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Short-range ordering effects on the electronic Bloch spectral function of real materials
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The nonlocal coherent-potential approximation provides a systematic technique for the study of short-range
ordering effects in a variety of disordered systems. In its original formulation the technique, however, shows an
unwanted dependence on details in the coarse-grained effective medium construction. This is particularly evident
in the study of �k-resolved quantities, such as the Bloch spectral function and other non-site-diagonal observables.
We remove the issue and recover fully physical results in first principles studies of real materials, by means of a
resampling procedure first proposed for model tight-binding Hamiltonians. The prescription is further generalized
to the case of complex unit cell compounds, with more than a single sublattice, and illustrated through examples
from metallic alloys and disordered local moment simulations of paramagnetism in the prototype iron-based
superconductor FeSe.
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I. INTRODUCTION

First principles studies of solid state systems take great
advantage from exploitation of all symmetries that can be
present in a compound. Among these, idealized lattice period-
icity is often crucial to make the problem numerically tractable.
Most real materials, however, are disordered to some extent,
making this simplification in principle unavailable. Alloys, for
example, possess substitutional disorder, magnetic metals at
finite temperature show the effects of local moment disorder,
and thermally induced atomic displacements from equilibrium
lattice positions can also fall in the same general picture [1].
Strong electronic correlations and other many body effects can
bring in further complications of a related kind.

Much effort has been devoted to devising approximation
schemes suited to the extra challenges presented by such
scenarios. In general, the different approaches can be classified
into either supercell or effective medium frameworks. The
latter class can be attractive owing in particular to the lack
of rapidly increasingly computational costs, while producing
a solution which restores translational invariance on the
primitive unit cell scale. In this context, the coherent potential
approximation (CPA) [2] provides a sophisticated and well-
established solution scheme, which has been rigorously eval-
uated at a theoretical level as well as having been successfully
put to the test in many applications.

Similar to dynamical mean free theory (DMFT) for strongly
correlated electron systems [3,4], the method owes much of
its power to the construction of an energy-dependent effective
medium that captures the essence of the actual compound on
the average. Only a fraction of the computational cost, which
would be required to explicitly investigate a big enough portion
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of the sample with respect to assigned concentration of “im-
purities,” is then needed. This is accomplished by determining
self-consistently a solution at every energy of interest, down to
the desired no extra scattering threshold. Consistency of any
error thus introduced, together with restoration of on-average
lattice periodicity, allows then to port over at small increase
of complexity the practical formulation of how to compute a
variety of observables from their long-range ordered (LRO)
expressions.

Combined with density functional theory (DFT) and Kohn-
Korringa-Rostoker (KKR) multiple scattering theory [5–7],
the CPA can produce an accurate ab initio description of
disordered systems which has been successfully deployed
for many applications. It is however in essence a single-site
mean field theory and as such unable to address short-range
order (SRO) effects. Only the average concentration enters
the scheme as input, clearly restricting the ability to feed
the algorithm with additional experimental or theoretical
insights concerning all sorts of local environment effects and
short-ranged impurity correlations.

Among the several proposals to eliminate this limitation
from the CPA, the nonlocal CPA (NLCPA) derived by
Rowlands et al. [8] from Jarrell’s et al. [9] dynamical
cluster approximation (DCA) follows a coupled direct space—
reciprocal space reworking of the original theory. In this
development the constraint of a single-site concentration is
removed, to give access to the full statistics of an enlarged,
multisite cavity. This consists of Nc instances of the original
Nsub � 1 sublattices unit cell, in which for a disordered system
different atomic species are allowed to appear in various
arrangements, according to a given probability distribution.
All forms of local correlation and short-range ordering (SRO)
can then be set up within the spatial extent of the cavity. On
the other hand other desirable features of the general method
are retained, such as translational invariance in the effective
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medium (as opposed to other CPA extension proposals such
as for instance the molecular CPA [10,11]). This is a result of
consistently carrying through from the above enlarged cluster
treatment in direct space the implication of a coarse-grained
Brillouin zone �BZ in reciprocal space, which is sampled
over the same number Nc of nonoverlapping tiles labeled by
so-called “cluster momenta” [8] �Kn. The effective medium
therefore retains the same amount of information in either
representation, while iterating back and forth via repeated
lattice Fourier transforms until convergence.

Pioneering works on the NLCPA have initially followed
the route traced by the earlier single-site CPA developments.
The basic ideas have been tested with model, tight-binding
Hamiltonians [8], where results in terms of simple observables
such as the electronic density of states (DOS) could also be
checked through exhaustive numerics. In the form suited for
detailed ab initio work, the KKR-NLCPA has been applied
to studies of the DOS of simple unit cell metallic alloys [12]
and has then been fully implemented at a self-consistent field
(SCF)-DFT level [13]. Further work is ongoing to incorporate
it into calculations of the full Gibbs’ free energy for phase
diagram investigations [14–16]. In parallel with this, another
line of development has examined the more general case
of transport in linear response [17,18] and non-site-diagonal
observables [19–21] in disordered systems, the first example
of which is given by the Bloch spectral function [22] (BSF)
which is the main subject of this paper. This quantity can
also be related to mean-free-path-based model treatments of
conductivity, through extraction of the relevant parameters
from Lorentzian fits [23].

From these latter efforts a new aspect of the NLCPA has
progressively emerged. While the single-site version of the
CPA leaves no room for arbitrariness, it has been recently
realized that the extension of the direct space cavity to
span Nc � 1 times the volume of the original single-site
CPA model, and the subsequent retention of a conversely
more finely coarse-grained effective medium to account for
associated SRO effects, together expose DCA/NLCPA results
to severe dependence on a free phase choice in the adoption of
lattice Fourier transformations used to pursue self-consistency.
Correspondingly, observables such as the BSF exhibit artifacts
in the form of abrupt, unphysical discontinuities upon crossing
boundaries between the Nc different coarse-grained regions,
into which the Brillouin zone has been tiled (Fig. 1).

