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Abstract. Barriers of very different character such as localized obstacles and the extended Peierls- Nabarro
relief may control the dislocation motion in crystals in different stress and temperature ranges. The great
difference in the microscopic parameters characterizing these two mechanisms, e.g., in the activation vol-
umes, manifests itself even on the macroscopic scale as a strong change of the plastic properties in a
rather narrow transition range of the temperature. A theory describing the temperature dependence of
the flow stress and the strain rate sensitivity near the transition has been developed and compared with
experimental data on the plastic deformation of cubic ZrOz single crystals in a soft orientation.

PACS. 61.70.G Dislocations: theory — 62.20.Fe Deformation and plasticity (including yield, ductility, and

superplasticity)

1 Introduction

During the plastic deformation of crystalline materials,
the dislocation motion is impeded by barriers of differ-
ent nature: local obstacles like impurities, intrinsic point
defects or small clusters, extended barriers like the poten-
tial relief of the crystal lattice (the Peierls-Nabarro relief),
and long-range internal stress fields created by other dis-
locations. All these barriers contribute to the flow stress
of the crystal in different ways. For the combined poten-
tial relief, the mechanism controlling the flow stress may
change in different stress and temperature ranges, leading
to certain peculiarities of the plasticity of the material in
the transition range.

There are different separate models of the flow stress
for each type of the individual barriers. For example, for
the Peierls-Nabarro relief there exists a well elaborated
theory allowing the calculation of the temperature depen-
dence of the flow stress on the basis of the kink mecha-
nism (for a review see, e.g., [1,2]). For impure crystals or
solid solutions there are detailed theories of solid solution
hardening (e.g., [3-5]). While the formal approach, which
is frequently used to consider a combined potential relief,
consists in calculating separate contributions of the dif-
ferent kinds of barriers and adding them up to the total
flow stress, we shall rather treat the microscopic features
of the mechanisms of dislocation motion and their trans-
formation between the different stress and temperature

® e-mail: petukhov@ns.crys.ras.ru

ranges. Thus, it is the aim of the present paper to provide
a description of the peculiarities of the plastic deformation
based on a consistent physical concept of the dislocation
dynamics in the combined potential relief formed by the
joint action of the Peierls-Nabarro relief and localized ob-
stacles as first considered in [6].

Hence, the stress dependence of the activation energy
AG(7*) appearing in the Arrhenius law of the dislocation
velocity v

v = voexp{—AG(7")/kT} (1)
will be calculated. Here, T is the temperature, k is the
Boltzmann constant, vg is a preexponential factor, and 7*
is the effective shear stress, describing the temperature de-
pendent part of the flow stress. It is the difference between
the applied shear stress Tapp1 and the long-range internal
stress

(2)

The macroscopic plastic strain rate € will be described, as
usual, by using the Orowan relation

*
T = Tappl — Ti-

¢ = pbv = ggexp{—AG(7*)/kT?}, (3)
where £y = pbvg.p is the density of mobile dislocations,
and b is the absolute value of the Burgers vector.

The theory presented here describes the drastic change
of the strain rate sensitivity of cubic ZrOs single crystals
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observed in a narrow temperature range near the transi-
tion temperature T, = 750 K manifesting the change of
the micromechanisms controlling the dislocation motion.

2 Transition of the mechanisms controlling
the dislocation motion

The localized obstacles and the extended Peierls-Nabarro
relief play different roles in the process of dislocation
motion. Localized obstacles divide the dislocations into
segments, which advance by an independent kink gen-
eration along them. Because of the relatively short dis-
location segments, the travel time of a kink along the
dislocation is short compared to the waiting time of
a kink pair nucleation. As discussed in more detail in
[6,7], a specific mixed mode of the dislocation motion is
operative in the combined potential relief. The elementary
steps of the process are as follows. After a dislocation seg-
ment has reached a significant value of the bowing-out,
one of the localized obstacles pinning the segment is over-
come. The dislocation encounters other obstacles and be-
comes repinned again. If the temperature is high, the kink
generation rate is high, too, and the time for the disloca-
tion segment to bow out up to its maximum position is
small compared with the time of overcoming the local-
ized obstacles. In this temperature range, the mechanism
controlling the flow stress is the overcoming of the local
obstacles. With decreasing temperature, the kink genera-
tion rate also decreases. As soon as it becomes equal to
the rate of overcoming the localized obstacles, a transi-
tion occurs of the mechanisms governing the dislocation
motion. In a simplified quantitative way, the condition of
the transition is met if the activation energies AGi(7*) of
overcoming localized obstacles and AGp(7*) the Peierls
mechanism are equal:

AG(7%) &2 AGp(T7). (4)
Here, differences in the preexponential factors of both pro-
cesses are neglected.

