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U2Pd2In is the material where the elements of the geometrical frustration of the lattice coexist with strong
spin-orbit coupling (SOC). The ground state of the system is a noncollinear planar magnetic structure with
orthogonal atomic magnetic moments. There are three possible physical mechanisms that can lead to this
nontrivial magnetic structure: frustrated isotropic exchange interaction, Dzyaloshinskii-Morija interaction (DMI),
and magnetic anisotropy. Our first-principles calculations show that in the case where the SOC is neglected, and
therefore the DMI and magnetic anisotropy are absent, the ground state structure is the collinear ferromagnetic
one. The leading contribution to the stabilization of the magnetically compensated configuration of orthogonal
atomic moments is provided by the local magnetic anisotropy of the U moments. A weaker DMI leads to the
lifting of the degeneracy between the magnetic states with different local chirality. The established hierarchy of
the interactions allows us to explain the metamagnetic phase transition in the in-plane external magnetic field.
The analysis of the noncollinearity of the spin and orbital moments of the same U atom appearing in the applied
external field show that the trend to the antiparallel orientation of the two atomic moments following from the
third Hund’s rule is much stronger than the trend to the parallel orientation of the moments due to the applied
external magnetic field.

DOI: 10.1103/PhysRevB.94.184414

I. INTRODUCTION

The interplay of effective forces acting on atomic mo-
ments in magnetic systems leads to numerous interesting
phenomena. For example, the geometric frustration [1] of
exchange interactions stimulates the formation of nontrivial
noncollinear magnetic structures [2–4]. On the other hand,
the competition between isotropic Heisenberg exchange in-
teraction and the consequences of the spin-orbit coupling
(SOC)—Dzyaloshinskii-Morija interaction [5,6] (DMI) and
magnetic anisotropy—leads to the formation of helical and
skyrmionic magnetic structures [7–9]. In noncentrosymmetric
atomic structures DMI is responsible for selective chirality
of the magnetic configurations [10,11]. The reachness of
magnetic configurations increases further if the systems are
subjected to the magnetic field. The study of the materials with
nontrivial noncollinear magnetic structures is an important
task since, on one hand, it deepens our understanding of the
fundamental magnetic interactions and, on the other hand,
suggests new materials for modern applications.

In this respect, the uranium compound U2Pd2In is an inter-
esting material where the possibility of geometrical frustration
of the nonferromagnetic interatomic interactions coexists with
strong SOC typical for heavy elements. The experiment [12]
revealed two remarkable properties of U2Pd2In. The first is
the formation of a nontrivial planar noncollinear magnetic
structure with orthogonal U atomic moments. The second is
the metamagnetic first-order phase transition in the external
magnetic field applied parallel to the plane of magnetic
moments.

The purpose of this paper is to reveal the physical origin
of the peculiar ground-state magnetic structure of U2Pd2In
and to suggest an interpretation of the metamagnetic phase
transition. To fulfill this aim we combine (i) first-principles
calculations, (ii) the study of the model bilinear Hamiltonian
of interacting atomic moments, and (iii) symmetry arguments

to disclose the interactions responsible for the magnetism of
U2Pd2In. The first-principles calculations are performed for
various noncollinear magnetic configurations with and without
applied magnetic field.

The paper is organized as follows. Section II presents
theoretical approach. In Sec. III we discuss the crystal
lattice and symmetry operations of magnetic structures in
nonrelativistic and relativistic cases. Section IV presents the
results of the first-principles calculations for various magnetic
configurations. In Sec. V we consider the properties of the
model bilinear Hamiltonian of interacting atomic moments.
Section VI deals with the results of the calculations for
U2Pd2In in applied magnetic field.

II. THEORETICAL APPROACH

The main tool of our theoretical study is first-principles
calculations within the framework of the density functional
theory (DFT) for noncollinear magnetic configurations (see
Ref. [13] and references therein). In these calculations, not only
the values of the magnetic moments but also their directions are
self-consistently determined. This means that if the magnetic
structure assumed at the beginning of an iteration does not
correspond to a torque-free magnetic state, the instability of
the structure will be revealed and the output of the iteration
will provide the magnetic configuration that is different from
the input one.

The electronic Kohn-Sham Hamiltonian of a noncollinear
magnet can be presented in the form

H = T + V + Hso, (1)

where T is the kinetic energy operator, V is two-by-two
electronic potential, and Hso is the operator of the spin-orbit
coupling. Assuming a spherically symmetric form of the
atomic potentials the effective potential in ith atomic sphere
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can be written in the form

Vi(r) = U (θi,φi)
†
(

V +
i (r) 0
0 V −

i (r)

)
U (θi,φi), (2)

where angles θi and φi determine the direction of the atomic
spin moment and define the local spin-coordinate system of
the ith atom characterized by the diagonal form of the potential
matrix; V +

i and V −
i are the spin-up and spin-down potentials

in the local system; U (θi,φi) is the matrix of spin- 1
2 rotation

transforming the potential from the atomic system of the ith
atom to the global system. The operator of the spin-orbit
coupling is taken in the form [14]

Hso = 1

(2c)2

1

r

[( 1
M2+

dV +
dr

0

0 1
M2−

dV −
dr

)
σzl̂z

+ 1

M2
av

dV av

drν

(σx l̂x + σy l̂y)

]
, (3)

where

V av(r) = 1
2 (V +(r) + V −(r)) (4)

and

Mα = 1

2

(
1 − 1

c2
V α

)
, α = av, + , − . (5)

σx,σy,σz are the Pauli matrices and l̂x ,l̂y ,l̂z are the operators
of the components of the orbital momentum. In Eqs. (3) and
(5), the Rydberg atomic units are used.