This point is briefly reviewed in Sec. II below, and a recent
proposal [24] on how to amend the scheme is here put to
the first concrete test in its KKR level deployment for real
materials (Sec. II B). We also address a somewhat less intuitive
but still rather fundamental gap in the framework, examining
how the above concepts transfer to Nsub > 1 studies where no
Brillouin zone tiling is used (i.e., Nc = 1), but SRO sensitivity
is retained in the form of intersublattice corrections within the
cavity.

In such a case it has first been shown, again in models [25]
as well as full SCF-DFT KKR implementations of the
scheme [26], how the corresponding effective medium leads
to identical site-diagonal observables such as the DOS, in the
limit of appropriate test cases. Simple examples for this testing
have been a Nsub = 2, Nc = 1 CsCl-like unit cell, with both
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FIG. 1. Single energy point evaluation of the BSF for bcc CuZn,
examined for SRO = +1 within a Nc = 2, Nsub = 1 NLCPA cavity
for the single tiling phase choice �φ = (0,0,0) (red) and after the
tiling phase average of Eq. (12) (green). Continuity is recovered as a
function of the resampling Np .

positions occupied either by Cu or Zn, that hence realize the
same physics as a Nsub = 1 bcc alloy studied for Nc = 2; or
similarly, a Nsub = 4, Nc = 1 Cu3Au-like unit cell, compared
with a f cc Nsub = 1 f cc alloy with Nc = 4 setup. Since the
choice among descriptions is in the above cases fully arbitrary,
physical results should also be consistent across it. Particularly
from the point of view of non-site-diagonal (NSD) observables
however, the counterpart of coarse-graining tiles boundaries is
less intuitive when Nc = 1, and no obvious splitting within the
Brillouin zone is in use to possibly give rise to discontinuities
in �k-resolved observables such as the BSF. Truncation to a
finite cavity size in direct space, and free phase freedom in
the lattice Fourier transformation, are however still present;
and again a complete formalism should lead to equivalence in
results regardless of the chosen representation for the problem.
We address this aspect of the theory in Sec. II C and show
how the above resampling idea carries over to this side of the
multisublattice NLCPA.

The above theory extensions are showcased through the
illustrative example of a ferromagnetic Fe0.75,Pd0.25 alloy
in the presence of substitutional SRO (Sec. III B), focusing
attention in particular on the minority spin channel for which
the BSF is most affected by the average local environment of
either Fe or Pd atoms. As a second illustration, we also examine
a disordered local moment (DLM) treatment [27–30] for the
highly topical example of paramagnetism in FeSe (Sec. III C).
We draw some overall conclusions in Sec. IV.

II. THEORY OVERVIEW

We recall that for a perfectly ordered solid the BSF can be
written as:

AB(�k,E) =
∑

n

δ(E − εn(�k)), (1)

where εn(�k) are energy eigenvalues defining the band structure
of the system as a series of infinitely sharp peaks. For a
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disordered material with random lattice sites’ occupancy, but
still periodic spatial arrangement of atomic positions, the BSF
can be defined as the Fourier transform of the site off-diagonal,
configurationally averaged Green function 〈G(�̃r,�̃r ′,E)〉:

AB(�k,E) = − 1

π
�

∑
j

Nsub∑
s ′=1

∫
�( �Rj +�bs′ )

Tr〈G(�r,�r + �bs ′

+ �Rj ,E)〉d�r e−i�k· �Rj , (2)

where �Rj represents a unit cell lattice vector with j =
1, . . . ,∞ in the macroscopic limit, �bs ′ denotes the position of
a site on sublattice s ′ from such origin, and �r is a vector within
the surrounding region �( �Rj + �bs ′ ) so that �̃r = �Rj + �bs ′ + �r .
An underline indicates that the propagator has been expanded
in matrix form over composite angular momentum indices
L = (�,m) = �∗(� + 1) + m + 1.

The CPA provides an efficient method to compute such a
quantity. We recall here only essential aspects of the formalism
and refer to Refs. [11,19,22] for more comprehensive reviews.
Its fundamental assumptions derive from experimental evi-
dence that periodicity in a material’s lattice geometry can
persist, even if occupation of any atomic site �Rj by a certain
chemical species is only assigned in a statistical sense due to
disorder.

This suggests considering building up a description, as if
each crystallographic position would be periodically occupied
by a fictitious, intermediate scattering potential. This corre-
sponds in some sense to an average between all alternative
Nalt � 1 atomic species which can randomly appear on a
particular, arbitrary site. This goal is in particular pursued in a
dynamic, i.e., energy-dependent fashion, demanding in KKR
language that electrons shall not incur, on average, into extra
scattering throughout any local portion of the system [31,32].

The (multisublattice) nonlocal extension of the theory
follows on top of this premise, using the seminal insight
from the dynamic mean field approximation work of Müller-
Hartmann [33] and Jarrell [9]. Its goal is to improve the above
picture with the inclusion of local environment effects. To
accomplish the task, a larger-than-single-site portion of the
sample, or “cavity” [8,10,26], is considered in direct space.
Different forms of disorder and SRO can then be simply set up
through assignment of Ntot different probabilistic weight to all
ways to populate such Nc × Nsub � 1 lattice sites, at positions
�RI + �bs , with I = 1,2, . . . ,Nc and s = 1,2, . . . ,Nsub.