The plasticity of cubic ZrO, at temperatures higher
than the transition temperature T;, has been described
quantitatively in [8] using the local pinning model. It is
the aim of the present paper to develop a description of the
plastic deformation in the low-temperature range of T' <
T}r, where the kinetics of overcoming the Peierls-Nabarro
barriers by the formation of kink pairs is essential.

The kink mechanism is well elaborated to describe the
mechanical properties of sufficiently perfect crystals in
which kinks are generated on long straight dislocations.
However, in crystals containing local defects, which pin
the dislocations, the conditions for the kink generation are
changed. In the following sections, the peculiarities of the
kink generation will be studied on dislocation segments
bowing out between localized obstacles by the action of
an external stress.

3 Kinetics of kink generation on bowed-out
dislocation segments

First, the mechanical equilibrium states will be described
of the bowed-out dislocation segments in the Peierls-
Nabarro relief and their energetic characteristics. In the
line tension approximation, the energy E of a curved
dislocation configuration is described by the expression

(see, e.g., [2])

Kk (dy 2
E:/[§ <a) +Up—7'by] dz,

where y(x) is the dislocation displacement at the point x
along the dislocation, & is the line tension, Up (y) is the pe-
riodic Peierls-Nabarro potential, and 7 is the acting stress
component. For brevity, 7 is replaced by 7 in the theo-
retical part of the paper. The equilibrium configurations
of the dislocation are obtained by minimising the energy
in (5), i.e.

(5)

(6)

The first integral of equation (6) is

Kk (dy 2 B
5 (@) — Up(y) + Tby = const.

(7)
The integration constant is determined from the bowing
height h of the dislocation segment between the pinning
points, which corresponds to the condition dy/dx = 0 at
y = h. Therefore, const = —Up(h) + 7bh. Solutions of
equation (6) are obtained in the form

_e 5 dy .
" j[\/g/y NonmEEnErEr M

Here, h is an integration constant determined by the con-
dition that the dislocation segment of length [ is pinned
at its ends: x =0y = h; x = £1/2 y = 0, i.e., according
to equation (8),

B h dy/ .
- m/o VUp(Y') = Up(h) + 7b(h — ') ®)

Inserting solution (8) into equation (5) yields the next
quadrature expression for the energy of equilibrium con-
figurations

h
F=2 / V2T (5) — U (h) + 700k — 9)]dy

+ [Up(h) — TOR]L. (10)
While in crystals with a negligible Peierls-Nabarro relief
there exists only one equilibrium configuration of the dis-
location segment bowed under the action of the stress, a
sufficiently high Peierls-Nabarro relief changes the situa-
tion qualitatively. From physical considerations one may
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Fig. 1. Inclined potential profile Up(y) — Tby, and illustration
of forbidden (ho’n +h1’n+1) and allowed values (hl,n.i,-l +h0,n+1)
of equilibrium bowing heights h of a dislocation segment.
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expect that many locally stable (or metastable) configura-
tions of the dislocation segment will exist, with tops rest-
ing in different valleys of the oscillating Peierls-Nabarro
relief. Let us investigate this question more thoroughly.

The value of h corresponds to the maximum bowing of
the dislocation segment between its pinning points. Those
values of h for which equation (9) has a physical mean-
ing are determined by the requirement that the expres-
sion under the root in equation (9) is not negative over
the whole interval of 0 < y < h, or, in other words,
that the inclined potential Up(y) — by does not intersect
the constant level Up(h) — 7bh. Therefore, as it is evident
from Figure 1, possible values of h are confined by inter-
vals hipt1 < h < hon41, where n is the number of the
valley in the Peierls-Nabarro relief. hg, and hy,41 are
boundary values corresponding to the degeneration con-
ditions Up(ho,n) — 70ho.n = Up(hin+1) — TOh1 ny1 (see
Fig. 1). hg are points of minima of the potential, and
hi.n+1 are points corresponding to the same level of the
potential. At y — hg 1,41 the denominator of the inte-
grand in equation (9) approaches zero, and the integral
itself goes to infinity. Thus, the dependence of the right
side of equation (9) on h looks as plotted schematically in
Figure 2. In general, one can easily see that equation (9),
for a fixed segment length, can have a number of solu-
tions for h corresponding to the Peierls- Nabarro valleys
for which minima of the function depicted in Figure 2 do
not exceed the level [. Therefore, a number of equilibrium
configurations may exist. One respective set of configura-
tions is illustrated in Figure 3. Each of them yields an ex-
treme in the energy relief of equation (5). It follows from
Figure 2, illustrating the solution of equation (9), that
there exist pairs of equilibrium configurations with tops
in the same Peierls-Nabarro valley (except the first valley,
where only one such configuration exists). One of these
configurations corresponds to a minimum of the energy
relief in equation (5), which is a stable one. Another con-
figuration, which is an unstable saddle point configuration,
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Fig. 2. Relationship between the dislocation segment length [
and the equilibrium bowing h, illustrating the solution of equa-
tion (9) for the first three valleys of the Peierls-Nabarro relief.
The calculation is made for the harmonic Peierls-Nabarro po-
tential and a stress of 7 = 0.17p. h is normalized by a, and [
by the kink width e

