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ABSTRACT: We report the first nonadiabatic molecular dynamics study based
on the exact factorization of the electron−nuclear wave function. Our approach (a
coupled-trajectory mixed quantum−classical, CT-MQC, scheme) is based on the
quantum−classical limit derived from systematic and controlled approximations
to the full quantum-mechanical problem formulated in the exact-factorization
framework. Its strength is the ability to correctly capture quantum (de)coherence
effects in a trajectory-based approach to excited-state dynamics. We show this by
benchmarking CT-MQC dynamics against a revised version of the popular
fewest-switches surface-hopping scheme that is able to fix its well-documented
overcoherence issue. The CT-MQC approach is successfully applied to
investigation of the photochemistry (ring-opening) of oxirane in the gas phase,
analyzing in detail the role of decoherence. This work represents a significant step
forward in the establishment of the exact factorization as a powerful tool to study
excited-state dynamics, not only for interpretation purposes but mainly for
nonadiabatic ab initio molecular dynamics simulations.

Q uantum coherence in excited-state dynamics is a
challenging problem that has attracted increasing

interest in the Physical Chemistry community.1−13 In the
conventional picture derived within the Born−Oppenheimer
framework, the time evolution of the molecular wave function
is separated into electronic and nuclear subsystem dynamics,
which however remain entangled through the nonadiabatic
coupling. It is this coupling that induces decoherence effects,
leading, far from any coupling region, to the “collapse” of the
electronic subsystem onto a selected final (adiabatic) state.
From a theoretical perspective, decoherence is defined via the
reduced density matrix, whose off-diagonal elements describe
the coherences. (Within this definition, quantum (de)-
coherence becomes clearly a representation-dependent quan-
tity.) As a genuine quantum phenomenon, (de)coherence is
difficult to capture using approximate numerical solutions of
the time-dependent Schrödinger equation for the combined
electron−nuclear wave function. This is especially true when a
mixed quantum−classical approximation to the coupled
dynamics is employed, where an ensemble of trajectories is
introduced to mimic the nuclear wavepacket evolution. While
transition probabilities and branching ratios are often well
described in this way, the classical description of the nuclear
degrees of freedom hampers an adequate description of
quantum coherence and decoherence effects. Alternative
approaches14−22 based on nuclear wavepacket dynamics can

better capture quantum effects, but their applicability is limited
by the number of accessible degrees of freedom.
Due to the complexity of the coupled electron−nuclear

dynamics, the simulation of photophysics and photochemistry
of molecular systems in their full (unconstrained) configuration
space requires the use of mixed quantum−classical molecular
dynamics approaches. Therefore, the development of reliable
approaches describing quantum mechanical coherence and
decoherence effects using trajectory-based approaches is of
paramount importance. Such approaches will offer a solid basis
for the interpretation of experimentally observed quantum
(de)coherence phenomena, reducing the level of uncertainty
resulting from the available approximations.7,23−26

Over the years, a plethora of trajectory-based approaches to
excited-state dynamics have been proposed, aiming to correctly
capture quantum decoherence. Among the most prominent
examples are the quantum−classical Liouville equation,27−32

the (linearized) path-integral representation of correlation
functions,33−35 nonadiabatic Bohmian dynamics,36,37 the condi-
tional wave function approach,38 as well as different revised
versions of the Ehrenfest method39−42 and of the surface-
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hopping scheme.43−48 The latter are probably the most popular
approaches as they can be easily implemented and combined
with on-the-fly ab initio electronic structure calculations.49−52

Ehrenfest dynamics, in its original mean-field formulation, may
generate unphysical nuclear dynamics due to the impossibility
to capture branching along different paths in configuration
space. The stochastic nature of the surface-hopping algo-
rithm,53,54 instead, allows one to overcome this problem but
still induces overcoherence effects based on an independent-
trajectory approximation.55 As a consequence, a large amount
of literature has been devoted to deal with the overcoherence
problem of surface hopping in different ways.44,56−62