If we denote as γ each possible configuration of atomic
potential α’s occurring on such a lattice site within the
cavity, {α1,1, . . . ,αI,s , . . . ,αNc,Nsub}, we have in general Ntot =∏Nsub

s=1 N
Nc

alt (s) of these. By assigning to every configuration
γ the desired probabilistic weight P (γ ), where P (γ ) ∈
[0,100%] and

∑Ntot
γ=1 P (γ ) = 100%, the formalism allows

different SRO regimes to be simulated, from fully uncorrelated
to long-range ordered (LRO), i.e., fully periodic scenarios.

This input goes back to the single-site version of the theory
(or its complex unit cell generalization (MSCPA) by Pindor
et al. [34]), when the above probability distribution is chosen
to be simply the product of local concentrations alone [8,26].
Conversely, the treatment becomes exact but specific to a
single, perfectly repeating realization of the lattice (as in a

supercell treatment) in the opposite limit where Nc × Nsub is
enlarged to mimic the full sample, but gets populated with a
single configuration γ1 with P (γ1) = 100%.

Details concerning the self-consistent construction of the
NLCPA effective medium solution from the above starting
point can be found in Refs. [8,11,13,25,26] and will not
be repeated here. In the following we focus instead on
one additional aspect of such converged solutions, peculiar
to the DCA/NLCPA as opposed to less stringent “cluster
DMFT”/“cluster CPA” extension proposals in the literature.
While initially not particularly remarked upon, its importance
stands out very clearly, as soon as the original scheme gets
deployed for NSD observables that represent the most general
context of applications. We recall with this classification
Faulkner and Stocks’ original conceptual framework [19],
which distinguishes such effective medium quantities from
site-diagonal (SD) ones by considering whether their definition
requires “averaging” contributions from two sites �Ri + �bs ,
�Rj + �bs ′ (with i, j labeling arbitrarily distant unit cells within

the bulk, as needed as the �k resolution increases) or just one
unit cell at the time. The simplest example of the former
case is offered by the BSF A(�k,E) of Eq. (2), in its nature
as the Fourier transformed imaginary part of the electronic
propagator G( �Rj + �bs ′ , �Ri + �bs,E). To the latter SD category
belongs instead, for instance, the electronic density of states
n(E).

Clearly NSD quantities have the ability to pick up and
express more structure in the effective medium. We note
however how, although further integration of the full NSD
expression for a given observable returns the corresponding SD
counterpart (such as in the case of the DOS upon integrating
the BSF over all �k ∈ �BZ), a simplified version of the CPA
Green function expression is in practice sufficient when one
intends to compute only SD observables. A typical example
is the effective medium electronic charge, as needed for full
SCF-DFT implementations of the (NL)CPA [12,13,16,26].

In the case of the BSF A(�k,E), Faulkner and Stocks could
in fact show [19] how application of the so-called “Lax’s
approximation” [35,36] on top of the single-site CPA effective
medium leads to a complete formula for the Green function
at any �k ∈ �BZ and complex energy z = E + iη (η � 0) that
contains most generally three terms [19]:

G(�k,z) = G
(SD)

(z) − G
(NSD)

(z) + G
(NSD)

(�k,z). (3)

One can see in particular how a mutual cancellation between
first and second terms takes place in the LRO limit, i.e., in the
absence of disorder, and between the second and third term
instead in the SD limit, i.e., when considering the effective
medium electronic propagator only within a single unit cell,
as sufficient, i.e., for the DOS.

Upon porting the same argument to the Nc � 1-wide
NLCPA cavity, limited at first only to Nsub = 1 systems, Tulip
et al. [22] have also come to a similar conclusion, which we
give concisely and together with complex unit cell extension
as:

G(�k,z) = G
(CD)

(z) − G
(NCD)

(z) + G
(NCD)

(�k,z) (4)

(where additional underlines to denote matrices in I,J =
1, . . . ,Nc and s,s ′ sublattice indices, and the different terms
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now refer to cavity-diagonal (CD) or non-cavity-diagonal
(NCD) contributions). Introducing for convenience the no-
tation: [A B]i,j = ∑

k Ai,kBk,j for row-column products be-
tween matrices A,B, [A 
 B]i,j = Ai,jBi,j for direct, entry-
by-entry products, 1 for the identity matrix, we can define the

NLCPA cavity-extended “impurity projector” matrices already
used by the original theory [19]:

D(γ )(z) = (1 + τ (z)(m(γ )(z) − m(z)))−1 (5)

with m(γ )(z) = (t (γ )(z))
−1

, m(z) = (t(z))−1.

Similarly, we also extend over Nc and Nsub the integrals
of products between regular (irregular) radial solutions [19]
Z

(α(I,s,γ ))
L (z), (J (α(I,s,γ ))

L (z)) at the corresponding origin of
scattering potential type α, which is found at cavity site
�RI + �bs when this is filled according to configuration γ :

[F (γ,γ ′)(z)]I,s,L;J,s ′,L′ = Z
(α(I,s,γ ))
L (z)Z(α(J,s ′,γ ′))

L′ (z),

[F (γ )(z)]I,s,L;J,s ′,L′ = Z
(α(I,s,γ ))
L (z)Z(α(J,s ′,γ ))

L′ (z),

and:

[ZJ (γ )(z)]I,s,L;J,s ′,L′ = δI,J δs,s ′δL,L′

·Z(α(I,s,γ ))
L (z)J (α(J,s ′,γ ))

L′ (z) .

We refer to Ref. [19] for the original introduction of all these
quantities in their single-site form.

