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Abstract. The fully differential cross section for the electron-impact ionization of atomic
hydrogen is analysed at an incident energy of 27.2 eV. The cross sections are calculated using
a variety of theoretical models whose predictions are compared. It is seen that, as at higher impact
energies, the angular distribution basically consists of two peaks which, at first sight, can be assigned
to binary and recoil processes. However we show that the similarity is somewhat illusory in that
the shape and position of the two peaks depend sensitively on the detection geometry and the
energy sharing between the two electrons. Furthermore, the final-state electron–electron repulsion
and the effects of exchange symmetry contribute significantly to the form of the observed angular
distributions.

1. Introduction

The coincident detection of two electrons following electron-impact single ionization of the
hydrogen atom (e, 2e experiment) continues to provide the most detailed information on the
fundamental quantum dynamics of the ionization process. The data also provide the most
stringent test of theory, although unfortunately spin-resolved detection, which could test the
separate singlet and triplet cross sections predicted by theory, is not yet feasible for this target.
The parameters to be varied in the experiment are the incident energyEi with respect to the
ionization energyI and the way in which the excess energy (E = Ei − I ) is shared between
the two electrons. The former is most conveniently expressed in terms of the ratio (Ei/I ) and
the latter by the ratioEa/Eb of the final-state energies of electronsa andb. By convention the
faster of the two electrons is designated as electrona. The fundamental quantity of interest
is the shape of the angular distribution of the electron emission as the above parameters are
varied.

Experimental data have been presented for a variety of orientations of the vectorski ,ka,kb
(initial and final electron momentum vectors, respectively) designed to explore different aspects
of the collision process. Perhaps the most extensive sequence of measurements has been
performed in the geometry to be considered here, namely, that all three vectorsk̂i , k̂a, k̂b lie
in a plane. For fixed̂ka the orientation ofk̂b in the plane is varied, keeping the energies
Ea = 1

2k
2
a , Eb = 1

2k
2
b fixed. It is perhaps remarkable, although by now well established, that

for ionization of the hydrogen atom over thecomplete rangeof values of the ratios (Ei/I ),
Ea/Eb the angular distribution of electronb, for fixed electrona, almost always shows a simple
double-peak structure. That this is so at high energyEi/I � 1 and unequal energy-sharing
Ea/Eb � 1 has been evident for a long time. Fragmentary evidence for the basic simplicity of
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the electron-impact ionization process also near threshold, i.e. whereEi/I ∼ 1, and for equal
energy-sharingEa/Eb ∼ 1 has been accumulating more recently.

At high energy and whereEa/Eb � 1, a glancing collision is made, imparting a small
fraction of the incident energy to the target electron. Emergence close to the forward (beam)
direction is due to an essentially free electron–electron collision giving rise to what is termed
‘the binary peak’. Since the maximum angle of emergence of an initially-free electron is
90◦ to the beam direction, any electrons emerging at angles larger than this must involve the
participation of the nucleus and therefore involve nuclear recoil. The simplest example of this
is the emergence of the second peak, ‘the recoil peak’ in a first Born approximation (FBA)
description of the collision. This arises from double collisions (Briggs 1989) in which the target
electron, after being struck by the projectile electron, rebounds off the nucleus to emerge in
backward directions.

The persistence of the basic features of binary and recoil peaks as thresholdEi/I → 1
and equal energy-sharingEa/Eb → 1 are approached has been noted already (Brauneret al
1991, Berakdaret al 1996, Berakdar 1997). Despite this, it will be shown here that the
similarity is somewhat illusory since additional complicating features do appear; the collision
process is strongly influenced by the three-body nature of the collision, rather than being
purely explicable in terms of single- or double-binary collisions. Furthermore, the effects of
electron–electron repulsion in the final state and the differing structure of singlet and triplet
cross sections (Brauneret al 1991) play a major role. Nevertheless, the two-peak, smooth
structure of the ionization differential cross sectionsis preserved. Certainly this is connected
to the fact that no resonance structures are possible forEi/I > 1 for pure Coulomb-interacting
particles (Simon 1978) and the fact that according to classical mechanics only a single passage
through the triple-collision manifold is made for each ionizing event, i.e. the hyper-radius as a
function of time possesses, if at all, a minimum and no maximum (Wannier 1953, Rost 1998).
In the following we attempt to shed further light on the near-threshold ionization process by
analysing more extensive data and comparing with a variety of theoretical methods. Atomic
units are used throughout.