Starting from the exact factorization of the electron−nuclear
wave function,63,64 an alternative trajectory-based algorithm to
excited-state dynamics was recently proposed.65−67 The
coupled-trajectory mixed quantum−classical (CT-MQC) algo-
rithm developed from the exact decomposition of the
electron−nuclear dynamics allows one to naturally achieve (i)
full control of the approximations introduced to simplify the
original equations65−69 and (ii) the ability of capturing, without
the use of empirical a posteriori corrections, subtle quantum-
mechanical features as the above-mentioned branching of
paths70 and, above all, quantum decoherence. However, the
power of such an algorithm has been shown so far only for a set
of model studies.71,72 It remained an open question73−75

whether the complexity of the procedure would allow for
applications to realistic problems.
In this Letter, the exact factorization is employed for the first

time for the simulation of photoexcited dynamics in molecules
in their full configuration space. Describing the photochemistry
of oxirane, we illustrate the performance of the CT-MQC
algorithm combined with on-the-fly electronic structure
calculations based on time-dependent density functional theory
(TDDFT).76−78 This Letter should not solely be intended as
the first molecular application of the CT-MQC scheme but also
as the completion of the establishment of the exact factorization
in the field of Physical Chemistry as a powerful tool for the
understanding of excited-state dynamics.
In the exact factorization,63,64 the solution of the time-

dependent Schrödinger equation Ĥ(r,R)Ψ(r,R,t) = iℏ∂tΨ(r,R,t)
is written as a single product Ψ(r,R,t) = χ(R,t)ΦR(r,t) of a
nuclear wave function and an electronic factor that parametri-
cally depends on the nuclear configuration. The whole set of
electronic and nuclear coordinates is indicated as r and R,
respectively, and the molecular Hamiltonian Ĥ(r,R) = T̂n(R) +
ĤBO(r,R) comprises the nuclear kinetic energy, T̂n(R), and the
electronic Born−Oppenheimer (BO) Hamiltonian, ĤBO(r,R),
containing the electronic kinetic energy and all of the
interactions. As a result of the exact factorization, the time-
dependent Schrödinger equation is decomposed as coupled
evolution equations for the two components of the molecular
wave function, namely, [ĤBO(r,R) + Ûen

coup[ΦR,χ] −
ϵ(R,t)]ΦR(r,t) = iℏ∂tΦR(r,t) and [∑ν = 1

Nn {−iℏ∇ν + Aν(R,t)}
2/

2Mν + ϵ(R,t)]χ(R,t) = iℏ∂tχ(R,t). The nuclear equation is a
standard time-dependent Schrödinger equation with time-
dependent vector potential Aν(R,t) = ⟨ΦR(t)|−iℏ∇νΦR(t)⟩r and
time-dependent scalar potential ϵ(R,t) = ⟨ΦR(t)|ĤBO + Ûen

coup −
iℏ∂t|ΦR(t)⟩r (also referred to as the time-dependent potential
energy surface) accounting for nonadiabatic effects. The symbol
⟨... ⟩r denotes integration over the electronic coordinates. The
electronic equation describes how the electronic wave function
follows nuclear evolution, containing the full dynamical
coupling to the nuclear degrees of freedom via the electron−

nuclear coupling operator Ûen
coup[ΦR,χ] = ∑ν[(−iℏ∇ν − Aν)

2/
2Mν + (−iℏ∇νχ/χ + Aν)(−iℏ∇ν + Aν)/Mν].