We will refer to the full Hamiltonian of Eq. (1) as relativistic
Hamiltonian. The case where the spin-orbit coupling Hso is
neglected will be referred to as nonrelativistic. We will also
perform calculations of U2Pd2In in applied magnetic field.
The magnetic field enters the Hamiltonian through the Zeeman
term acting on both spin and orbital atomic magnetic moments
[15].

An important role in the prediction and interpretation of the
results of the calculations is played by the symmetry analysis.
It is crucial that the symmetry analysis of the nonrelativistic
and relativistic Hamiltonians must be performed on the basis
of different sets of symmetry operators. In the nonrelativistic
problems the adequate set of the operators are the spin-
space groups that allow for different transformation of the
spin and space subsystems. These operators have the form
{αS |αR|τ α + Rn} where the real-space (orbital) part of the
operation {αR|τα + Rn} transforms the atomic positions but
does not change the directions of the magnetic moments,
whereas the spin rotation αS performs the point transformation
of the atomic moments. Here αR is a real-space point
operation, τ α is nonprimitive translation corresponding to
αR , and Rn are lattice translations. We will consider only
those space operations that transform crystal lattice into itself
since the consideration of the displaced lattices does not
bring information useful for our purposes. The action of the
operation {αS |αR|τα} on a magnetic crystal is defined as

{αS |αR|τα}S(ai + Rn) = αS S[{αR|τα}−1(ai + Rn)], (6)

where S(ai + Rn) gives the vector of atomic moment at the ith
atomic position in the nth unit cell. The operations of the spin-
space group can be combined with time-reversal operation �.

Since the spin-space operations with different αS and αR

do not preserve the form of the spin-orbit coupling term
Hso, they cannot be applied to the study of the relativistic
problems. In the relativistic problems the spin-space group
reduces to usual space group where αS = αR . The difference
of the groups of the symmetry operators in the nonrelativistic
and relativistic problems results in dramatically different
properties of relativistic and nonrelativistic magnetic systems.

The symmetry arguments will be used to study three differ-
ent types of the properties of the system. First, the symmetry
analysis is employed to predict the calculational stability of a
given magnetic structure. The following principle is used: If the
considered magnetic structure is distinguished by symmetry
in the sense that any deviation of the atomic moments from the
directions specified by the magnetic structure disturbs at least
one of the symmetry operations, this magnetic configuration
is calculationally stable [13]. The calculational stability does
not necessarily mean that the configuration corresponds to
the lowest energy state and is physically stable. Instead, it
signifies the symmetry-determined vanishing of the torque
on the atomic moments. Such a calculationally stable state
can correspond to an energy maximum or saddle point of the
energy considered as a function of the directions of atomic
moments. The calculational stability of the state despite its
possible physical instability is explained by the absence of
random fluctuations within the standard DFT calculations and
can be regarded as the consequence of the symmetry constraint
[16] imposed on the calculational results by the symmetry of
the initial state.

A second type of the symmetry analysis establishes the
equivalence of different magnetic configurations. If an opera-
tion transforms the Hamiltonian of one magnetic structure of
the system into the Hamiltonian of another magnetic structure
the two magnetic structures are equivalent in the sense that they
have equal energies and their wave functions are connected
by the same transformation. Obviously, it is sufficient to
perform the DFT calculation for one of the equivalent magnetic
configurations.

Third, it is a common practice to map the itinerant-
electron systems onto a model Hamiltonian of interacting
atomic moments that helps to make the physics of the
system more transparent. Here the symmetry analysis helps to
reduce the number of independent parameters of the effective
Hamiltonian. The details of the symmetry analysis of the
bilinear Hamiltonian of interacting atomic moments are given
in Sec. V A.

III. CRYSTAL LATTICE AND SYMMETRY OPERATIONS

The unit cell of U2Pd2In is shown in Fig. 1. The plane of the
U moments forms the Shastry-Sutherland-type lattice known
as one of the systems with geometrical frustration [17,18]. The
topological equivalence [19] of the U plane to the Shastry-
Sutherland lattice is demonstrated in Fig. 2. If the exchange
interaction between atoms connected by thick red lines in
Figs. 2(a) and 2(b) is strong antiferromagnetic the atoms form
antiferromagnetic dimers. The exchange interactions between
atoms connected by thin blue lines cannot be satisfied that
leads to the magnetic frustration.
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FIG. 1. Unit cell of U2Pd2In. Below the four noncollinear
magnetic structures used in the analysis of the experiment. In the
figure showing the NC1 structure the numbering of the U sublattices
accepted in the paper is given.

The symmetry of the atomic lattice is characterized by
16 real-space point operations collected in Table I. The
nonmagnetic state of the system is invariant with respect to
the time reversal and, therefore, each of the 16 operations can
be accompanied by time reversal.

As mentioned above, in the nonrelativistic problems each
orbital operation can be combined with arbitrary spin rotation.
In the relativistic problems the spin and orbital point transfor-
mations must coincide.
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FIG. 2. (a) The fragment of the plane containing U atoms. The
solid lines connect the atoms whose interaction is discussed in
Sec. V A. (b) The same fragment of the U plane in the form reveal-
ing topological equivalence to the Shastry-Sutherland lattice. The
Shastry-Sutherland model considers the case of antiferromagnetic
exchange interactions between atoms connected by both thick red and
thin blue lines. The strong “red” interaction leads to the formation of
the antiferromagnetic dimers. The blue antiferromagnetic interactions
cannot be satisfied that leads to the frustration.