2. Theoretical models

There is quite a number of theoretical approaches to deal with the electron-impact ionization
problem (Madisonet al 1977, Whelanet al 1993, see also McCarthy and Weigold 1995 and
references therein). In this work we focus on two particular methods which represent the
analytical and the rather numerical theories, namely the Coulomb wavefunctions methods, as
presented in section 2.1, and the convergent close-coupling (CC) method.

2.1. FBA, 2C, 3C, DS3C

The probability for two electrons to be emitted with energiesEa andEb into the solid angles
�a and�b following electron impact on atomic hydrogen is related to the triply differential
cross section (TDCS)

TDCS(Ea, Eb,�a,�b) = (2π)4kakb
ki
|Tfi |2, (1)

whereki is the momentum of the incident electron andTfi is the transition amplitude that can
be written in the form

Tfi(ka,kb) = 〈9−ka ,kb |Vi |8ki 〉. (2)
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Here|8ki 〉 is the state vector of the three-body system in the initial channel which is chosen
to be a product of an incoming plane wave representing the incident projectile electron and an
undistorted 1s-state of atomic hydrogen.

Corresponding to this initial state, the perturbation potentialVi is

Vi = Vee + VeN = 1

|ra − rb| +
−1

ra
. (3)

The coordinatesra andrb label the positions of the electrons with respect to the nucleus.
Combining (2) and (3) we can write the transition amplitude equation (2) as the sum of a

scattering amplitudeTeeof the incident electron from the bound electron, i.e. from the potential
Vee, and a scattering amplitudeTeN from the proton (potentialVeN), i.e.

Tfi(ka,kb) = Tee + TeN := 〈9−ka ,kb |Vee|8ki 〉 + 〈9−ka ,kb |VeN|8ki 〉. (4)

Formally, the state vector〈9−ka ,kb |, as it appears in equation (2), should be an exact eigenstate
of the total three-body Hamiltonian at a fixed total energyE and with appropriate boundary
conditions. The approximate expressions (for〈9−ka ,kb |) we use in this study have the form

9−ka ,kb (ra, rb) ≈ (2π)−3 exp(ika · ra + ikb · rb)
Na 1F1[iαa, 1,−ika(ra + k̂a · ra)]
Nb 1F1[iαb, 1,−ikb(rb + k̂b · rb)]
Nab 1F1[iαab, 1,−ikab(rab + k̂ab · rab)], (5)

where Nj, j ∈ {a, b, ab} are normalization constants,1F1[a, b, x] is the confluent
hypergeometric function, andrab = ra − rb is the interelectronic relative coordinate with
kab being the momentum conjugate to this coordinate. The Sommerfeld parameters (αj ,
j = a, b, ab) are generally momentum dependent and their functional form depends on the
approximation adopted. The FBA is obtained from (5) by settingαb = −1/kb, αa ≡ 0≡ αab.
Regarding the two electrons to move independently in the Coulomb field of the nucleus, their
wavefunction is then a product of two Coulomb waves (this approximation is called hereafter
2C) corresponding to choosing the Sommerfeld parameters:αb = −1/kb, αa = −1/ka,
αab ≡ 0. Assuming the three-body system to consist of three spatially-independent two-
body systems leads to a representation of the final state as a product of three two-body
Coulomb waves (3C) (Garibotti and Miraglia 1980, Brauneret al 1989). In this case the
Sommerfeld parameters areαb = −1/kb, αa = −1/ka, αab = 1/(2kab). If we allow, within
the aforementioned three two-body subsystems, for dynamical mutual screening we arrive
at the DS3C (dynamically screened 3C) approximation. The derivation of the Sommerfeld
parameters is quite complicated. Here we cite the explicit functional form of the product
chargesZj = αjkj , j ∈ {a, b, ab} for the case of atomic hydrogen (for more detail cf
Berakdar (1996a, b) and Berakdaret al (1996c))

Zba(ka,kb) = [1− (f g)2ab1]ab2 (6)

Za(ka,kb) = −1 + (1− Zba) k1+a
a

(kaa + kab )|ka − kb|
(7)

Zb(ka,kb) = −1 + (1− Zba) k1+a
b

(kaa + kab )|ka − kb|
(8)

where the functions occurring in equations (6), (7) are defined as

f := 3 + cos2(4α)

4
, tanα = ka

kb
(9)
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g := |ka − kb|
ka + kb

(10)

b1 := 2kakb cos(θab/2)

k2
a + k2

b

(11)

b2 := g2(−0.5 +µ) (12)

a := E

E + 0.5
. (13)

HereE is measured in atomic units andµ = 1.127 is the Wannier index. The interelectronic
relative angleθab is given byθab := (cos−1 k̂a · k̂b).