64,67,79−82

A trajectory-based solution of the above electronic and
nuclear equations is constructed by (i) determining the classical
limit of the nuclear equation, thus deriving the corresponding
Newton equation with forces computed from the time-
dependent vector Aν(R,t) and scalar ϵ(R,t) potentials, (ii)
introducing the Born−Huang-like expansion of the electronic
wave function ΦR(r,t) = ∑l Cl(R,t)φR

l (r) in the adiabatic basis
(where φR

l (r) are the eigenfunctions of ĤBO), and (iii)
approximating the explicit dependence on the nuclear wave
function, that is, the term −iℏ∇νχ(R)/χ(R) above, of the
coupling operator Ûen

coup[ΦR,χ] employing information obtained
from the trajectories. A thorough account of the steps adopted
for the derivation of the algorithm is given in ref 72, and a
summary is provided in the Supporting Information. Following
this procedure, the electronic and nuclear equations of the exact
factorization can be rewritten as

̇ = ̇ + ̇

= +ν ν ν
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The electronic equation yields a set of ordinary differential
equations Ċl

(I)(t) for the expansion coefficients in the Born−
Huang expansion, each labeled by a superscript (I) indicating
that they are calculated along the Ith classical trajectory. The
nuclear equation allows one to identify the classical force Fν

(I)(t)
acting on the νth nucleus that evolves along the Ith trajectory.
Both equations can be decomposed as the sum of two terms:
the first, indicated by “Eh.”, comprises Ehrenfest-like terms,
while the second, “qm”, originates from the exact factorization.
These last terms depend on the so-called “quantum
momentum”, as described below. The Ehrenfest-like terms are
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where we introduced the symbols ϵBO
(l),(I) for the electronic

adiabatic potential energy surface corresponding to state l and
evaluated at the position of the Ith trajectory, dν, lk

(I) for the
nonadiabatic coupling vectors defined as ⟨φ(l) (I)|∇νφ

(k),(I)⟩r as
well evaluated at the position of the trajectory I, and Pν

(I)(t) for
the classical momentum of the νth nucleus evolving along the
Ith trajectory. The additional terms in eq 1, namely

∑ ∑̇ = −
ℏ

· | | −
ν

ν

ν
ν ν

=

C t
t

M
C t t t C tf f( )

( )
[ ( ) ( ) ( )] ( )l

I
N I

k
k

I
k
I

l
I

l
I

qm
( )

1

( )
( ) 2

,
( )

,
( ) ( )

n

(4)

∑ ∑

∑

= − | |
ℏ

·

× | | −

ν
ν ν

ν ν

ν ν

′= ′
′ ′

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t C t

M
t t

C t t t

F f

f f

( ) ( )
2

( ) ( )

[ ( ) ( ) ( )]

I

l
l

I
N

I
l
I

k
k

I
k
I

l
I

qm
( ) ( ) 2

1

( )
,

( )

( ) 2
,

( )
,

( )

n

(5)

can be derived only in the context of the exact factorization as
they both depend on the quantum momentum83
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χ χ= −ℏ ∇ | | | |ν νt t t( ) ( ( ) )/(2 ( ) )I I I( ) ( ) 2 ( ) 2 . Here, |χ(I)(t)|2 stands
for the value of the nuclear density evaluated at the position of
the Ith trajectory and is computed as described in the
Supporting Information. The quantum momentum appears in
the expression of Ûen

coup[ΦR,χ] as a purely imaginary correction
to the (real-valued) classical momentum. As exhaustively
described in ref 72, the evaluation of the quantum momentum
along the Ith trajectory at a given time requires knowledge of
the positions of all other trajectories at the same time. This
peculiar feature couples the trajectories in a nontrivial manner,
thus allowing for the correct description of quantum
decoherence effects. The additional new quantities appearing
in eqs 4 and 5 are the adiabatic forces accumulated over time
fl,ν
(I)(t) = −∫ t dt′∇νϵBO

(l),(I).
The implementation of the CT-MQC equations simply

requires the calculation of electronic adiabatic energies,
adiabatic forces, and nonadiabatic coupling vectors, quantities
that are provided by standard electronic structure packages. In
fact, eqs 2−5 can be easily included based on the
implementation of the surface-hopping algorithm by modifying
the calculation of the classical forces and by adapting the
electronic evolution equation by adding the Ċqm l