TABLE I. Symmetry operations of the atomic lattice of U2Pd2In.
First column: number of the operation. Second column: symbol of the
operation. E is the unity operation; Cnα are proper rotations by angle
2π/n about the α axis; α = x,y,z correspond to the x,y,z axes, α = a

corresponds to the y = x axis in the z = 0 plane, α = b corresponds
to the y = −x axis in the z = 0 plane; S±

4z are improper rotations about
the z axis by angle π

2 ; σβ is the reflexion in the β plane, β = x,y,z

correspond to the x = 0, y = 0, z = 0 planes, β = a corresponds
to the y = −x plane, β = b corresponds to the y = x plane. Third
column: If nonzero, it gives the vector of nonprimitive translation
τ = (0.5,0.5,0). Forth column: the result of the action of the point
operation on axial vector (mx,my,mz). Fifth column: the positions
of the U atoms into which the U1−4 atoms are transformed by the
operation.

No. OP τ m at. permutation

1 E 0 (mx,my,mz) 1234
2 C2x τ (mx, − my, − mz) 2143
3 C2y τ (−mx,my, − mz) 4321
4 C2z 0 (−mx, − my,mz) 3412
5 C2b τ (−my, − mx, − mz) 3214
6 C−

4z 0 (my, − mx,mz) 2341

7 C+
4z 0 (−my,mx,mz) 4123

8 C2a τ (my,mx, − mz) 1432
9 I 0 (mx,my,mz) 3412
10 σx τ (mx, − my, − mz) 4321
11 σy τ (−mx,my, − mz) 2143
12 σz 0 (−mx, − my,mz) 1234
13 σb τ (−my, − mx, − mz) 1432

14 S+
4z 0 (my, − mx,mz) 4213

15 S−
4z 0 (−my,mx,mz) 2341

16 σa τ (my,mx, − mz) 3214

Below, we consider the results of the first-principles non-
relativistic and relativistic calculations for various magnetic
configurations of U2Pd2In. Before going over to the discussion
of the results of the calculations it is useful to summarize the
symmetry-determined properties of collinear ferromagnetic
configuration and noncollinear NC1-4 configurations shown
in Fig. 1. These noncollinear configurations were used in the
analysis of experiment [12].

A. Symmetry properties of magnetic structures of U2Pd2In in
nonrelativistic calculations

In nonrelativistic problems any collinear configuration
is calculationally stable. This stability is governed by the
symmetry with respect to the pure spin rotations about the
magnetization axis. This symmetry is disturbed if an atomic
moment deviates from the magnetization axis. On the other
hand, all collinear magnetic structures obtained from the
given one by an arbitrary rotation of all atomic moments are
equivalent to each other.

Also the four noncollinear magnetic structures NC1-4 with
orthogonal atomic moments are calculationally stable. The
calculational stability of the NC1 structure follows from the
three symmetry operations leaving this structure invariant: (1)
operation �{σz|σz|0} is a symmetry operation of any planar
magnetic structure with atomic moments parallel to the z = 0
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plane, which is responsible for keeping all moments in-plane,
(2) operation {C4z|C4z|0} performing the rotation by 90◦ about
the z axis keeps the in-plane moments orthogonal to each other,
and (3) operation �{C2a|C2a|(0.5,0.5,0)} of the 180◦ rotation
about the x = y axis does not allow the moments of atoms U1

and U3 to deviate from the [110] direction. Similar arguments
are valid for NC2-4 structures.

The four noncollinear structures NC1-4 are equivalent to
one another since there are operations transforming them into
each other. For example, NC1 is transformed into NC2 by the
180◦ spin rotation about the x = y axis, into NC4 by the pure
spin rotation by 90◦ about the z axis, and into NC3 by the
combination of the above two spin rotations.

B. Symmetry properties of magnetic structures of U2Pd2In in
relativistic calculations

If the SOC is taken into account, the states NC1-4
remain calculationally stable since the symmetry operations
responsible for the symmetry constraint in the nonrelativistic
case, considered above, transform in the same way both spin
and orbital variables and therefore are applicable also in the
relativistic case. The four configurations, however, become
inequivalent since the symmetry operations transforming these
structures into one another in the nonrelativistic approach act
differently on spin and orbital subsystems and are not operative
in the relativistic case. As a result, the energies of the four
NC1-4 configurations are different (see Sec. IV B below).

The symmetry properties of the FM configurations in the
relativistic case differ strongly from those in the nonrelativistic
case. First, the ferromagnetic configurations with different
directions of the moments with respect to the atomic lattice are
now inequivalent. The symmetry reason for the inequivalence
is the same as in the case of NC1-4 structures: The pure
spin rotations are not allowed in the relativistic problems.
The physical origin of this inequivalence is the magnetic
anisotropy. Second, in contrast to the nonrelativistic case,
the relativistic collinear ferromagnetic configurations are,
in general, not calculationally stable. As an example, we
consider two in-plane ferromagnetic configurations. First is
the configuration with atomic moments parallel to the x

axis [Fig. 3(a)]. The symmetry group of this magnetic state
contains eight operations: E, C2x , �C2y , �C2z, I , σx , �σy ,
�σz. Here we give only the point transformations and time
reversal. The corresponding nonprimitive translation can be
found in Table I. These operations impose the following
constraint on the system: Since C2x , C2y , C2z transform atom
1 into, respectively, atoms 2, 4, 3 (see Table I), all U atoms
in this configuration are equivalent. These operations also
impose symmetry restrictions on the components of the atomic
moments: All of them must have equal mx components and
the my components satisfying the relations m1y = −m2y =
m3y = −m4y . Importantly, there is no symmetry constraint of
zero my components. In the relativistic calculations the initially
ferromagnetic moments parallel to the x axis deviate from their
parallel directions assuming nonzero my components leading
to the configuration shown in Fig. 3(a).