2nTpb ’

corresponds to the top of the barrier dividing neighbouring
minima. Configurations of the dislocation segment with
an extended flat top correspond to the values of h which
are close to the boundary values hg . The configurations
of types 1’ to 5’ in Figure 3 correspond to those values
of h which are close to hj . It is expected and confirmed
by numerical calculations that configurations with the flat
top are stable, whereas the configurations of types 1’ to 5/,
which are analogous to an ordinary kink pair on a rectilin-
ear dislocation, are unstable and correspond to states on
tops of barriers separating different minima in the energy
relief of equation (5).

In order to describe the kinetics of the thermal acti-
vation of the motion of a dislocation segment one has to
calculate the activation energies for transitions between
subsequent stable dislocation states. A respective proce-
dure may be as follows. For a given segment length I,
equation (9) is solved yielding the values h,; and h;; cor-
responding to the stable configuration in the nth Peierls-
Nabarro valley and to the saddle point configuration at
the top of a barrier, separating the states of the disloca-
tion segment in the nth and (n+ 1)th valleys. Then, using
equation (10) yields the difference AG} of the energies of
these two configurations

hI+1
AGE :/ \/8/‘&[UP(ZJ)*UP(h:H)JFTb(hZH*y)]dy
0

hy
= [ el ) U+ b0~
F Up ()~ Up(h)— bl ~ Bl (11)

This expression is the required modification of the well-
known formula for the kink pair formation energy on a
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Fig. 3. Stable equilibrium configurations (0 to 5) and unsta-
ble ones (1’ to 5’ on the top of the separating barrier) of the
dislocation segment in different valleys of the Peierls-Nabarro

relief. [ = 17 27r7'pb7 7=0.17p.

rectilinear dislocation [9]

h+

V/8K[Up(y) —

h—

AGP()(T) = Up(h+) + Tb(h+ — y)dy

(12)

For a sufficiently large length [, the solutions of equa-
tion (9) h;, are close to the points of the minima hg ,, of the
potential Up(y) — by and the solutions A} 41 are close to
the conjugating points Ay 41 corresponding to the same
level of the potential Up(h,, )—7bh,, = Up (hn+1) TOh! ;.
As one can easily see, AGp in equatlon (11) then turns
to AGpo(7) of equation (12) with h~ = h, ,ht = R},
which, in fact, does not depend on n owing to the period-
icity of Up(y).

In the general case of an arbitrary finite segment
length, the heights of barriers AGE depend on the cur-
vature of the segment, which increases with increasing
bowing characterized by the value of n. The case of large
n(n > 1) and low stresses compared to the Peierls stress
7p is of special interest, as the description can be simpli-
fied and the qualitative difference arising from considering
the Peierls-Nabarro relief is more evident.

4 Activation parameters for low stresses
compared to the Peierls stress

For stresses which are low compared to the Peierls stress
7p, the expansion of equation (11) for small 7 yields a
simplified analytic form for the stress dependence of the
barrier height AGE

AGE = 2E, +1ba /U {1n(1+\/1 M)+ (1-v1—-M)

2U”J+1)}
3)

(13)

x [\/ﬁfln((\/ﬁ - 1)M)}fm (
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T

Fig. 4. Heights of the energy barriers between equilibrium
states of the dislocation segment in valleys of the Peierls-
Nabarro relief with different numbers n for the low stress range,
equation (13). Curve 1 presents the stress dependence of the
energy of the kink pair formation on an extended straight dis-
location according to the ordinary model (equation (15)), the
other curves correspond to 2 : n =4;3:n =6;4: n = §;
5:mn=10;6:n=12.1=50

QWpr

Here,
4a\? Uj 8Kna
M=[= W22 =
<h0) eXp{ V% (l b
2F
iatad, 2\/2/<;J> } (14)
Tha
with

_ () v 2 e
J_/o a{ Up (y) \/UTD'(@ZJ)}
and Up = d?Up(0)/dy>.