(I) (t) term. For
this first study, eqs 1−5 have been implemented in CPMD,84 a
plane-wave electronic structure software based on DFT.
Excited-state properties are determined in the framework of
linear-response TDDFT,85−87 based on the existing implemen-
tation of the surface-hopping scheme of refs 50 and 88.
As an application of the CT-MQC approach, we investigate

the photoinduced ring-opening process in oxirane89,90 triggered
by the excitation from S0 to S2. Our focus is on presenting the
performance of CT-MQC in comparison to fewest-switches54

surface hopping (FSSH) and to a corrected version of this
algorithm44 (corr-FSSH) that accounts for quantum decoher-
ence in a phenomenological manner. All calculations are
performed with the CPMD code using the GGA functional
PBE,91 which allows for consistent analysis and comparison of
the results obtained from the different approaches. A detailed
discussion on the accuracy of the TDDFT approach and on the
effect of the combined use of pseudopotentials and the plane-
wave basis set has been reported in ref 90 and will not be
repeated here. Further computational details can be found at
the end of the Letter.
Figure 1 (upper panel) shows the populations of the

electronic states, that is, S0, S1, and S2, as functions of time. CT-
MQC dynamics perfectly captures the passage of the
trajectories through the S1/S2 conical intersection after about
10 fs from the initial excitation, in agreement with FSSH
results. The S2 → S1 population transfer is slightly over-
estimated by FSSH but is corrected by corr-FSSH, with CT-
MQC results following the tendency of the correction. In the
CT-MQC algorithm, the population of the lth electronic
adiabatic state along the dynamics is computed directly from
the coefficients of the Born−Huang expansion of the electronic
wave function, averaged over the Ntr trajectories, that is, ρl(t) =
Ntr

−1∑I=1
Ntr |Cl

(I)(t)|2. In the surface-hopping scheme, instead, this
quantity is estimated as the ratio between the number of
trajectories “running on” surface l at a given time, Ntr

l (t), and
the total number of trajectories, that is, ρl

SH(t) = Ntr
l (t)/Ntr. In

the standard surface-hopping procedure, if decoherence effects
are important, ρl

SH(t) yields electronic populations that differ
from those evaluated via an average over trajectories equivalent
to ρl(t). The decoherence corrections employed here44 are

designed to restore the consistency between the two
procedures for estimating electronic populations. When
adopting the CT-MQC scheme for the dynamics, such
inconsistency is naturally removed as the populations are
directly estimated as the average of |Cl

(I)(t)|2.
In order to assess the performance of the CT-MQC

algorithm in capturing quantum decoherence,71,72 we define
an indicator of decoherence ηlk(t) = Ntr

−1∑I=1
Ntr |Cl

(I)*(t)Ck
(I)(t)|2.

The quantities Cl
(I)*(t)Ck

(I)(t) stand for the off-diagonal
elements of the electronic density matrix in the adiabatic
representation and depend on nuclear positions through the
dependence on the trajectory index I. ηlk(t) can be evaluated
on-the-fly during the dynamics, and besides being a valid
measure of decoherence, it also provides complementary
information to ρl(t). Note that the same quantity is also used
in the context of FSSH and corr-FSSH calculations, that is,
ηlk
FSSH(t) and ηlk

corr‑FSSH(t). Figure 1 (lower panel) shows that as
the trajectories evolving on S2 approach the S1/S2 conical
intersection (between 5 and 10 fs) coherence between S1 and
S2 builds up. We observe that, while after about 15 fs the
nonadiabatic transition is complete, in FSSH, η12