From equations (6)–(8) it is clear that when two particles approach each other (in
momentum space) they experience their full two-body Coulomb interactions, whereas the third
one ‘sees’ a net charge equal to the sum of the charges of the two close particles. When the two
electrons recede from the nucleus in opposite directions and equal velocities (with respect to
the nucleus) the electron–electron interaction is subsumed completely in an effective electron–
nuclear interaction. In addition, it can be shown that the behaviour of the total ionization
cross sections evaluated using the final state function equation (5) with the product charges
equations (6)–(8) is compatible with the Wannier threshold law. We note here that the papers
of Berakdaret al (1996) and Berakdar (1997) contain a typographical error in the equation for
b2 (12). Thereb2 was erroreously given asb2 = g(−0.5 +µ).

2.2. Convergent close-coupling (CCC)

The details of the CCC approach to ionization have been given by Bray and Fursa (1996).
Briefly, the total wavefunction is written as an explicitly antisymmetric expansion usingN

square-integrable (L2) statesφNn (n = 1, . . . , N) with energiesεNn , obtained by diagonalizing
the target Hamiltonian in a Laguerre basis. The target states obtained in this way have both
negative and positive energies. With increasingN the negative-energy states converge to the
true discrete target eigenstates, whereas the positive-energy pseudostates yield an increasingly
dense discretization of the target continuum. Specifying theN states and the total energyE
of the electron–atom scattering system is sufficient to define uniquely the CC equations. In
the CCC method these take the form of coupled Lippmann–Schwinger equations (Bray and
Stelbovics 1992).

The CC final states have the form of an asymptotically plane wave for one electron and
anL2 state for the other〈kf φNf |. In other words, the bound (φNf ) electron completely shields
the other electron (kf ) from the nuclear field, irrespective of the electron energies or positions.
Such boundary conditions are ideal for elastic and inelastic non-ionizing scattering. They
seem to be inappropriate in the case of ionization, where two electrons escape to infinity.
Nevertheless, in the CCC theory we identify ionization processes with the excitation of
the positive-energy target pseudostates. The CC boundary conditions specify that only one
electron is ever detected at infinity. This implies that the CC theory treats the two electrons as
distinguishable, even though antisymmetry has been formally incorporated. This is also the
reason why in the CC formalism the energy integration is from zero toE, whereas any theory
that treats the two electrons as being identical has the energy integration end-pointE/2.

Upon solution of the CC equations the scattering amplitudes〈kf φNf |T S(E)|φNi ki〉 are
obtained, whereS is the total spin. Though the amplitudes are calculated for eachS = 0, 1
we may readily separate the contributions from the directf and exchangeg contributions by
writing T S = f + (−1)Sg. Typically we takei to be the initial ground state. For final states
f corresponding to true discrete eigenstates (φNf = φf , εNf = εf < 0) we use the calculated
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amplitudes directly to obtain experimentally measured discrete excitation quantities. In the
case of ionization we form the (e, 2e) amplitudes from

T SNfi (q,k) = 〈q(−)f |φNf 〉〈kf φNf |T S(E)|φNi ki〉, (14)

whereq(−)f is a Coulomb wave of energyq2/2 = εNf (Bray and Fursa 1996), and use (1) to
generate the differential cross sections. Writing the integrated cross section for excitation of
the stateφNn asσSNn = |〈knφNn |T S(E)|φNi kf 〉|2 the total ionization cross section is given by

σNSI =
∑

n:0<εNn <E

σSNn (15)

≡
∫ E

0
de

dσ

de

SN

(e) (16)

=
∫ E/2

0
de

[
dσ

de

SN

(e) +
dσ

de

SN

(E − e)
]
. (17)