The obtained general expression (13) allows one to cal-
culate the activation parameters characterizing the relax-
ation kinetics of the dislocation segment for different phys-
ical situations. For a small bowing, i.e. small values of n,
the curved part of the segment is relatively short, and
most part of the segment is almost straight. In such a
situation, the saddle point configuration is similar to the
ordinary configuration, with a critical kink pair in the ho-
mogeneous case (on an extended straight dislocation). In
this case M ~ 0, and AG} corresponds to the approxi-
mate expression for the activation energy of a kink pair
AGpo(7) at low stresses (see, e.g., [10])

AGT = AGpo (7)

K Ula
~2F;—Tba U” {

27’b

2U} J+1} (15)

E} is the formation energy of a single kink. For the par-
ticular case of the harmonic Peierls- Nabarro potential
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Fig. 5. Temperature dependence of the flow stress of cu-
bic ZrOs. The symbols represent experimental data: 11 mol%
Y203, ¢ = 107%7!, data from [7,12,13]; +12,6 mol%
Y203 [14,15], x 9.4 mol% Y203 [14,15], ¢ = 2 x 1074s7%.
The curves are the theoretical predictions of the modified kink
mechanism at low temperatures and of local obstacles at higher
temperatures.

Up(y) = (mpab/2m)(1 — cos(2my/a)), this expression takes
the form

AGpo(7) ~ 2E}, {1 - g% <1n <17f:1>> " 1)} ., (16)

where

9\ 3/2
b, = <—) v/ kTpbas.
T

The stress dependence of the height of the barriers be-
tween the different states of the bowed-out dislocation seg-
ment is illustrated in Figure 4. There are several branches
of this function corresponding to the numbers of the
Peierls-Nabarro valleys. Their deviations from the stress
dependence for the ordinary kink pair generation (curve 1)
become pronounced when, with decreasing stress, the
bowing of the dislocation segment approaches the limit
of allowed values. The dependencies are cut off at certain
critical stresses, below which equilibrium configurations of
the dislocation segment with a corresponding value of n
do not exist.

5 Flow stress and strain rate sensitivity
in the transition temperature range

As mentioned in Section 2, for a continuous dislocation
motion at stresses above the transition stress the rates

of overcoming the Peierls-Nabarro barriers and the local-
ized obstacles are equal so that equation (4) is fulfilled.
This means that obstacles, which pin the segment, are
overcome with a very high probability when the bowing
reaches a sufficiently high value to reduce the height of the
local barrier AG;(7) to the required level. This condition
fixes the value of bowing which is decisive for determining
the dislocation velocity. In the case when AGi(7) is large
in comparison to the kink pair energy 2Fj, this bowing
should also be large and close to the value of the the me-
chanical breakaway from the obstacles without thermal
activation. A simple estimation of this value of bowing,
pointed out in [11], is na = f2/8k7b, where f. is a critical
value of the force the dislocation segment exerts on the
local obstacle (the obstacle strength).

With this value of na, M in equation (14) is trans-
formed into the following form

= (50)
x exp{—\/% <z+ W —2\/%])}. (17)

Inserting this modified M into equation (13), we obtain
the stress dependence of the barrier height AGE for the
continuous dislocation motion.

Let us calculate also the activation volume V', which
corresponds to the barrier height AG%

V=-

dAGfg _ fCCL—QEk 1 M
B {5\/1M
x[\/§+1+ 2U{;J1n((\/§1)MT—b)]
Ufa

1 M
2V1-M+1-M

ba\/zﬂ{ln (1+VI=M)+ (1-VI=M)

Ufa
20" .
2y UPJ)}

(18)

dr T

wm_l}

x[v2-m ((va-1) M)|-vI-M (m

6 Experimental results and comparison
with the model

The experimental data are described in more detail else-
where [7,12,13]. This paper is restricted to a short sum-
mary of results, which are necessary for a comparison
with the theoretical model. Cubic ZrOs single crystals
stabilized with 11 mol% Y203 were compressed along
the [112] direction. This orientation activates the pri-
mary [110](001) slip system with an orientation factor
of m = 0.47. The experiments were carried out in an
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Fig. 6. Strain rate sensitivity of cubic ZrO2 as a function of
temperature. Curve 1 shows the theoretical dependence of the
modified kink mechanism, curve 2 shows the strain rate sensi-
tivity of the ordinary kink mechanism. Symbols and references
as in Figure 5.