In the case of the ferromagnetic moments parallel to the
[110] direction [see Fig. 3(b)] the situation is very different.
Although the number of the symmetry operations is the same

(a)

(b) (c)

1

3 4

2

1

3 4

2

FM[110]

1

3 4

2

FM[100]

1

3 4

2

NC5

FIG. 3. (a) The ferromagnetic configuration with the U atomic
moments parallel to the [100] axis is calculationally unstable and
transforms in the noncollinear configuration of the type shown by the
arrow and satisfying the constraints m1x = m2x = m3x = m4x and
m1y = −m2y = m3y = −m4y . (b) The ferromagnetic configuration
with the U atomic moments parallel to the [110] axis is calculationally
stable. (c) The NC5 configuration with the U1 and U3 moments
parallel to the [110] axis and the U2 and U4 moments canted from the
[110] axis.

as in the [100] case, the list of operations is different: E,
�C2z, �C2b, C2a , I , �σz, �σb, σa . The operations lead to
the equivalence of the pairs of atoms: Atom 1 is equivalent
to atom 3 and atom 2 is equivalent to atom 4. The atoms
from different pairs are not transformed into one another and
therefore are not equivalent. The symmetry operations impose
the constraint that for each atom mx = my , and therefore all
moments must remain parallel to the [110] axis, and this
ferromagnetic configuration is calculationally stable.

IV. FIRST-PRINCIPLES CALCULATIONS FOR VARIOUS
MAGNETIC CONFIGURATIONS

A. Nonrelativistic calculations

The calculations confirmed the calculational stability of
the FM and NC1-4 configurations predicted by symmetry
as well as the equivalence of the four NC states shown in
Fig. 1. The atomic moments and the energies of the magnetic
configurations are collected in Table II. The energy of the FM
state is by 8.2 mRy/UC lower than the energy of the NC1-4
states. Therefore we can conclude that the isotropic Heisenberg
exchange is not the origin of the experimental noncollinear
ground state structure with orthogonal atomic moments.

Although the NC1-4 configurations are calculationally
stabilized by the symmetry constraint, they do not correspond
to a local energy minimum. The broken curve in Fig. 4 shows
the calculated energies of the magnetic structures obtained
from the NC1 structure by the in-plane rotation of the U1

moment by angles up to 180◦. The NC1 structure corresponds
to an energy maximum. The energy monotonically decreases
with increasing angle and has a minimum at the end of
the angular interval where the structure is again stabilized
calculationally by the symmetry constraint. More details on
the calculations presented in Fig. 4 are given in Sec. VI.
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TABLE II. Calculational results for a number of magnetic
configurations. The columns give, respectively, the type of magnetic
structure, the energy per unit cell (UC), atomic spin, and orbital mo-
ments. NC1-5 corresponds to the noncollinear configurations, FM is
ferromagnetic configuration, FM[110] is ferromagnetic configuration
with all atomic moments parallel to the [110] direction. If all atoms
are equivalent only one value of the atomic spin and orbital moments
is given. Otherwise, the four values for four U atoms in the unit cell
are presented.

mag. struc. E (mRy/UC) msp(μB ) morb(μB )

nonrelativistic calculation
NC1-4 0 2.159 0
FM −8.23 2.294 0

relativistic calculation

NC1 0 1.931 2.891
NC2 1.48 1.950 2.842
NC3 5.94 1.878 2.457
NC4 7.77 1.891 2.584
FM[110] 1.76 2.025 1.998 2.787 2.572

2.025 1.998 2.787 2.572
NC5 0.27 1.984 1.969 2.854 2.828

1.990 1.969 2.790 2.828

B. Relativistic calculations

Also in the relativistic case the calculations confirm the
conclusions of the symmetry analysis: The NC1-4 configura-
tions are calculationally stable and inequivalent to each other.
In agreement with experiment [12] the energy of the NC1
structure is lower than the energy of the other three structures
(see Table II). Note that an earlier calculation [20] for another
representative of this class of U compounds, U2Pd2Sn [21],
also gave the energy of the NC1 structure to be the lowest
between four NC1-4 structures. Thus this feature appears to be
a stable characteristic of the U2Pd2X compounds with complex
noncollinear magnetic structures.

We remark that the NC1 state with the lowest energy
corresponds to the largest value of the atomic orbital moment
that supports the validity of the much discussed correlation
between the easy axis direction and the value of the orbital
moment (see, e.g., Refs. [14,22,23]).

The FM configuration with the moments parallel to the
[110] axis, as predicted, is calculationally stable with inequiv-
alent pairs of atoms: U1 is equivalent to U3 and U2 is equivalent
to U4, but atoms of different pairs are inequivalent to one
another. This inequivalence is reflected in somewhat different
values of the spin and orbital moments (Table II).