With this, the three terms of Eq. (4) read, respectively:

G
(CD)

(z) =
Ntot∑
γ=1

P (γ )(F (γ )(z) 
 D(γ )(z)τ (z) − ZJ (γ )(z)),

(6)
which is the effective medium Green function, associated
with �RI + �bs , �RJ + �bs ′ within the same cavity, i.e., “cavity
diagonal” (and sufficient as remarked above to compute the

DOS as: n(z) = − 1
π
�(T r(G

(CD)
(z))) for instance);

G
(NCD)

(z) =
Ntot∑

γ,γ ′=1

P (γ )P (γ ′)F (γ,γ ′)(z)


 D(γ )(z)τ (z)D̃
(γ ′)

(z), (7)

[where D̃
(γ ′)

(z) = (D(γ ′)(z))
T

] which is a dispersion-less

second term, which cancels back the first one in a LRO regime
where the impurity projectors reduce to identities and F (γ,γ ′)(z)

simply corresponds to F (γ )(z), and finally:

G
(NCD)

(�k,z) =
Ntot∑

γ,γ ′=1

P (γ )P (γ ′)F (γ,γ ′)(z)


 D(γ )(z)τ ( �Kn(�k))(�k,z)D̃
(γ ′)

(z) (8)

for the last term, which is the only one to remain in the LRO
limit but cancels out the second one of Eq. (7) upon integrating
over �k ∈ �BZ, thus showing the possible reduced evaluation
of Eq. (4) simply to Eq. (6) in particular cases.

A. Tile boundary discontinuities

The crucial point in our discussion is that, contrary to the
original single-site-only theory, the NLCPA-extended effective
medium scattering path operator matrix, [τ ( �Kn(�k))(�k,z)]

I,J
=

τ ( �Kn(�k))(�k,z)e+i �Kn·( �RI − �RJ ) is presently constructed from a differ-
ent argument and will be in general discontinuously different,
depending on the coarse-graining tile �BZ( �Kn) where the
desired �k ∈ �BZ lies. The theory in fact prescribes, taking also
into account its further multisublattice generalization [22,26]:

τ ( �Kn(�k))(�k,z) = (m( �Kn,z) − g̃(�k,z))−1, (9)

where g̃(�k,z) is the structure constant matrix, inclusive of the

intersublattice correction of Ref. [26], and m( �Kn,z) contains
SRO-dependent local environment effects, up to a resolution
inversely proportional to the cavity size Nc × Nsub.

This coarse-graining tiling is however only defined by the
requirement of preserving all point group symmetries of the
direct space lattice, upon splitting the Brillouin zone into equal
volume, nonoverlapping regions such that [9]:

�BZ = �
(cav)
BZ ( �K1)

⋃
. . .

⋃
�

(cav)
BZ ( �KNc

),
(10)

∅ = �
(cav)
BZ ( �KI )

⋂
�

(cav)
BZ ( �KJ ) ∀ I �= J,

together with the requirement that the “cluster momenta” �Kn

labeling these should be conserved [8]. This corresponds to an
idempotency condition:

1

Nc

Nc∑
n=1

e+i �Kn·( �RI − �RJ ) = δIJ , (11)

which as noted in Refs. [24,37] remains valid up to a rigid
shift of each �Kn by a “tiling phase” �φ = (φx,φy,φz) ∈ �BZ.
By placing however the tiles boundaries at different locations
within the Brillouin zone, the discontinuous jump in �k-
dependent, NSD quantities such as the BSF will also be
translated and acquire in general different magnitudes.

Furthermore, NLCPA coarse-grained integrations will also
collect results differently as a function of �φ. This leads to
a different ability of the effective medium to pick up local
environment effects. On one extreme we may have for instance
the choice which, for a Nc = 2 simplest example, coarse grains
within individual tiles all points closest to ��/furthest from
it (as illustrated in Fig. 2(a), left panel). In another limit and
for the same cavity size and occupation statistics, there can be
a choice leading to combining contributions from alternating
octants of �� = (0,0,0), regardless of distances (Fig. 2(e), left
panel). Practical consequences in the two cases are illustrated
through a concrete example in Sec. III A. As one can anticipate
from the above simple geometrical argument, in one case we
have strongest sensitivity to a SRO statistics that enforces
having alike/unalike nearest neighbors within the cavity. In
the other one, the NLCPA will not be able to discriminate at
all the different scenarios and collapses once again to the same
results as those of the single-site CPA.
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FIG. 2. Nc = 2 NLCPA Brillouin zone coarse-graining (left) and
corresponding DOS (right) of bcc Cu50%,Zn50% for the three scenarios
of Table I: SRO = −1 (blue)/0 (green)/+1 (red), as a function of
tiling phase choice (top to bottom).

B. Remedial strategy: Nc > 1, Nsub = 1 scenario

A practical solution to address both such aspects of the
coarse graining has been [24,37] to sample the tiling phase
dependence through the choice of Np > 1 tiling phases �φ’s
and average over individual results according to:

G(�k,z) := 1

Np

Np∑
�φ

G
( �φ)

(�k,z). (12)

As shown in Sec. III A for a first benchmark application to
the KKR study of real materials, this procedure successfully
removes the spurious tiling phase freedom, already upon using
a very small Np. We can also appreciate how, despite there
being a lowered sensitivity to SRO, the prescription does not
correspond to canceling out all local environment influences
that the NLCPA was designed to describe.

It should finally be remarked that although purely SD
observables, such as the DOS, can be defined in terms of Eq. 6
alone, and appear at first glance exempt from tiling artifacts
even without the additional sampling of Eq. (12), such an
extra step should in general always be undertaken in order to
remove dependence of results on any arbitrarily chosen single
�φ (Fig. 2, right panels). This can be appreciated as an obvious
consequence of the heavy dependence of the BSF from the
full formula of Eq. (4) on �φ and the DOS being its �k ∈ �BZ

integral.
Benchmark results for the full expression are given in Fig. 4

and further discussed in the following, considering for better
clarity as a second example the case of single energy point

slices for the effective medium spin resolved A
(σ )

(�k,E) (single
tiling phase results for �φ = (0,0,0) following the notation of

Eq. (12)) and A
(σ )

(�k,E) (Np > 1-averaged results) of a f cc

Fe75%,P d25% test case.