Equation (15), and its equivalent form (16) that defines, using (14), the singly differential
cross section (SDCS) (Bray and Fursa 1996), leads to excellent agreement with experiment
for the total ionization cross section and its spin asymmetry (Bray and Stelbovics 1993). The
simple rearrangement (17) shows that when calculating the total ionization cross section we
have a sum of two different cross sections that belong to the same ionization process. The first
(T SNfi (q,k)) is obtained from excitation of pseudostates with energye < E/2, and the second
(T SNfi (k, q)) from pseudostates with energyE − e. Generally, we find that the latter cross
sections are much smaller than the former. In fact, Bray (1997) suggested that for infiniteN

the cross section for the excitation of pseudostates with energy greater thanE/2 should be
zero, leading to a step function in the SDCS. Whenever the size of the step is substantial, i.e.

the dσ
de
SN
(E/2) � 0, the calculateddσde

SN
(e) shows unphysical oscillation as a function ofe.

Since, after integration over all the angles of the TDCS thedσ
de
SN
(e) is obtained, we immediately

know that any particular TDCS is likely to be in substantial magnitude error. This problem
may be avoided if the true SDCS happens to be known, and may be used to rescale the CCC
TDCS by the ratio of the true and the calculated SDCS. The rescaling procedure says nothing
about the accuracy of the shape or magnitude of any particular TDCS, its utility relies on the
CCC TDCS having the correct shape for all possible angular distributions in the full space of
the two electrons. If this is true then it guarantees correct magnitudes for all of the TDCS.

In the present case we provide CCC results from a 75-state calculation. For each target
spacel 6 5 there are 15− l states with the Laguerreλl fall-off factor (≈1.2) chosen so that
there was a state with energy 6.8 eV. Such a choice of states also leads to energy levels near
2 and 4 eV, see figure 1(a). Thus, we aim for greatest accuracy for the equal energy-sharing
case, and rely on interpolation (Bray and Fursa 1996) to be sufficiently accurate at the other
two energies.

Upon solution of the CC equations we obtain the integrated cross sections for the excitation
of states with energy less thanE. We use the cross section for the positive-energy states to
define the SDCS, see figure 1(b). The raw (75) results are those according to (16) and are
clearly unphysical indicating a lack of convergence. Yet the integral, from zero toE, yields
1.69 a2

0, in agreement with the experimental value of Shahet al (1987). We need to have a
way to estimate the raw result in the case of infiniteN , which will have a step atE/2. We do
so according to the given prescription (Bray 1997), where we assume that the true SDCS is
well described by a quadratic. The integral and point of symmetry leave one more condition to
define the quadratic uniquely. As in the case of electron-impact ionization of helium the e–H
SDCS(e, E) at zero secondary energye varies very slowly withE. This is because this cross
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Figure 1. (a) Excited-state energy levels occurring in the 75-state CCC calculation. Only states
with energies less than the total (excess) energyE are open. The dotted lines indicate 2, 4 and 6.8 eV.
(b) The singly differential cross section (SDCS) as obtained from the 75-state CCC calculation.
The raw(75) results correspond to equation (16). The CCC(75) correspond to equation (17). The
CCC(∞) estimate is obtained by assuming the true SDCS is well described by a quadratic, see
text. The factor differences between the CCC(∞) and CCC(75) curves at 2, 4 and 6.8 eV are 0.77,
0.88 and 1.99, respectively.

section is dominated by the interaction of the very slow ejected electron with the residual ion,
and is largely independent of the fast electron leaving with energyE. To find the SDCS(0, E)
for the present case ofE = 0.5 au we look to the near-threshold region. From figure 2(b)
of Bartschat and Bray (1996) which presentsσI/E and the study of the e–H SDCS presented
by Konovalovet al (1994) we take the value of SDCS(0, E) to be 0.4 a2

0 eV−1, which we
believe to be accurate from threshold through to near 60 eV. This leads to the estimate of the
SDCS represented by the CCC(∞) curve given in figure 1(b). The raw(∞) step function (not
presented) is CCC(∞) from 0 toE/2 and zero fromE/2 toE. The difference between the
CCC(∞) and CCC(75) curves gives us the scaling factors of 0.77, 0.88 and 1.99 at 2, 4 and
6.8 eV, respectively.
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Figure 1. (Continued)

3. Interpretation of the spectra

In this section we analyse the angular distributions of the emitted electrons for a selected set of
scattering geometries. We choose a coordinate system in which thex-axis is aligned alonĝki.
The escaping electrons are detected in a coplanar geometry, i.e.ki · (ka ×kb) = 0. Thez-axis
is along the direction perpendicular to the scattering plane, i.e. parallel tok̂a × k̂b. The polar
and azimuthal angles of the vectorka (kb) are denoted byθa, φa (θb, φb), respectively. In what
follows the polar angles are fixed toθa = π/2 = θb. This choice of coordinates enables us
to show the full range of the angular distributionφb ∈ [0, 360◦] with the specification of only
one angle (φa).