If we slightly deviate the U moments of the FM[110]
structure from the [110] direction destroying symmetry con-
straint the self-consistent calculations result in the magnetic
configuration NC5 shown in Fig. 3(c). The orbitals moments of
atoms U2 and U4 deviate from the [110] axis by 23.2◦. The spin
moments of these atoms are almost antiparallel to the orbital
moments and deviate from the [110] axis by 26.9◦. Thus the
noncollinearity of the two atomic moments is characterized by
angle 3.7◦. The energy of the NC5 state is only 0.27 mRy/UC
higher than the energy of the NC1 state and is considerably
lower than the energies of the NC2-4 states. We will come back
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FIG. 4. The band energy of the magnetic structures obtained by
the in-plane rotation of the direction of the magnetic moment of the
U1 atom starting with the NC1 structure. The solid two-minima curve
is obtained in the relativistic calculations; the broken monotonic curve
is obtained with the SOC being neglected. In the upper part of the
figure, the unit cells of the magnetic structures corresponding to the
end points of the angular interval are depicted.

to the properties of the NC5 state when discussing the in-field
calculations and the origin of the metamagnetic transition
(Sec. VI).

V. MODEL BILINEAR HAMILTONIAN OF INTERACTING
ATOMIC MOMENTS

A. Introduction and symmetry properties

To get insight into the competition of the interactions
leading to the physical stability of the NC1 configuration we
consider the bilinear Hamiltonian of a general form

H =
∑
IJ

ŜIA
IJ Ŝ

T

J , (7)

where capital letter index I = (in) includes the number of
the atom within the unit cell i and the index of the unit cell
n, T means matrix transposition, AIJ ≡ A(in; jm) are 3 × 3
matrices in the coordinate space, and ŜI is the unit vector in
the direction of the I th atomic moment. The atomic moments
are treated as classical vectors. We remark that instead of
unit vectors ŜI one can chose spin or total atomic moments as
independent variables. These choices are physically equivalent
leading to the numerical modification of the parameters of the
Hamiltonian. Our choice of independent variables agrees with
the choice used, e.g., in Ref. [24]. The symmetry consideration
presented below is invariant with respect to the choice of the
independent variables.
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It is convenient to split the energy of the interaction between
a pair of atoms I and J (I �= J ) into two equal parts described
by matrices AIJ and AJI that satisfy the relation

AJI = AIJT .

Matrix AIJ can be written as the sum of the symmetric and
antisymmetric parts

AIJ = BIJ + CIJ , (8)

where

BIJ = 1
2 (AIJ + AJI ) CIJ = 1

2 (AIJ − AJI ). (9)

The energy contribution due to the antisymmetric part can
be recast as

ŜIC
IJ Ŝ

T

J = DIJ · [ŜI × ŜJ ] (10)

and corresponds to the DMI. The DMI vector DIJ is defined
as DIJ = (CIJ

xy , − CIJ
xz ,CIJ

yz ). The symmetric parts BIJ of
the matrices supply energy contributions of the isotropic
Heisenberg’s exchange and magnetic anisotropy.

Symmetry operations of the crystal impose constraints on
the elements of the A matrices. The symmetry restriction on
matrices AIJ imposed by the symmetry operation {αS |αR|τα}
is given by the expression

A(i0; j Rn) = αT
S A[iα,0; jα,αR Rn + (Rαj − Rαi)]αS, (11)

where the number of the uranium sublattice iα and lattice
vector Rαi are defined by

{αR|τ α}ai = aiα + Rαi . (12)

It is straightforward to show that for the nonrelativistic case
the symmetry condition (12) leads to an expected result that
the matrices AIJ have a scalar form J IJ E where J IJ is a scalar
parameter of the isotropic exchange interaction between atoms
I and J and E is the unity matrix. The contributions of the
magnetic anisotropy and DMI vanish.

In the relativistic case, the situation is more complex.
In general all elements of the AIJ matrix are nonzero. As
we have seen [Eqs. (8)–(10)], the antisymmetric part of the
matrix corresponds to the DMI. The symmetric part can be
represented as a sum of a scalar matrix J IJ E and zero-trace

matrix B
IJ

. J IJ can be treated as the isotropic Heisenberg

exchange parameter; B
IJ

describes anisotropy due to the SOC.
Because in this paper we are focusing on the properties of
in-plane magnetic structures, below in this section, for the
sake of brevity, we will use the 2D form of the vectors and
matrices giving only their x and y components. We will start
with the properties of the on-site matrices AII . Since the
crystallographic positions of all U atoms are equivalent it is
sufficient to consider atom U1 in the unit cell at n = 0. The
operation {C2a|C2a|( 1

2 , − 1
2 )} transforms atom U1 into itself.

This operation imposes the following symmetry constraint on
the elements of the matrix A(1,0; 1,0)

(
Axx Axy

Ayx Ayy

)
=

(
Ayy Ayx

Axy Axx

)
. (13)

Therefore, the on-site matrix A(1,0; 1,0) has the symmetric
form

A(1,0; 1,0) =
(

α β

β α

)
. (14)

The diagonalization of the matrix gives two eigenvalues

λ1,2 = α ∓ β

that are different if the off-diagonal matrix element β is not
zero. We remind that the nonzero off-diagonal element is a
consequence of the SOC. The corresponding eigenvectors are
x1,2 = (1, ∓ 1). Thus, the symmetry consideration shows that
the on-site term of the bilinear Hamiltonian gives the local
magnetic anisotropy of the U atoms with easy and hard axes
parallel to vectors (1, ∓ 1). These are the directions of the U
moments in the NC1-4 structures. Which of the two axes is the
easy one and which is the hard one cannot be established on the
basis of symmetry arguments and needs direct first-principles
calculations.