C. Remedial strategy: Nc = 1, Nsub > 1 scenario

To complete discussion of the tiling phase freedom con-
sequences on the NLCPA effective medium, it remains to
consider the complementary scenario where all SRO structure
comes through P (γ )’s defined over a Nc = 1 but Nsub > 1-
wide cavity. The situation may be to first examination less
obviously in need of amendments, because we are now dealing
with a tile as big as the whole Brillouin zone. We never cross
therefore a boundary in evaluating for instance the BSF along
a path between representative high-symmetry points. It can
be argued however that an extra step in the form of Eq. (12)
is still needed for full theoretical consistency. Formally in
fact we are still relying on both direct space truncation to a
finite cavity size and Fourier transformations within the now
(Lmax × Nsub) × (Lmax × Nsub) CPA scattering path operator.
Both such factors still limit the effective medium’s ability
to pick up SRO effects beyond a certain direct space radius
and associate them unequivocally to a certain �k ∈ �BZ. From
a more applied point of view, the same conclusion can also
be drawn as recalled before by comparing two different
ways to describe the same physical system and demanding
in either case the formalism to produce identical observables
as remarked in the introduction.

As shown in Refs. [25,26], it is a careful handling of the
intersublattice scattering path operator blocks that enriches
the multisublattice CPA of Pindor et al. [34] with sensitivity
to SRO, in complete agreement with the single sublattice
NLCPA. Considering at first the DOS and the representative,
simplest benchmark test cases of a Nc = 2, Nsub = 1 bcc

binary alloy versus its fully analogous Nc = 1, Nsub = 2
CsCl-like unit cell or a Nc = 4, Nsub = 1 f cc lattice visualized
in terms of a Nc = 1, Nsub = 4 Cu3Au-like unit cell, the above
“multisublattice” NLCPA prescription could be demonstrated
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to lead in fact to the same SD results, with the “default”
choice �φ = (0,0,0), and reliance on the shortened expression
of Eq. (6).

This is however no longer the case for the BSF from the full
Eq. (4), particularly as �φ is changed. As discussed, the Nc > 1,
Nsub = 1 problem representation will exhibit moving discon-
tinuities, while the Nc = 1, Nsub > 1 case appears at first sight
artifact free, owing simply to there not being the necessity to
evaluate quantities which involve crossing the boundary of the
single tile, now as big as the Brillouin zone. This conundrum
can however be tackled by recalling that in the second case we
are still considering in reality two roles for �BZ that no longer
automatically coincide as in the original single-site theory. In
the first one, it is the domain of evaluation points �k for the
BSF which occur in particular as the argument of Eq. (8) and
specifically in the structure constants term of Eq. (9). In the
second one, �BZ is the single tile within which the (NL)CPA
effective medium is approximated as energy dependent but
�k constant. For this purpose �k acts through self-consistent
determination of an appropriate value τ ( �K1,z), such that:

τ (�k,z)  τ ( �K1,z) ∀�k ∈ �
(cav)
BZ ( �K1), (13)

and in the multisublattice extension of the theory it is in
the sublattice off-diagonal blocks of the scattering path
operator where the SRO sensitivity is built up. As discussed in
Ref. [26], this is associated with the intersublattice structure
constants correction: [g̃(�k,z)]

s,s ′
= [g(�k,z)]

s,s ′
e−i�k·(�bs−�bs′ ). To

recover full agreement with the Nc > 1, Nsub = 1 results of
the same physical system as a function of the tiling phase
freedom, it is hence sufficient to explicitly consider the
argument �k in this expression as relative to the origin of the
(single) tile �

(cav)
BZ ( �K1), which can be in general subject to �φ

shifts also in these Nc = 1, Nsub > 1 scenarios. By replacing
�k with �k + �φ, again the proposal of Eq. (12) can be applied,
leading to the same renormalized results for SD as well as
NSD observables upon taking the average over Np > 1 tiling
phases. We illustrate the point by referring again for full clarity
to the same Cu50%,Zn50% binary alloy and one representative
SRO regime in Fig. 2, now evaluating the BSF as a function
of �φ within a CsCl-like cavity construction (Fig. 3).

III. RESULTS

A. Comparison with previous results: The example
of Cu50%,Zn50%

We devote the first part of this section to a rapid review of
the familiar Cu50%Zn50% bcc alat = 2.87 [Å] alloy example,
in light of the tiling phase average proposal above. Figure 2
depicts the effective medium DOS n(E) from Eq. (6) for Nc =
2 and as a function of NLCPA tiling phase �φ. In all cases the
same three extremal SRO regimes associated with the Warren-
Cowley parameter [38,39] values −1,0 or +1 (Table I) have
been examined.