INSTRON 8586 testing machine in air between 673 K and
873 K. Figure 5 is a plot of the flow stress og .2 at a plastic
strain of 0.2% wversus the temperature (o is the applied
(compression) stress, which is related to the shear stress
via the orientation factor according to 7 = mo). In order
to obtain the strain rate sensitivity, strain rate cycling and
stress relaxation experiments were performed. Figure 6
presents the strain rate sensitivity I = do/dlné versus the
temperature. In Figures 5 and 6 also data measured under
confining hydrostatic pressure [14,15] are shown.
Combining the Orowan relation and equation (3)
AGYH () = kTIn(go/¢) (19)
allows one to calculate the temperature dependence of the
flow stress Tappi(T) = 7* + 7. The internal stresses 7 can
be estimated from the dislocation density by a formula [12]
for Taylor hardening
7 = aKbFy,pY?)2m. (20)
Here, o is a numerical constant of about 8, K is the en-
ergy factor of screw dislocations (80 GPa at 873K), and
F,, = 0.3 is a normalized maximum interaction force be-
tween parallel dislocations on {100} planes. The disloca-
tion density within the slip bands has been counted from
transmission electron micrographs. The temperature de-
pendence of the obtained internal stresses can be approx-
imated by an empirical formula

71 = 42 MPa + 58.2 MPa x exp {(787 — T'[K])/135.6} .
(21)

Formulae (13), (17) and (19) were used to describe the ex-
perimental data for the flow stress in Figure 5. The strain
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Fig. 7. Stress dependence of the activation volume for the
ordinary (Vo) and the modified (V') kink mechanisms.

rate sensitivity I was estimated according to

I = Ao /Alné = kT /(mV), (22)
where the activation volume V is described by for-
mula (18). At temperatures below the transition range,
the smooth temperature dependence of the shear modu-
lus may be neglected in comparison to the strong temper-
ature dependence of the flow stress. For the range above
the transition temperature, where the temperature sen-
sitivity of the flow stress decreases, our description fol-
lows the calculations of the paper [8] taking into account
the temperature dependence of the shear modulus. The
parameters 7p, Ej, fc, and | were determined by fitting
the theoretical formulae to the experimental data of Fig-
ures 5 and 6, yielding 7 = 4500 MPa, Er = 0.9 eV,
fo = 6.3E)/a, and | = 100 b. In Figures 5 and 6, the
results of the fitting are shown as full lines. The calcu-
lated curves represent satisfactorily the temperature de-
pendence of the flow stress and the steep drop of the strain
rate sensitivity at T = 750 K. The curves for T' > 750 K
in the figures reproduce the description suggested in [8]
based on the local pinning model. The data of [14,15]
agree quite well with those of the present authors in the
small range of overlap. The localized obstacles are most
probably small precipitates. The pinning is evidenced by
mechanical transmission electron microscopy. The param-
eters of these obstacles are discussed in [7]. The obstacle
distance of [ = 100 b corresponds to the measurements
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from electron micrographs at the high stress limit. Fig-
ure 7 shows the stress dependence of the activation vol-
ume with determined parameters for the modified kink
mechanism in comparison to the ordinary one. It may be
of interest to estimate the typical bowing height of the
dislocation segments. Using the parameters in the tran-
sition range indicated above yields n. = h¢/a =~ 5, the
reasonable order of magnitude.

7 Conclusions

- A new model is suggested to describe the simultaneous
action of the Peierls-Nabarro mechanism and localized ob-
stacles in controlling the dislocation mobility.

- The model extends the preliminary qualitative formula-
tion in [7] and gives formulae for the temperature depen-
dence of the flow stress and its temperature sensitivity in
the transition range between both mechanisms.

- The model is fitted to experimental data on the low-
temperature deformation of cubic zirconia. This fitting
confirms the values of parameters estimated in the pre-
vious study on the semi-qualitative basis. The new model
yields also an improved description of the strong increase
of the strain rate sensitivity with decreasing temperature
in the transition range.

The research described in this publication was made possible
in part by Grant INTAS 96-363.
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