To get an insight into the kinematics of the ionization process we will inspect the recoil
momentum of the proton left behind,kion, which is determined by the conservation law of
linear momentum to be

kion = ki − ka − kb. (18)

It is important to note here that for a given incident energyEi = k2
i /2 and a fixed energy

Eb = k2
b/2 of one of the electrons we determine the energyEa, and hence the momentum

ka =
√

2Ea from the energy conservation lawEa = Ei − ε − Eb whereε is the (positive)
binding energy of H(1s), i.e. the momentum distribution of initial state is implicitly taken into
account in equation (18). ForEi � ε the bound electron can be regarded as stationary from
the view point of the projectile.

For atomic hydrogen there are, as yet, no reported spin-resolved TDCS measurements.
Thus we are obliged to average statistically over the spin degrees of freedom. In the present
reaction the TDCS is a statistical mixture of singlet (TDCSs) and triplet (TDCSt) cross sections,
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Figure 2. The spin-averaged angular distribution of an electron ejected with 2 eV following the
electron-impact ionization of atomic hydrogen. The incident energy is chosen asEi = 27.2 eV.
The projectile electron is detected in coincidence with the ejected electron and in the plane spanned
by kb andki . The scattering angleφa (indicated by an arrow) is fixed at (a) φa = 20◦, (b)
φa = 30◦, (c) φa = 40◦ and (d) φa = 50◦. The DS3C (thick solid curve), 3C (dash-dotted curve),
and CCC (dotted curve) are shown along with the experimental data (full squares) (Berakdaret al
1996). The CCC results have been multiplied by a factor of 0.76. The experimental data are
inter-normalized, uncertainty in the relative height of the peaks is≈7%. The singlet and triplet
cross sections corresponding to the calculations in (a)–(d) are shown in (a′)–(d′) and (a′′)–(d′′),
respectively (the results for the 3C calculations are not shown here).
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Figure 3. The same scattering geometry and the same notation as in figure 2, however, the
ejected electron energy is chosen to have 4 eV. The angles of the scattered electrons in (a)–(c) are
respectively chosen asφa = 16◦, 23◦, 30◦. The inter-normalized experiments (full squares) are
provided by R̈oder (1996). The CCC results have been multiplied by a factor of 0.88.

i.e.

TDCS(Ea, Eb,�a,�b) = 1
4TDCSs + 3

4TDCSt

= 1
4|f + g|2 + 3

4|f − g|2 (19)

wheref andg are the direct and exchange scattering amplitudes. In the case of the CCC
theory there are two such cross sections, one fromT SNfi (q,k) and the other fromT SNfi (k, q),
which are summed as in (17). Note that, from figure 1(b) it is clear that the latter contributes
substantially only for the equal energy-sharing case.

In figures 2(a)–(d) the angular distributions of the slower electron,b, are scanned for
different fixed angles,φa, of the other electron (indicated by arrows in the figures) where
φa = 20◦, 30◦, 40◦, 50◦, respectively. The energy of electronb is Eb = 2 eV, so that
Ea = 11.6 eV. Generally, the measured spectra are very well reproduced by the CCC and
DS3C results, except for figure 2(d) where clear discrepancies between the DS3C and the
data are observed aroundφb ≈ 300◦. The 3C theory predicts almost equal shape for the
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Figure 4. The same geometry and the same notation as in figure 2 for the equal energy-sharing
case. The angleφa (indicated by an arrow) is fixed at (a) φa = 15◦, (b) φa = 30◦, (c) φa = 45◦,
(d) φa = 70◦, and (e) φa = 90◦. The experimental data (full squares) as taken from Brauner
et al (1991). The CCC results have been multiplied by a factor of 1.99. The experiments are
inter-normalized (R̈oder 1996).

