�̄(εF) − εF

�

)
, (23)

where we have already taken into account spin degeneracy.
Also note that nimp,σ = 〈nd,σ 〉 in the flat-wide-band limit [2].
Table I shows the results for NRG and DED using n = 8 sites.
The overall agreement between DED and NRG is very good.
The values of 〈nd〉 calculated by both approaches in DED
agree with the NRG results within the statistical error [48]
for all values of εd . However, the statistical error is generally
smaller for the ENS approach. Only for very strong asymmetry
(εd = −3) does the error of the FSR approach become slightly

TABLE I. The d-level occupancy 〈nd〉 calculated by NRG
compared to DED obtained (i) via the ensemble average (ENS)
and (ii) via Friedel’s sum rule (FSR) from Re�̄(εF) as well as the
self-consistently determined �0 = Re�̄(εF) for different values of εd

and their statistical errors [48].

εd NRG DED (ENS) DED (FSR) �0

−1.5 1.0000 0.9992 ± 0.0062 1.008 ± 0.068 1.496 ± 0.032
−1.65 1.0202 1.0234 ± 0.0063 1.039 ± 0.064 1.630 ± 0.030
−1.8 1.0420 1.0495 ± 0.0066 1.065 ± 0.057 1.769 ± 0.027
−2.0 1.0765 1.0862 ± 0.0089 1.132 ± 0.056 1.937 ± 0.027
−2.5 1.2322 1.2366 ± 0.0091 1.309 ± 0.035 2.341 ± 0.017
−3.0 1.5270 1.5364 ± 0.0128 1.533 ± 0.023 2.667 ± 0.012

smaller than the one of the ENS approach, and also the mean
values are closer to the NRG results for ENS than for FSR.

From Table I we can see that the error in the occupancy 〈nd〉
calculated via FSR as well as the error in �0 decrease with
increasing asymmetry. This can be understood by considering
the acceptance ratio which becomes better the stronger the
asymmetry (see Appendix B) so that more samples are
accepted (for a fixed total number of samples) contributing to
the ensemble average for the self-energy, and thus improving
the statistics. For small asymmetries the argument to tan−1

in FSR (23) is close to zero [εd + Re�̄(εF) − εF ≈ 0], and
therefore tan−1 has an approximately linear behavior so that
δnd ≈ 2

π�
δ�0, explaining the factor of roughly two between

the error in 〈nd〉 and the error in �0 since 2/π� ≈ 2 for � =
0.3. On the other hand, the error for 〈nd〉 calculated via ENS
increases slightly with increasing asymmetry despite more
samples being accepted, since the occupancies of individual
finite Anderson model samples fluctuate more strongly with
increasing asymmetry.

IV. CONCLUSIONS

In conclusion, we find that DED generally yields an
excellent description of the Anderson impurity model, inside
as well as outside the Kondo regime. The spectra obtained
by DED are in good qualitative agreement with NRG spectra
already for a small number of bath sites. Depending on the
correlation strength U/� excellent quantitative agreement
can be achieved for a moderate number of 5–7 bath sites.
Only for very strong correlation, U/� � 10, does the num-
ber of bath sites necessary to achieve a good quantitative
description become too big to be computationally feasible
due to the exponential growth of the Kondo screening
cloud.

We further find that the particle number constraint plays
an essential role in the DED method for the description
of Kondo physics. Basically, the constraint ensures that
individual finite Anderson model samples contributing to
the self-energy average comply with Nozieres’ Fermi liquid
picture of the strong-coupling regime, thereby imposing
Fermi liquid behavior on the sample-averaged self-energy.
This leads to the recovery of the Kondo peak in the spec-
trum, which is absent in the DED procedure without the
constraint.
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The enforcement of Fermi liquid behavior by the constraint
means that its role needs to be reconsidered when DED
is applied to situations where Fermi liquid behavior is not
obeyed, for example, at finite temperatures above TK , in
gapped systems, or in the case of multiorbital Anderson models
where non-Fermi-liquid behavior may occur [49–51]. More
precisely, it seems that the constraint needs to be relaxed
in some way in order to describe the loss of Fermi liquid
behavior in these cases. As can be seen from Fig. 2(a),
without the constraint DED produces a spectrum similar
to that of the Anderson model in the Coulomb blockade
regime. In other words, DED with the constraint describes the
strong-coupling fixed point of the Anderson model, while DED
without the constraint seems to describe the weak-coupling
fixed point. This may also explain why a DED+DMFT
scheme without application of the constraint is capable of
describing the gapped Mott-insulating phase of the Hubbard
model [35]. Thus in order to describe the transition from
the Fermi liquid to the Coulomb blockade or Mott regime
a general principle for relaxing the constraint needs to be
found.