FSSH(t) remains
constant. This is the signature of the well-documented
overcoherence problem in FSSH.43,44,46,47,56−62 By contrast,
η12
corr‑FSSH(t) and η12(t) clearly show a decay, a consequence of
the fact that the trajectories leave the nonadiabatic region
(decoherence) and continue along different paths. As discussed
in the introduction, the decoherence indicator proposed here
will depend on the choice of representation used to describe
the electronic states. Our particular choice has fallen on the
Born−Oppenheimer (adiabatic) representation, which contains
information simultaneously about electronic coherences and
nuclear dynamics, via the parametric dependence of the
adiabatic basis on the nuclear coordinates. This allows us to
relate decoherence to the spatial separation in configuration
space of different bundles of trajectories (and thus of different
wavepackets), which “lose memory” of each other while

Figure 1. Upper panel: Electronic populations of S0, S1, and S2 as
functions of time. Lower panel: Indicator of decoherence for the
element S1/S2. Three sets of results are compared, based on the CT-
MQC algorithm (dark-green lines), FSSH (red lines), and corr-FSSH
(cyan lines).
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evolving along diverging paths after funneling through the
conical intersection. Henceforth, the analysis will be based on
the comparison between CT-MQC and corr-FSSH as it is clear
that only the FSSH algorithm with decoherence offers a valid
benchmark to test our CT-MQC algorithm.
Figure 1 shows a pronounced double-peak structure in the

η12(t) profile that is captured exclusively by the CT-MQC
approach. This feature is an indication of the fact that two
groups of trajectories funnel through the S1/S2 conical
intersection at subsequent times. In order to capture this
oscillation of the quantum coherence, the coupling of the
trajectories taken into account in CT-MQC is essential; in fact,
the corr-FSSH approach, which is based on the independent-
trajectory approximation, misses this effect completely (see
η12
corr‑FSSH(t) in Figure 1). The wavepacket splitting at the S1/S2
conical intersection also coincides with the physical separation
of the trajectories in configuration space. Figure 2 shows that

even though initialized with similar initial conditions, the
trajectories yield different final structures. Analyzing the CT-
MQC trajectories, we identified three major outcomes, (i) a
right-open ring structure, (ii) a left-open ring structure, and (iii)
a CC-extended bond structure. Figure 2 shows the trajectories
plotted in the reduced space spanned by the three internal
distances, namely, the C1O, C2O, and C1C2 bond lengths,
which reproduce the splitting into the three groups (i)−(iii).
The final structures corresponding to each trajectory are
superimposed according to their grouping and depicted in
Figure 2 using a ball−stick representation. Comparing CT-
MQC with corr-FSSH trajectories, we observe that the latter
display a more pronounced “classical” behavior as they appear
to be more localized in space.
In Figure 3, we show the time evolution of the (normalized

to the largest value) indicator of decoherence computed for the
three different groups of trajectories, separately. In CT-MQC
(upper panel), we observe that the first coherent peak arising
between 6 and 12 fs is produced by a first bundle of trajectories
that leads to breakage of the equivalent CO bonds. However,

the decoherence indicator η12 associated with the C1O and C2O
trajectory bundles does not decay in a monotonic fashion.
Instead, both trajectory groups contribute to the formation of a
second peak observed between 12 and 17.5 fs. The recoherence
effect can be explained as follows: a first group of trajectories
approaches at ∼6 fs the conical intersection, and during the
crossing, they are reached by a second group at ∼12 fs. Due to
the coupling among the trajectories, the first group, already on
S1, “feels” (through the quantum momentum) the approaching
second group, and a revival of coherence is observed (second
peak in the decoherence indicator of Figure 3). The main
contribution to the second peak between 12 and 16 fs is given
by trajectories yielding a final CC-extended bond structure.
These trajectories clearly encounter the nonadiabatic region
with some delay if compared to the sets of trajectories analyzed
before (CO bond breaking). Here, the indicator of decoherence
is clearly single-peaked, suggesting that the corresponding
trajectory bundle undergoes a transition through the S1/S2
conical intersection in a single step. These trends are less
evident when we analyze the corr-FSSH results in Figure 3
(lower panel). First, the double-peak nature of the decoherence
indicator associated with the CO breaking bundles appears
smeared out over the entire time interval (from ∼6 to 18 fs);
this behavior is now associated with the uncorrelated recrossing
of the nonadiabatic region by a subset of trajectories over an
extended period of time (about 12 fs). Second, the contribution
from the trajectory bundle associated with the CC bond
breaking is simply associated with the delayed transition
through the S1/S2 conical intersection. Overall, we also observe
more noisy decoherence profiles in corr-FSSH. Again, this is a
signature of the lack of coupling in the propagation of the corr-
FSSH trajectories, which occurs within the independent
trajectory approximation. This comparison also indicates that
with the CT-MQC scheme satisfactory convergence can be