Next we consider symmetry properties of the interaction
matrix between atom U1 and the nearest atom U3 belonging
to the unit cell characterized by the lattice vector (1,0) [see
Fig. 2(a)]. The account for the symmetry operations with
point transformations C2z and C2b transforming atoms U1 and
U3 into each other (Table I) leads to the form of the matrix
A[1,0; 3,(1,0)] that coincides with the form of the matrix
A(1,0; 1,0) given above in Eq. (14). This matrix is symmetric
and therefore no DMI interaction can appear between atoms
U1 and U3. The directions of the easy and hard axes of this
interaction are again given by the vectors (1, ∓ 1).

Considering the interaction between atom U1 and four
neighboring atoms of the type U2 and U4 (Fig. 2), we get
the following properties of the interaction matrices. Matrix
A(1,0; 2,0) has the form

A(1,0; 2,0) =
(

δ γ

−γ δ

)
, (15)

where γ contributes to the antisymmetric part of the
matrix and determines the strength of the DMI interac-
tion between two atomic moments. Knowing the form of
A(1,0; 2,0), the symmetry determines uniquely the form of
the other three matrices A[1,0; 2,(1,0)] = A(1,0; 2,0) and
A(1,0; 4,0) = A[1,0; 4,(0, − 1)] = A(1,0; 2,0)T .

Then the energy of the interaction of the moment of atom
U1 with the four neighboring U2 and U4 atoms is given by

E1,{2,4} = 2S1

(
δ γ

−γ δ

)
ST

2 + 2S1

(
δ −γ

γ δ

)
ST

4 . (16)

If S2 = −S4 as in the case of our NC1-4 magnetic structures,
the energy takes the form

E = 4S1

(
0 γ

−γ 0

)
ST

2 (17)

and only the DMI remains operative. On the other hand, if
S2 = S4 we have

E = 4S1

(
α 0
0 α

)
ST

2 (18)

and only the contribution of the isotropic Heisenberg exchange
remains.
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In summary, the symmetry analysis of the properties of the
interaction matrices AIJ shows that both local anisotropy of
the U atoms and the DMI between atoms U1,U3 and atoms
U2,U4 can be responsible for the peculiar ground state of the
U2Pd2In. To reveal relative strength of different interactions
we proceed further with the consideration of the first-principles
relativistic calculations.

B. Analysis of the interatomic interactions on the basis of
first-principles calculations

First, we emphasize the large difference in the relative
energies of different magnetic configurations obtained in
nonrelativistic and relativistic calculations. For instance, in the
nonrelativistic calculation the FM structure is 8.23 mRy/UC
lower than the NC1 structure, whereas in the relativistic
calculation FM[110] structure is 1.76 mRy/UC higher. Si-
multaneously, the equal nonrelativistic energies of the NC1-4
structures are spread over the interval of about 8 mRy/UC in
the relativistic case.

To illustrate the origin of these differences we plot in
Fig. 5 the uranium density of states (DOS) of various magnetic
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FIG. 5. The calculated U-DOS for various magnetic structures.
(a) Ferromagnetic structure, nonrelativistic calculation; (b) non-
collinear NC1-NC4 structures, nonrelativistic calculation; (c) ferro-
magnetic FM(110) structure, relativistic calculation; (d) noncollinear
NC1-NC4 structures, relativistic calculation. The curves with positive
values correspond to the spin-up DOS; the curves with negative
values correspond to the spin-down DOS. The spin projections are
shown with respect to the local atomic spin axes. The zero energy
corresponds to the Fermi energy.

configurations calculated both nonrelativistically and relativis-
tically. There are strong changes in the characteristic width of
the DOS between nonrelativistic and relativistic calculations.
Also, the change of the magnetic structure leads to substantial
reconstruction of the DOS. The change of the total energy
of the system reflects, in an integrated form, the changes of
the energies of individual electronic states. The complexity
of the dependence of the electronic structure on both the
magnetic configuration and the SOC indicates the limitations
of the description of the underlying physics in terms of several
parameters of effective interatomic interactions. As discussed
below, these limitations reveal themselves in the form of an
inability to quantitatively describe the results of first-principles
calculations with a simple bilinear Hamiltonian of interacting
atomic moments. However, the examination of the results of
first-principles calculations establishes different energy ranges
of different interactions that is crucial for our analysis of the
ground state and metamagnetic transition.

If we keep relative orientation of the atomic moments
of the NC1 structure unchanged and rotate them rigidly
about the z axis, the NC1 state transforms into NC4. This
transformation does not change the contributions of the
DMI and isotropic exchange to the energy calculated with
the bilinear model Hamiltonian. It, however, changes the
energy due to the local magnetic anisotropy of the atoms.
Similarly, the transformation of the NC2 structure into NC3
corresponds to the change of the magnetic anisotropy energy
(MAE) and preserves the exchange and DMI energy of the
bilinear model. The energies of the intermediate states can
be obtained by the relativistic constraint calculations and are
shown in Fig. 6. They have the form of monotonic curves
with zero derivatives at the ends of the angular interval. The
monotonic behavior of the curves corresponds to the form
expected on the basis of the bilinear Hamiltonian. However,
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FIG. 6. The energies of the magnetic configurations obtained
from the NC1 (black curve) and NC2 (blue curve) structures by rigid
rotation of all atomic moments by an angle given at the abscissa axis.
The end point of the black (blue) curve corresponds to the NC4 (NC3)
structure. The energies are counted from the energy of the NC1 state
and given in mRy per unit cell. The red square at the right ordinate
axis gives the energy of the NC5 state. The figure shows the results of
the relativistic calculations. In the nonrelativistic case the energies of
the NC1-4 structures as well as of all intermediate structures shown
in the figure are exactly equal to each other.
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the energy differences δ41 = ENC4 − ENC1 = 7.77 mRy/UC
and δ32 = ENC3 − ENC2 = 4.96 mRy/UC are not equal to
each other, in contrast to what is expected from the bilinear
Hamiltonian. This shows that the model bilinear Hamiltonian
with a fixed set of parameters of two-atom interactions does
not provide a quantitative description of the energetics of the
magnetic configurations of the system. It, however, can be used
to estimate the scale of different interactions.