As remarked, previous KKR-NLCPA calcula-
tions [10,13,26] on this benchmark system have been initially
carried out only with the implicit choice �φ = π

alat
(0,0,0) that

corresponds to the results of the upper panel of Fig. 2(a).
This partitioning of reciprocal space leads to the strongest

φ = π
alat

(0, 0, 0)

φ = π
alat

1
2
, 1

2
, 1

2

single-site CPA

FIG. 3. Nc = 1 Multisublattice (MS)NLCPA BSF of bcc

Cu50%,Zn50% evaluated as a Nc = 1, Nsub = 2 CsCl unit cell and
the SRO = +1 regime from Table I. Maximal local environment
effects are picked up for �φ = (0,0,0) (top) and disregarded for
�φ = π

alat
( 1

2 , 1
2 , 1

2 ) (middle); thus falling back onto the same predictions
as from the single-site CPA (bottom). The intensity of the underlying
BSF as a function of energy, along a fixed arbitrarily chosen point
�k = (0.5,0.158,0.) (black line) is also highlighted (red overlay), ex-
hibiting peaks with full-width-at-half-maximum (FWHM) inversely
proportional to the lifetime of the intercepted bands [23].
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TABLE I. Warren-Cowley SRO parameter [39], explicit listing
of cavity configurations γ ’s and associated probability distributions
P (γ ) for a Nc × Nsub = 2 × 1 sites NLCPA model of a Cu50%,Zn50%

alloy in the bcc phase. Single-site CPA calculations correspond to a
SRO = 0, fully uncorrelated scenario, here reproduced by explicitly
considering all the Ntot = 22 = 4 possible configurations γ for this
cavity size. The DOS associated with each case is given as a function
of �φ in Fig. 2.

Local order regime Cavity configurations Probability

SRO = −1 γ1 = {Cu,Zn} P (γ1) = 50%
γ2 = {Zn,Cu} P (γ2) = 50%

SRO = 0 γ1 = {Cu,Cu} P (γ1) = 25%
γ2 = {Cu,Zn} P (γ2) = 25%
γ3 = {Zn,Cu} P (γ3) = 25%
γ4 = {Zn,Zn} P (γ4) = 25%

SRO = +1 γ1 = {Cu,Cu} P (γ1) = 50%
γ2 = {Zn,Zn} P (γ2) = 50%

resolution of SRO effects, that are associated with correlation
in the arrangement of nearest neighbors impurities in direct
space. In this case in fact the Brillouin zone tiling of Eq. (10)
distinguishes between an inner cubic region �

(cav)
BZ ( �K1)

around �� (Fig. 2 left column, in yellow) and a peripheral one
�

(cav)
BZ ( �K2) (Fig. 2 left column, in blue) which can also be

interpreted as an equivalent cubic domain, just shifted along
one axis and folded back at the periodic boundary of �BZ. On
the negative side, evaluation of the BSF according to Eq. (4)
clearly reveals the discontinuities problem upon crossing such
a boundary (Fig. 1), as also noted in Ref. [22].

As we progressively vary the tiling phase towards �φ =
π
alat

( 1
2 , 1

2 , 1
2 ), the situation morphs into a scenario where recip-

rocal space points are no longer coarse grained around cluster
momenta �Kn that lie all closer or farther away from ��. Cor-
respondingly, the difference in DOS results between various
SRO regimes is gradually lost (Figs. 2(a)–2(e)), thus repro-
ducing in this 3D SCF-DFT [40] KKR examination of a bcc

metallic alloy the same conclusions of 1D sc (simple cubic)
tight-binding model calculations reported in Fig. 4 of Ref. [24].

The same dependence can be observed also in a Nc = 1,
Nsub = 2 treatment of the same system, carried out according
to the extended theory of Sec. II C for the full expression of the
BSF Eq. (4) (Fig. 3). In this case the theory produces for each
choice of �φ a smooth band structure, in which specific features
associated with local environment effects can be discerned
but remain sensitive to any single choice of tiling phase, until
falling back on the single-site CPA results.

Upon taking the tiling phase average of Eq. (12) across the
parameter sampling space, the final result displays therefore
reduced influence of SRO for any fixed cavity size Nc × Nsub.
The outcome remains however distinct from the fully uncorre-
lated scenario that the single-site CPA implicitly enforces. We
come to this point in better detail through the next example of
Sec. III B.

B. A simple unit cell, substitutional disorder example:
Fe75%,Pd25%

We consider here for further illustration purposes the test
case of an iron-palladium alloy in the stoichiometric ratio
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FIG. 4. Fixed energy slice of the BSF for Fe75%Pd25% at E  EF .
Each �k point is color-coded depending on the particular �

(cav.)
BZ ( �Kn)

NLCPA tile it belongs to, for a Nc = 4 Nsub = 1 partitioning with
�φ = (0,0,0). Different symbols denote results pertaining to different
SRO regimes; positive (negative) sign is used to resolve majority
(minority) spin channels. Calculations performed with a single tiling
phase choice (top) show unphysical, SRO-dependent discontinuities
upon crossing tile boundaries, such as at the �L point. The extra
tiling phase averaging step of Eq. (12) removes such artifacts, while
retaining appreciable sensitivity to SRO effects (bottom).

3 : 1. The phase diagram of this material shows, for suitable
preparation procedures [41], a Nsub = 1 f cc geometry and
has been experimentally investigated as a function of SRO by
comparing samples either suddenly quenched or slowly cooled
from the melting temperature [42].

In our discussion such a system is presently taken just as a
simple prototype of a substitutionally disordered real material,
on which to deploy the developments of Sec. II B as a function
of cavity size, and in combination with spin-dependent effects.
We consider in particular for fixed lattice parameter alat =
3.78 [Å] two opposite SRO regimes, both reproducing the
same overall concentration cFe = 75%, and corresponding for
ease of comparisons to the extremal scenarios of Table I.

In the first case, full local clustering (SRO = +1) simulates
again the situation where alike atomic species would tend
to appear on average next to each other. In the second,
full local ordering case (SRO = −1), the two different
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TABLE II. Warren-Cowley SRO parameters [39], explicit listing
of cavity configurations γ ’s, and associated probability distributions
P (γ ) for a Nc × Nsub = 4 × 1 sites NLCPA model of a Fe75%,Pd25%

alloy in the f cc phase. Single-site CPA results correspond to a
SRO = 0, fully uncorrelated scenario, given by all the Ntot =
24 = 16 configurations γ of this cavity size, each with factorized
probability: P (γ ) = ∏Nc

I=1

∏Nsub
s=1 cα(I,s,γ ) with α(I,s,γ ) = Fe or Pd.