An advantage of DED over NRG is that it can be
parallelized very efficiently as the randomly generated finite
Anderson model samples can be diagonalized independently
from each other, and hence can be easily distributed over an
arbitrarily large number of nodes. This recommends DED
for the solution of multiorbital Anderson models which are
not accessible for NRG for more than three impurity levels.
Adopting the Lanczos diagonalization scheme in the DED
procedure should allow one to treat multiorbital Anderson
models with a sufficient number of bath sites per impurity
level to achieve accurate results. Another advantage of DED
is that the energy resolution is the same on all energy
scales and thus can be exploited in resolving higher energy
spectral features that would be difficult to resolve with
NRG [35].

APPENDIX A: THE CONSTRAINT AND THE 1:1
CORRESPONDENCE WITH THE NONINTERACTING

SYSTEM

As discussed in Sec. II B, the particle number constraint
(14) ensures that every finite Anderson model sample con-
tributing to the self-energy average (13) obeys Fermi liquid
behavior, i.e., requires that a 1:1 correspondence can be estab-
lished between the interacting model and the corresponding
noninteracting effective model. In the following we discuss in
more detail how this 1:1 correspondence is established via the
constraint.

First, note that since each Anderson model sample ν is
finite, the interacting and noninteracting particle numbers nν

imp
and nν

imp,0, respectively, are discrete (integer) numbers, and
thus also the corresponding phase shifts ην

σ (εF) and ην
0,σ (εF)

are discrete numbers. Depending on the signs of the numerators
in the arguments to tan−1 in Eqs. (16) and (20), the phase shifts
can assume either the value 0 (negative) or π (positive), since
for a finite system generally Im�ν(ω) → 0 as δ → 0+ (unless
ω is at a pole), and hence the argument to tan−1 diverges, i.e.,
goes to ±∞ depending on the sign of the numerator. A phase
shift of π/2 is theoretically also possible (implying nimp =

 0
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FIG. 5. Comparison of interacting (blue) and noninteracting (red)
finite Anderson model spectra (n = 2 sites) for the case that (a) the
particle constraint is not fulfilled, and (b) when it is fulfilled. Only
in the latter case a 1:1 correspondence between the interacting and
noninteracting system can be established.

1), but in practice does not happen, as it means that either a
bath level k is exactly at the Fermi level (εν

k = εF), so that
Im�ν(εF) → ∞ as δ → 0+, or the numerator is exactly zero,
meaning that the sampled poles lie exactly symmetric with
respect to the Fermi level. Hence during the DED procedure the
phase shift of individual samples will fluctuate between the two
values 0 and π . In the ph-symmetric situation (εd = −U/2)
the number of samples with phase shift 0 will be equal to
the number of samples with phase shift π for a large enough
number of samples. Hence on average we obtain the phase
shift of π/2. Away from ph symmetry, the number of samples
with one phase shift grows at the expense of samples with the
other phase shift, leading to an average phase shift different
from π/2.

The sign of the numerators εF − εν
d − Re�ν

σ (εF) in (16) and
εF − εν

d − �0 in (20) are largely determined by the positions of
the most important excitations with respect to the Fermi level.
If the most important excitation is hole-like, then the numerator
is negative and hence the phase shift is 0. If on the contrary
the excitation is electron-like, the numerator is positive and
hence leads to a phase shift of π . Therefore the constraint is
only fulfilled (i.e., matching phase shifts of interacting and
corresponding noninteracting systems) if the most important
excitations in the interacting and noninteracting systems are of
the same type, i.e., either both hole-like or both electron-like.
This is illustrated in Fig. 5 which compares the spectra of
an interacting and noninteracting finite Anderson model in the
case that the constraint is not fulfilled (a) and when it is fulfilled
(b). One can clearly see that the main excitations are not of
the same type when the constraint is not fulfilled, while they
are of the same type if the constraint is fulfilled. Clearly, in the
latter case a 1:1 correspondence can be established between the
excitations of the interacting and corresponding noninteracting
systems.