cross section for all the cases depicted in figures 2(a)–(d) and is clearly at variance with the
experimental findings. The failure of the 3C model in this geometry has been traced back
to a wrong weighting of the amplitudesTeN andTee, i.e. a dominance of the former, which
results in a spurious interference behaviour (Brauneret al1991, Berakdaret al1996). In other
words, the observed spectra in figures 2(a)–(d) (and figures 3(a)–(c) as well) are the result
of a subtle interference between the scattering from the nucleus and from the initially bound
electron. Exchange effects were found to be of minor importance in this case of asymmetric
energy-sharing (Berakdar 1997, Berakdaret al 1996). The double-peak structure of the cross
section, as noted in the introduction, shows similarities with the binary-recoil-peak shape of
the angular distributions at high energies (Ehrhardtet al 1986), i.e. the observed peaks tend to
be localized aroundφb = ±q̂ whereq̂ is the momentum transfer direction.

As shown already in Berakdaret al (1996) the designation recoil and binary appears
justified by the near-coincidence of these peaks with respectively the maximum and minimum
of the recoil ion momentum(these positions are distinctively different from±q̂). Although
the magnitudes of both peaks diminish asφa increases, corresponding to an overall smaller
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Figure 4. (Continued)

probability of large angle scattering, the relative heights of the two peaks appears to change
also and there are subtle changes in the position and shape of the binary peak. The relative
increase of the binary peak (in figure 2 the peak located nearφb ≈ 300◦) asφa increases
from 20◦ to 50◦ is in line with the general feature that single binary peaks emerge from the
three-body background preferentially when the momentum transfer is largest, i.e. for large
angle scattering of the primary electron. The apparent change in shape of the binary peak is
hitherto unexplained. Its origin can be traced to the shape of the separate singlet and triplet
contributions displayed in figures 2(a′)–(d′) and figures 2(a′′)–(d′′). Forφa = 20◦ and 30◦ the
triplet and singlet have roughly the same smooth two-peak structure in both CCC and DS3C
calculations, in fact exchange effects are of minor importance in this geometry. However, at
φa = 40◦ and 50◦ in CCC andφa = 50◦ in DS3C, a new minimum appears in the triplet
scattering, which splits the binary peak into two. This is the reason for the apparent shift of
the binary peak closer to the forward direction in the experimental data of figure 2(d). Here
it appears that the CCC represents better the dominance of triplet scattering nearφb = 320◦

(see figure 2(d)) which gives rise to this shift. The dip in the triplet cross section occurs for
Ea = 11.6 eV,Eb = 2 eV and at an angle such that the two electrons are emitted symmetrically
on opposite sides of the beam direction in the collision plane. As was shown in Brauneret al
(1991) forequalenergy electrons the triplet cross section vanishes identically at this point and
gives rise to structure in the spin-averaged cross section. The dips in figures 2(c′′) and (d′′)
represent the onset of this zero, although the cross section remains finite since the energies are
not equal.

One further feature in figure 2 deserves mention. This is the near-vanishing of the cross
sections when the two electrons emerge at roughly the same angle. It is directly due to the
electron–electron repulsion which maximizes when the two electrons emerge in the same
direction. This is the reason why the ‘triplet dip’ is not seen in figures 2(a) and (a′′) and
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figures 2(b) and (b′′). There it occurs where the cross section is vanishingly small due to
inter-electronic repulsion.

The CCC calculations presented in figures 2(b)–(d) reveal a small shoulder atφb ≈
330◦, 306◦, 290◦, respectively. This behaviour persists for the equal energy-sharing case.
As demonstrated below, the reason for this structure is not a numerical artifact, e.g. bad
convergence, but it is most probably due to an overemphasized triplet scattering (see below).

In figures 3(a)–(c) the energy of the ejected electron is increased toEb = 4 eV withEa
reduced to 7.6 eV. Again we notice the very good agreement between the spin-averaged CCC,
DS3C and the experimental data. The main feature of figure 3 is the relative increase of the
binary peak asφa increases, as in figure 2. Note that, since the energies of the two electrons
are now more equal (7.6 eV and 4 eV), the ‘hole’ in the cross section aroundφa ≈ φb is larger
than in figure 2. Since the data extend only toφa = 30◦ the dip in the triplet cross section is
barely evident in figures 3(c) and (c′′) and not evident in the data, precisely due to the repulsive
hole in the cross section. As in the case of figure 2, the triplet and singlet cross sections reveal
a similar shape to the spin-averaged cross sections. In fact it turned out that (within the DS3C
theory) in the case of figures 2 and 3 the direct scattering amplitudef dominates overg.