The energy differences δ21 = ENC2 − ENC1 = 1.48
mRy/UC and δ34 = ENC3 − ENC4 = 1.83 mRy/UC must be
assigned to the DMI interaction. The DMI energies, although
again different, are much closer to each other than to both
MAE energies and much smaller than the MAE energies.

To estimate the strength of the interatomic exchange
interaction between atoms U1 and U3 we reverse the direction
of the atomic moment of the U3 atoms. If we do this for the
ground-state structure NC1 we obtain an increase in the total
energy of 0.47 mRy/UC. The same procedure for the NC2
structure gives a decrease of the total energy of 0.35 mRy/UC.
In the nonrelativistic calculation the energy decreases by 3.09
mRy/UC for all four structures NC1-4. These calculations
show that the account for the SOC changes the values of the
effective exchange interactions very strongly. The relativistic
estimations with the use of different magnetic configurations
give somewhat different values showing again that there is
no universal description of all magnetic structures with the
simple effective bilinear Hamiltonian discussed in Sec. V A.
However, the orders of magnitude of different interactions
are different. These results show that the effect of the local
magnetic anisotropy provides the largest energy scale in the
considered energetic balance.

VI. CALCULATIONS OF U2Pd2In IN
APPLIED MAGNETIC FIELD

The experimental observation of the metamagnetic phase
transition in the applied magnetic field motivated us to perform
DFT calculation of U2Pd2In in external magnetic field. The
magnetic field enters the calculations through the Zeeman
term with the field acting on both spin and orbital magnetic
moments. The field was applied to the ground-state NC1
structure and directed parallel to the in-plane [110] axis.

Experiment at 4.2 K shows [12] that with increasing
strength of the applied field the induced magnetization
increases, approximately linearly, up to the field of about
25 T. At this field the magnetization jumps discontinuously
signifying the presence of the first-order phase transition. With
further increasing field up to 30 T the magnetization continues
to increase with the slope comparable to those before the
transition.

The presence of external magnetic field decreases the
symmetry of the problem destroying the invariance of the
system with respect to the C4z operation. As a result,
the symmetry constraint responsible for the calculational
stability of the NC1 structure is disturbed. The remaining
symmetry operations keep the moments of U1 and U3 collinear
to the [110] axis. The atoms U1 and U3 become, however,
nonequivalent to each other and to atoms U2 and U4. On
the other hand, the U2 and U4 remain equivalent but do not
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FIG. 7. Calculated induced moments (a) and canting angles (b)
as a function of the value of the magnetic field acting on the NC1
structure and applied parallel to the [110] direction [see panel (c)]. The
values of the magnetization are given in the units of μB per unit cell
(UC). The lines marked with o-tot and s-tot give the orbital and spin
contributions to the total magnetization marked with tot. The lines
marked with o-13 and s-13 give the orbital and spin contributions of
atoms U1 and U3. Respectively, the lines marked with o-24 and s-24
give the orbital and spin contributions of atoms U2 and U4. o-cant
and s-cant in the (b) panel give the values of the canting angles of
the orbital and spin moments of the U2 and U4 atoms. The positive
(negative) value of the canting means the deviation of the moments
towards (opposite to) the direction of the magnetic field. The sum of
the o-cant and s-cant dependences gives the angle of the deviation of
the atomic spin and orbital moments from the antiparallel directions.

preserve the directions collinear to the [110] axis and become
canted, by equal angles, towards the [110] axis [see Fig. 7(c)].

The contributions to the induced magnetic moment come
from the inequivalence of atoms U1 and U3 and from the
canting of the moments of atoms U2 and U4. One can expect
that the moment of atom U3 that is parallel to the field will
increase whereas the moment of atom U1 that is antiparallel to
the field will decrease. The canting of the moments of the atoms
U2 and U4 should also give the contribution parallel to the
field. There is however a subtle aspect of the problem related
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to the properties of the spin and orbital contributions to the
induced moment. Through the Zeeman term, the applied field
tends to make contributions of both spin and orbital moments
to the induced magnetization to be parallel to the field. This
means that, for example, the orbital moment of atom U3 should
show the trend to increase and the spin moment to decrease.
However, the SOC connects the spin and orbital moments, and
increase (decrease) of the magnitude of one of them produces
the trend to the increase (decrease) of the magnitude of the
other. Therefore, we have a competition of two different trends
originating from the external magnetic field and SOC.

Also in the case of canted moments of atoms U2 and U4

we expect the competition of the trends: The magnetic field
tends to move both spin and orbital moments towards the [110]
axis disturbing antiparallelity of the two atomic moments. On
the other hand, on-site SOC tends to keep these moments
antiparallel.

In Fig. 7(a) we show the results of the calculations for the
applied magnetic field up to 67 T. The lines marked with o-tot
and s-tot give the orbital and spin contributions to the total
magnetization marked with tot in the figure. We see that the
main contribution to the induced magnetization comes from
the orbital moment. The spin contribution is opposite to the
field revealing a stronger effect of the SOC and third Hund’s
rule compared to the direct influence of the applied field.