Figure 2. Identification of the three groups of trajectories that, starting
from the initial geometries, yield right-open (red) or left-open (green)
ring structures and CC-extended bond geometry (blue). The
distributions of the final geometries are estimated as 36% (right-
open structure), 47% (left-open structure), 10% (CC-extended bond
structure), and 7% (closed-ring structure, not represented in the
figure), based on CT-MQC dynamics, whereas they are 34% (right-
open structure), 54% (left-open structure), 10% (CC-extended bond
structure), and 2% (closed-ring structure, not represented in the
figure), based on corr-FSSH dynamics. Light colors identify CT-MQC
trajectories and darker colors corr-FSSH trajectories.

Figure 3. Normalized indicator of decoherence decomposed in three
contributions arising from the different groups of trajectories identified
in Figure 2. The labels C1O and C2O are used for the final left-open
and right-open ring structures, respectively. The label C1C2 indicates
the trajectories ending in a CC-extended bond configuration.
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achieved with about 100 trajectories, while more statistics is
probably necessary for the corr-FSSH algorithm.
We now investigate the theoretical aspects associated with

the achievements obtained with the CT-MQC scheme. The
peculiar feature of the CT-MQC approach is the presence of
the quantum momentum. Without the quantum momentum,
the scheme reduces to a multitrajectory Ehrenfest approach and
the coupling among the trajectories disappears. Being related to
the spatial variation of the nuclear density, the quantum
momentum embodies information about the “dispersion” of the
trajectories in configuration space. In fact, it is possible to
interpret the quantum momentum as the quantity that tracks
the branching of the trajectories. Ehrenfest trajectories evolve
according to a classical force determined from the average over
the adiabatic potential energy surfaces, which hampers the
possibility of spatial branching. The effect of the quantum
momentum is to modify this average potential70,92−96 by
enabling groups of trajectories to evolve on purely adiabatic
potential energy surfaces after separation in configuration space.
This observation can be also verified by analyzing the time trace
of the electronic populations along a single trajectory (Figure
4); when the populations are either 0 or 1 (1 being associated
with the “force state”, abuse of the surface-hopping language),
only one adiabatic potential energy surface has nonzero
contribution in the expression of the classical force; when the
trajectory crosses the conical intersection, the populations have
values between 0 and 1 because of the amplitude exchange

driven by the nonadiabatic coupling vectors. After leaving the
nonadiabatic region, the coupling among the trajectories
becomes essential, and if groups of trajectories separate in
space, decoherence builds in with the effect of “collapsing” the
electronic populations to either 0 or 1. It becomes therefore
evident that the quantum momentum has the same overall
effect on the electronic populations as the decoherence
corrections on the surface-hopping algorithm adopted here.
However, differently from corr-FSSH, the quantum momentum
is derived from the exact evolution equations and is not of
phenomenological nature. Figure 4 (upper panel) clearly
exemplifies this effect by showing the time evolution of the
S1 and S2 states’ populations calculated along a representative
trajectory. For this particular trajectory, FSSH predicts that the
electronic populations of S1 and S2 after crossing the
nonadiabatic region remain between 0 and 1. Decoherence
corrections, however, enforce the collapse of the populations
(S1 to 1 and S2 to 0) as in the case of corr-FSSH. Exactly the
same behavior is observed with CT-MQC, with the difference
that the decoherence is derived from an exact solution. Figure 4
(lower panel) also shows the time-dependent potential energy
surface (TDPES), ϵGI