The experimental data depicted in figures 2(a)–(d) and figures 3(a)–(c) are inter-
normalized, i.e. the magnitude of the cross section at a certainφa relative to anotherφa is
determined. The CCC, DS3C and the 3C treatments agree remarkably well on the absolute
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Figure 5. The recoil-ion momentumkrec as a function of the emission angleφb for the cases of
figure 4. The inset shows the variation of the momentum transferq with the angleφa .
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Figure 6. The spin-averaged cross section for the collision geometry of figure 4 as predicted by
the FBA.

value of the cross sections, provided the CCC results are scaled as explained in the previous
section.

In figures 4(a)–(e) the angular distributions for equal-energy electronsEa = Eb = 6.8 eV
are shown. Again there is overall agreement between experiment and the spin-averaged CCC
and DS3C theories. The CCC results have been scaled by multiplication with factor 1.99, as
stated earlier. The theory again correctly reproduces the increase of the binary peak maximum
asφa increases, exactly as for unequal energy-sharing. Since electron repulsion maximizes for
equal energies, the ‘hole’ forφa ≈ φb now has an angular width of nearly 90◦ and in the DS3C
case is identically zero whenφa = φb. This has the consequence that the ‘triplet dip’ which is
a true zero in this equal-energy case, is not evident untilφa = 30◦ (CCC) andφa = 45◦ (DS3C)
(figures 4(b′′) and (c′′)). The zero is seen clearly in figure 4(c′′) aroundφb = 315◦ and splits
the binary peak into two. The CCC predicts a minimum in the spin-averaged cross section due
to this effect, however, the different relative magnitudes of singlet and triplet in the DS3C case
leads to a slight hint of a shoulder near 315◦ in the binary peak. An optimistic observer can
see the same hint of a shoulder in the experimental data of figure 4(c). In figures 4(d) and (d′′)
(φa = 70◦), the triplet zero occurs atφb = 290◦ and again leads to a dip in the spin-averaged
cross section for CCC, but merely a shoulder in the DS3C case. Asφa increases toφa = 90◦

the triplet zero is ‘overkilled’ by the inter-electronic repulsion.
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Figure 7. The same geometry as in figure 6, however, the calculations for the spin-averaged cross
section have been performed with the 2C model.

In order to try to understand the behaviour of angular distributions in more detail, it is often
useful to compare simpler theories, where certain interactions are ignored, with the predictions
of the more complicated DS3C and CCC theories. This we will do with specific reference to
figure 4 and equal energy electrons. First, it is important to show the magnitude ofkion as a
function ofφb as is done in figure 5. Generally, with increasingφa the momentum absorbed
by the proton increases. Accordingly, the momentum transferq increases whenφa becomes
larger (see inset in figure 5). It is probably remarkable that this trend is reflected by the TDCS
becoming smaller with increasingq, since this behaviour is anticipated for soft collisions and
high impact velocity.

The minimum recoil momentum is shifted with respect toq̂ (assuming a stationary free
target electron), for example forφa = 45◦ this minimum occurs nearφb = 330◦ (for a stationary
free target electron it would be at 315◦) which justifies the association of the experimental peak
near this position with single-binary scattering. The maximum recoil occurs whenφb ≈ 150◦,
again seemingly justifying the association of the peak in the experimental data near this position
as arising from an interaction with the nucleus.

In high-energy (e, 2e) the ‘recoil’ peak does occur at the maximum inkion (Ehrhardtet al
1985). Since this peak is also present in the FBA, where only the slow electron interacts with
the nucleus, it has been interpreted (Briggs 1989) as arising from the initially-bound electron
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Figure 8. The singlet cross sections for the case of figure 7.

Figure 9. The triplet cross sections for the case of figure 7.

recoiling off the nucleus after having experienced a direct encounter with the projectile. At
the low energy considered here we shall see that the ‘recoil’ peak has a more subtle origin.