In Fig. 7(a), we also show the partial contributions of
atoms U1 and U3 (o-13 and s-13 for, respectively, spin and
orbit contributions) and atoms U2 and U4 (o-24 and s-24
contributions). The moments of the atoms U1 and U3 collinear
to the applied field give negligibly small spin contribution and
rather small positive orbital contribution. The contributions
coming from the canting of the moments of atoms U2 and U4

are considerably larger. The canting angles of the orbital and
spin moments are shown in Fig. 7(b). The sign of the angle
is positive for the canting towards the direction of the field
and negative for the canting in the opposite direction. The
negative sign of the spin canting shows that the effect of the
SOC and third Hund’s rule is stronger than the direct influence
of the field. The line marked as sum in Fig. 7(b) shows the
deviation of the spin and orbital moments of atoms U2 and
U4 from 180◦. This deviation, although clearly detectable, is
rather small. So, the spin and orbital atomic moments remain
roughly antiparallel.

The discontinuous transition to a metamagnetic state with
a large ferromagnetic component observed experimentally
is not obtained in this calculation. Above in Sec. IV B we
discussed the NC5 state of the system that, first, possesses
large net magnetization and, second, has an energy close to
the energy of the ground state NC1 structure. By symmetry,
the NC5 structure is compatible with the symmetry of the NC1
structure subjected to the magnetic field in the [110] direction.
Apparently, our in-field calculation should reproduce the
metamagnetic NC1 to NC5 transition. However, this transition
was not obtained and the system remained close to the NC1
state. The following calculation helps to understand the origin
of the metamagnetic transition and to explain the absence of the
transition in the in-field calculation. We performed constrained
calculation for the magnetic configurations obtained from the
NC1 structure by the in-plane rotation of the U1 moment by
the angle in the interval between 0 and 180◦. The final structure

corresponding to the reversal of the direction of the U1 moment
is similar to the NC5 structure but without the canting of the
U2 and U4 moments from the [110] axis. In this calculation we
applied magnetic force theorem [25] and evaluated the change
of the band energy.

We obtained that the energy of the system first increases
strongly and then decreases again to the value close to that
of the ground state NC1 structure (see Fig. 4). The form
of the curve can be interpreted on the basis of our results
for the strengths of different contributions to the energy of
magnetic states. The energy barrier between two minima
(Fig. 4) corresponds to the increased energy of the U1

moment when its direction passes through the direction of the
hard magnetization and, therefore, has its origin in the local
magnetic anisotropy of the U atoms. The relativistic origin
of the energy barrier is confirmed by the calculations for the
same set of magnetic configurations performed with the SOC
being neglected. In this case we obtain a monotonic decrease
of the energy in strong contrast with relativistic calculation
(Fig. 4).

The two-minima energy curve suggests the following inter-
pretation of the metamagnetic phase transition. The magnetic
configuration with reversed U1 moment has the energy that
is only slightly higher than the energy of the ground state.
Since, in contrast to the NC1 structure, this state has a large
net moment the applied magnetic field decreases the energy
of the state below the energy of the NC1 state that results
in the metamagnetic transition. Our DFT calculations with
magnetic field applied to the NC1 configuration do not describe
this transition. This deficiency of the DFT calculation should
be expected. The first-order phase transition between two
states separated by an energy barrier is a complex physical
process where fluctuations not accounted for in our DFT
calculations play a decisive role. For example, the fluctuations
breaking translational symmetry of the magnetic structures
are not considered in our calculations. We also expect that the
magnetic states with atomic moments deviating from the xy

plane and quantum-mechanical tunneling of atomic moments
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play an important role in the overcoming of the barrier. All
these effects are not included in the present study.

It is of interest to look also at the influence of the magnetic
field on the metamagnetic state. The in-field calculation for
the NC5 configuration shows (see Fig. 8) that the properties
of the field response of the metamagnetic NC5 state are
in many respects similar to the properties of the induced
magnetization for the ground-state NC1 structure (Fig. 7). The
leading contribution to the induced total moment comes from
the orbital moment. The contribution of the spin moment is
negative showing again that the mechanism of the third Hund’s
rule is stronger than the direct influence of the field. Again, the
contribution to the induced moment due to the canting of the
moments of atoms U2 and U4 is stronger than the contribution
due to the varied values of the U1 and U3 moments collinear
to the field. Comparable magnetic response of the ground and
metamagnetic states to the applied field is in agreement with
the in-field measurements [12].

VII. CONCLUSIONS

U2Pd2In is the material where the elements of the geomet-
rical frustration coexist with strong SOC. The ground state
of the system is a noncollinear planar magnetic structure with
orthogonal atomic magnetic moments. There are three possible

physical mechanisms that can lead to this nontrivial magnetic
structure: frustrated isotropic exchange interaction, DMI, and
magnetic anisotropy. Our first-principles calculations show
that in the case where the SOC is neglected, and therefore
the DMI and magnetic anisotropy are absent, the ground state
structure is the collinear ferromagnetic one. The leading con-
tribution to the stabilization of the magnetically compensated
configuration of orthogonal atomic moments is provided by the
local magnetic anisotropy of the U moments. A weaker DMI
leads to the lifting of the degeneracy between the magnetic
states with different local chirality. The established hierarchy
of the interactions allows us to explain the metamagnetic phase
transition in the in-plane external magnetic field. The analysis
of the noncollinearity of the spin and orbital moments of the
same U atom appearing in the applied external field show
that the trend to the antiparallel orientation of the two atomic
moments following from the third Hund’s rule is much stronger
than the trend to the parallel orientation of the moments due
to the applied external magnetic field.
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