(I)(t) = ∑k|Cl
(I)(t)|2ϵBO

(k),(I), for a representa-
tive trajectory, compared to the energy of the force state in
corr-FSSH. Both surfaces show similar profiles; in fact, in corr-
FSSH, the force state switches abruptly from S2 to S1 at the
conical intersection (high swap probability), whereas in CT-
MQC, ϵGI

(I)(t) describes a diabatic surface that smoothly evolves
from S2 to S1 at the conical intersection.
Computationally, the cost of CT-MQC calculations is

slightly larger than that in the case of FSSH. This is mainly
due to the fact that in CT-MQC nuclear forces receive
contributions from all electronic states and therefore a force
calculation for each state included in the dynamics is required at
each step. In addition, the presence of couplings among the
trajectories (through the quantum momentum) makes the
parallelization of the electronic structure calculation and the
distribution of the trajectories over different cores important
requirements for an efficient implementation of this MQC
scheme.
In summary, we have reported the first application of the

CT-MQC algorithm derived from exact factorization to the
study of the photochemistry of a molecule in the gas phase,
namely, the photoinduced ring-opening in oxirane. The
approach correctly captures quantum decoherence without
the need for empirical corrections to damp state populations
away from the regions of strong nonadiabatic couplings. The
quality of the CT-MQC results was assessed by comparing with
FSSH, without and with phenomenological decoherence
corrections. The CT-MQC approach derived from the exact
factorization yields a coupled-trajectory nonadiabatic dynamics
with built-in decoherence, providing, therefore, a rigorous
solution to the overcoherence issue in standard FSSH. In
addition, the coupling among the trajectories induced by the
quantum momentum improves the quantumness of the
trajectory bundle that behaves now as a quantum wavepacket,
solving many drawbacks of conventional FSSH and improving
the convergence of the calculations with the number of
trajectories.
All calculations were performed with CPMD84 employing the

PBE91 functional for ground-state and excited-state calculations.
Linear-response TDDFT calculations were based on the
Tamm−Dancoff approximation.97,98 The Kleinman−By-
lander99 pseudopotential was used for all atom species together

Figure 4. Upper panel: Time trace of the electronic populations of S1
and S2 for a selected trajectory. Three sets of results are shown, CT-
MQC (dark-green lines), FSSH (red lines), and corr-FSSH (cyan
lines). Lower panel: Adiabatic potential energy surfaces for S1 and S2
along the selected trajectory generated by CT-MQC (dark-green
lines) and by corr-FSSH (cyan lines). The zero of the energy scale is
set to the value of the ground-state potential energy at the initial time.
The surfaces corresponding to corr-FSSH are downshifted by 4.1 eV in
comparison to CT-MQC. TDPES (green circles) stands for the gauge-
invariant part of the scalar potential, that is, ⟨ΦR(t)|ĤBO|ΦR(t)⟩r,
estimated here as ϵGI

(I)(t) = ∑k|Ck
(I)(t)|2ϵBO

(k),(I); force state (blue crosses)
stands for the energy of the populated electronic state along the corr-
FSSH trajectory used for computing the classical force.
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with a plane-wave cutoff of 70 Ry. Initial conditions, that is,
positions and momenta, were sampled from an ab initio
ground-state 2 ps trajectory at 300 K. Ntr = 100 trajectories are
propagated with a time step of 0.12 fs (5 au) for both CT-
MQC and (corr-)FSSH dynamics. For the surface-hopping
calculations, only 20 initial conditions were selected from the
ground-state thermalization, each giving rise to 5 trajectories
with different jump histories. The parameters used in corr-
FSSH are reported in ref 44.
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