APPENDIX B: DED STATISTICS

In Table II we summarize statistical information on the
DED calculations reported in the text. One can see that the
acceptance ratio racc increases with increasing � (i.e., decreas-
ing correlation strength U/�), and increasing asymmetry.
In both cases interaction effects become weaker, so that the
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TABLE II. Summary of statistical information of the DED
calculations reported in the text. Total number of samples Ntot, number
of accepted samples Nacc, and the acceptance ratio racc for different
values of εd , �, and number of sites n. For all calculations U = 3 was
used.

εd � n Ntot Nacc racc

−1.5 0.2 8 23 875 7449 31%
−1.5 0.3 2 2 00 000 57 561 29%
−1.5 0.3 4 1 00 000 35 918 36%
−1.5 0.3 8 38 594 16 504 43%
−1.5 0.5 6 1 00 000 55 066 55%
−1.5 0.9 6 1 00 000 70 297 70%
−1.65 0.3 8 8500 3743 44%
−1.8 0.3 8 8495 3847 45%
−2.0 0.3 8 8495 4037 47%
−2.5 0.3 8 7958 4809 60%
−3.0 0.3 8 8000 6452 81%

noninteracting limit is approached, where the DED becomes
exact already for the one-site model [the noninteracting DOS
can be reproduced by simply sampling the noninteracting DOS
ρ0(ω) of course] where the constraint is always fulfilled.

APPENDIX C: SELF-CONSISTENT DETERMINATION
OF �0

As explained in Sec. II B the effective one-body potential �0

entering the noninteracting GF (3) should be identified with the
real part of the self-energy at the Fermi level, �0 ≡ Re�(εF).
However, with the exception of the ph-symmetric situation
where Re�(εF) = U/2, the self-energy at the Fermi level is
unknown prior to calculation. Hence we propose to determine
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FIG. 6. Spectral function close to the Fermi level for different
values of �0 calculated by DED (n = 4 sites) compared to NRG for
U = 3, εd = −3, and � = 0.3 on a large energy scale (left) and at low
energies (right). Note that on the left panel the curves for �0 = −εd

(green) and for �0 = VHF (cyan) have been offset by 0.2 and 0.4,
respectively, in order to increase the visibility.

�0 self-consistently, by starting with some initial guess, e.g.,
�0 → U/2. Using this initial guess the DED procedure yields
Re�̄(εF), generally different from �0, which is taken as the
new guess, �0 → Re�̄(εF). This procedure is repeated until
self-consistency is reached, i.e., �0 does not change anymore
within a specified accuracy. We find that the self-consistency
converges quite rapidly to an accuracy of under 1% within 3–4
cycles. In Fig. 6 we show the effect of the self-consistency for
�0 on the spectra close to the Fermi level. The agreement
between NRG and DED using the converged value �0 =
Re�̄(εF) ≈ 2.65 (red line) is quite good. But the effect of
self-consistency is actually relatively weak: DED with the
initial guess �0 = −εd or using the Hartree shift for �0 yield
spectra that are also quite close to the NRG spectrum, with
the peak position just slightly shifted, even when using the
Hartree-Fock potential �0 ≡ VHF ≈ 2.49 (cyan line).
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(1996).
[14] N. Grewe, S. Schmitt, T. Jabben, and F. B. Anders, J. Phys.:

Condens. Matter 20, 365217 (2008).

[15] K. Yosida and K. Yamada, Prog. Theor. Phys. 46, 244 (1970).
[16] N. Read and D. M. Newns, J. Phys. C 16, L1055 (1983).
[17] D. E. Logan, M. P. Eastwood, and M. A. Tusch, J. Phys.:

Condens. Matter 10, 2673 (1998).
[18] A. C. Hewson, J. Phys.: Condens. Matter 13, 10011 (2001).
[19] Q. Feng and P. M. Oppeneer, J. Phys.: Condens. Matter 23,

425601 (2011).
[20] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[21] A. Liebsch and H. Ishida, J. Phys.: Condens. Matter 24, 053201

(2012).
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