Local order regime Cavity configurations Probability

SRO = −1 γ1 = {Fe,Fe,Fe,Pd} P (γ1) = 25%
γ2 = {Fe,Fe,Pd,Fe} P (γ2) = 25%
γ3 = {Fe,Pd,Fe,Fe} P (γ3) = 25%
γ4 = {Pd,Fe,Fe,Fe} P (γ4) = 25%

SRO = +1 γ1 = {Fe,Fe,Fe,Fe} P (γ1) = 75%
γ2 = {Pd,Pd,Pd,Pd} P (γ2) = 25%

species tend instead to intermix as much as possible. Both
scenarios are here presented on the same footing, even
if only the latter phase would be thermodynamically fa-
vored [43]. Their statistics are summarized for a NLCPA
cavity of Nc × Nsub = 4 × 1 sites in Table II. Conversely,
the SRO = 0 situation which is always implicitly enforced
by the single-site CPA corresponds to a complete lack of
nearest neighbor correlation between Fe or Pd atoms. It can
be set up in this description by considering all the Ntot =
24 = 16 possible configurations γ1 = {Fe,Fe,Fe,Fe}, γ2 =
{Fe,Fe,Fe,Pd}, γ3 = {Fe,Fe,Pd,Pd}, . . ., γ15 = {Pd,Pd,Pd,Fe},
γ16 = {Pd,Pd,Pd,Pd}, each with a purely factorized probability
distribution P (γ ) = ∏Nc

I=1

∏Nsub
s=1 cα(I,s,γ ) for α(I,s,γ ) = Fe or

Pd. In all cases, disorder affects most significantly the minority
spin channel, consistent with previous investigations of other
ferromagnetic transition metals alloys [44,45].

We apply here the full expression of Eq. (4) and show
in particular for better clarity �k-resolved BSF slices at a
single energy point close to the Fermi level. With the single
choice �φ = π

alat
(0,0,0), i.e., the Brillouin zone coarse graining

depicted in Fig. 5, one can clearly observe how the NLCPA

(a)

(b) (c)

(d) (e)

FIG. 5. NLCPA Nc = 4 tiling for a f cc geometry (panel a:
entire Brillouin zone �BZ, color-coded), matching the construction
of Table I from Ref. [8] and corresponding to a tiling phase choice:
�φ = π

alat
(0,0,0) which identifies a central cubic tile around �� (panel

b) and three equivalent volume regions along the kx,ky , and kz axes
(panels c–e: expanded view).

(a)

(b) (c)

(d) (e)

FIG. 6. NLCPA Nc = 4 tiling for a f cc geometry (panel a:
entire Brillouin zone �BZ, color-coded), matching the construction
of Table I from Ref. [8] and corresponding to a tiling phase choice:
�φ = π

alat
(− 1

2 , − 1
2 , − 1

2 ) which identifies four equivalent tiles around
��, each along different axial diagonals (panels b–e: expanded view).

results show an unphysical jump in combination with either
extreme forms of SRO (but not in the ‘special’ case of fully
uncorrelated impurities, for which the extended formalism
does not differ from the one implicitly assumed by the
single-site CPA), and only in the spin channel which has been
actually affected by loss of LRO (Fig. 4, top). The artifact
is furthermore located in correspondence with crossing the
boundary between the inner tile �

(cav)
BZ ( �K1 = ��) and any of

the outer ones �
(cav)
BZ ( �K2), �

(cav)
BZ ( �K3), �

(cav)
BZ ( �K4). We observe

instead continuity in results across these, as expected due to
their equivalence from the point of view of the particular SRO
regimes being set up (Table II).

Upon averaging over a few tiling phase choices between
�φ = (0,0,0) (Fig. 5) and �φ = π

alat
( 1

2 , 1
2 , 1

2 ) (Fig. 6) according to
Eq. (12), all artifacts are successfully removed (Fig. 4 (bottom).
Although the difference between different disordered scenar-
ios is reduced, results remain sensitive to the adopted statistics,
in line with our expectations from Sec. II and consistently with
the insight already gained from the DOS of Eq. (6), as depicted
in Fig. 2.

We finally consider for the relevant spin channel of this
test case calculation the particular influence of the number of
unit cells in the cavity, Nc, as a further parameter defining
how far complete local clustering, i.e., SRO = +1 is on
average enforced. This is shown in Fig. 7 for the cases Nc = 1
(which corresponds to the original single-site theory), Nc = 4,
and Nc = 32. As it could be easily anticipated, the effective
medium BSF acquires now progressively a sharper outlook,
which is a consequence of longer mean free path for electrons
that are meeting larger and larger portions of homogeneous Fe
or Pd atoms. The positions of the corresponding Lorentzian
peaks can be in particular compared with the limit LRO
scenarios of an either 100% Fe or 100% Pd sample (Fig. 8, top
and bottom).

C. A complex unit cell, disordered local moment example

On the complex unit cell side, after the technical illustration
of Fig. 3, we come to the less artificial example of the
normal state of the iron-based superconductor FeSe. The

224205-8



SHORT-RANGE ORDERING EFFECTS ON THE . . . PHYSICAL REVIEW B 94, 224205 (2016)

(a) SRO = 0 Nc = 1

(b) SRO = +1 Nc = 4

(c) SRO = +1 Nc = 32

FIG. 7. Minority spin BSF of Fe75%Pd25% as a function of the
NLCPA cavity size (top: Nc = 1; center: Nc = 4; bottom: Nc = 32),
for the same SRO = +1 model of complete local clustering of alike
atomic species. The tiling phase averaging of Eq. (12) has led to
artifact-free results across the entire Brillouin zone. As the size of the
NLCPA cavity increases, sharper features emerge from the heavily
smeared out single-site CPA calculation and tend to progressively
reproduce the same outlook which would be given by a concentration-
weighted sum of the individual BSF’s of either LRO Fe or Pd (Fig. 8).

phase diagram of this material is characterized by lack
of magnetic LRO down to low temperature, together with
experimental [46,47] and theoretical [48] evidence that locally
Fe moments should align in a nearest neighbors striped order.

(a) LRO Fe

(b) LRO Pd

FIG. 8. Minority spin BSF of either pure Fe (top) or pure Pd
(bottom) in a LRO arrangement, within the same f cc lattice as the
Fe75%,Pd25% alloy of Fig. 7.

This scenario can be simulated with the formalism of Sec. II
by means of a Nc = 1, Nsub = 8 cavity, corresponding to the
rotated and doubled primitive unit cell and with disorder
confined to the magnetic degree of freedom of the four
iron sites thus exposed in a square array. We examine in
Fig. 9 the corresponding tiling phase-averaged BSF for the
tetragonal lattice phase, as a function of increasing competition
between the particular configuration γ which alone would
describe LRO stripes, and all other local patterns which can in
principle be realized within this cavity size. The collapse of the
lifetime of Bloch’s states is very rapid, with individual band
features quickly disappearing in a rather undistinguished, fully
blurred outlook, that matches single-site CPA-DLM results
for P (γ1) = P (γ2) = . . . = P (γ16) = 6.25%. Our extended
method gives however also access to the full electronic
structure of the material in intermediate scenarios. Further
comparisons with experiments, together with usage of the
corresponding effective medium construction for evaluation of
additional observables beside the BSF alone, can lead to more
specific predictions concerning the actual extent of nematicity
within such a model and its relevance for the peculiar physics
of this compound.
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P (γ = Stripes) = 85% P (γ = Stripes) = 70%

P (γ = Stripes) = 55% P (γ = Stripes) = 40%

P (γ = Stripes) = 25% P (γ = Stripes) = 6.25%

FIG. 9. DLM BSF of FeSe from a Nc = 1 Nsub = 8-wide NLCPA cavity, with magnetic disorder only on the four Fe sublattices. The
probability of a specific striped pattern in the iron moments is progressively reduced, down to equal likelihood across all the Ntot = 42 = 16
cavity configurations. Intermediate regimes allow us to simulate this compound’s lack of magnetic LRO down to low temperature, together
with partial, local persistence of particular forms of SRO.

IV. CONCLUSIONS

We have reviewed the NLCPA for the first principles
study of various kind of SRO and disorder effects in real
materials. The formalism has been in particular re-examined
from the point of view of NSD observables such as the
Bloch spectral function. After discussing the physical origin
of unwanted artifacts in �k-resolved quantities, a scheme for
their removal through multiple sampling of a tiling phase
freedom intrinsic to the NLCPA/DCA techniques has been
applied at the KKR-SCF-DFT level for various systems. Its
discussion has been furthermore extended to cover the case of
complex unit cell materials. We also examine its implications
for SD observables such as the density of states which have
historically been among the first applications of the theory in
its original form.

The generalized framework has been assessed by revisiting
well established case studies as well as original examples. The
aspects of practical implications from any given tiling phase
choice, NLCPA cavity size, and probabilistic dominance of
a given random pattern with respect to all others have been
systematically illustrated, through application to substitutional
disorder in metallic alloys as well as paramagnetism in the
prototypical iron-based superconductor FeSe.
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APPENDIX A: IMPACT ON COMPUTATIONAL
REQUIREMENTS

In the original CPA the effective medium is computed by
solving

∑Nsub
s=1 Nalt (s) ‘impurity problems’ for the single-site

transition matrix t (α(s))(z) in L,L′ and associated scattering
path operator τ (α(s))(z), where α(s) labels the scattering
potential found on sublattice s. Computational requirements
thus grow only linearly when moving from binary to ternary
or more complex scenarios, such as in the topical example of
high-entropy alloys [49–53].

The method also involves repeated reciprocal space inte-
grations over the Brillouin zone, with a computational cost
only dependent on �k sampling resolution. In the DCA/NLCPA
extension of the technique this operation is performed in
a coarse-grained fashion, simply collecting distinct results
across the Nc tiles. The generalized algorithm adds an extra
step of coupled lattice Fourier transformations, whose cost

grow with Nc. This can be optimized by resorting to fast
Fourier transformations (FFT) although practically such need
has not been met yet, due to relatively small cavity sizes so far
considered in KKR applications. Since Nc represents also the
NLCPA cavity size in direct space, the NLCPA computational
burden of repeated matrix inversions during effective medium
construction grows instead as O((Nc × Nsub)3), and can
become more significant.

Upon having obtained a converged effective medium scat-
tering path operator τ (z), deployment of Eqs. (6)–(8) present

computational demands that grow with the number of cavity
configurations Ntot. The worst case scenario corresponds to a
SRO = 0 statistics, for which all Ntot = ∏Nsub

s=1 N
Nc

alt (s) possi-
bilities should be considered. More generally, different kinds
of local ordering are set up by altering the fully uncorrelated
probability distribution given by a product of single-site
concentrations alone. This typically leads to suppressing a
large number of negligible contributions.

Evaluation of the remaining ones may be performed more
efficiently and at no loss of accuracy by collecting into
equivalence classes those configurations γ ’s which produce
an equivalent impurity-projected scattering path operator
from Eq. (5). This latter optimization has not proved cru-
cial yet, due to limited complexity of examples considered
so far.
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