The FBA results are shown in figure 6. They consist essentially of the binary peak, with
a very flat cross section in the region of maximum nuclear recoil. The heights of the binary
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Figure 10. The statistical average of singlet and triplet as displayed in figures 8 and 9.

peaks decrease monotonically asq increases (cf inset in figure 5). In the FBA the electrons,
although of identical energy, are treated unequally. The necessary symmetry is restored by the
2C approximation although the electron–electron repulsion in the final state, which carves out
the hole in the cross section, is still ignored.

It should be noted that in both the FBA and the 2C approaches the amplitudeTeN for
scattering from the nucleus vanishes identically due to orthogonality of different target states.
Nonetheless this same scattering is mediated by the projectile–nucleus Coulomb wave in the
2C approximation.

Within the 2C model, the heights of the binary peaks (figure 7) asq increases (cf inset
figure 5) do not follow an obvious trend as in the FBA (figure 6). In addition, the angular
distribution predicted by the 2C cross section (figure 7) shows a new peak nearφb < 45◦, i.e.
the two electrons emerge preferentially in nearly the same direction but well away from the
position of maximum nuclear recoil.

The reason for this can be seen from figures 8–10, where we plot the 2C results in polar form
for the complete range of anglesφa = 15◦, 30◦, 45◦, 70◦ and 90◦. The separate contributions
of singlet and triplet scattering are shown in figures 8 and 9. Considering first the singlet
cross section, one sees that forφa = 15◦ there is the binary peak and a back-scattering lobe
reminiscent of the recoil peak in high-energy scattering (it appears near the maximum inkion).
In addition however there is a further lobe, roughly symmetric to the binary lobe in the forward
direction. Asφa increases the ‘recoil’ contribution disappears and the near-symmetric two-
lobe structure only remains. This indicates occupation preferentially of some spatial symmetry,
as yet unidentified. The triplet cross section appears rather different (figure 9). However on
closer inspection, one recognizes that the pattern is the same as for the singlet case, except that
the requirements of antisymmetry lead to identical zeros atφb = φa andφa = (360◦ − φa).
The statistical average of the two cross sections is shown in figure 10 and, as one can see, for
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Figure 11. The same geometry as in figure 7 (and figure 4). The spin-averaged TDCS have been
evaluated by multiplying the 2C results with the|Nab|2 factor (cf equation (5)).

example by comparing the linear plot of figure 7 with figure 4, the positions of the two peaks
in the 2C result are not in agreement with experiment.

However, one key ingredient is missing from the 2C calculations, namely the electron–
electron repulsion of the two free electrons in the final channel. This effect is most easily taken
into account by multiplying the cross sections by|Nab|2, whereNab is the normalization factor
of the electron–electron two-body Coulomb wave (cf equation (5)). Thisad hocprocedure has
been used by several authors (Botero and Macek 1994, Röderet al1996). This Coulomb density
of states (CDS) factor peaks when the electrons are oppositely directed,φb = (180◦ + φa),
and is zero forφb = φa. As shown in figure 11, when the 2C results are multiplied by this
factor it carves out the repulsive hole in the cross section, shifting the position of the two
peaks significantly. Remarkably, as seen from figure 11, the two peaks now appear in the
same positions as observed in the experiment. In particular, one peak is now at the position of
maximum nuclear recoil.

Unfortunately we have no guarantee that this analysis of the 2C results is applicable to
the results of the complex calculations of the DS3C and CCC methods. However, the fact that
these two methods are completely different in their conception, that they agree qualitatively
with each other and with the modified 2C results of figure 11 in predicting the shape of the
angular distribution, we suggest is compelling evidence that it is so. In that case, the two-peak
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structure at this energy has little to do with recoil, or perhaps even binary, scattering processes.
Rather it arises from an interplay of spatial symmetries, electron repulsion and spin averaging.

4. Conclusions

We have performed a systematic study of electron-impact ionization of atomic hydrogen at
an incident energy of 27.2 eV. Three different kinematic regions of the outgoing electrons
have been considered, ranging from highly asymmetric to equal energy-sharing. Generally,
agreement between the spin-unresolved experiment and the DS3C and CCC theories is good.
However, the differences between the CCC and DS3C theories are particularly magnified by
consideration of spin-resolved cross sections. Given the substantial progress made by theory
in the recent years it is clear that experiment needs to be that much more detailed in order to be
able to distinguish between competing theoretical approaches. Clearly, spin-resolved (e, 2e)
measurements, as done by Baumet al (1992), are most desirable from a theoretical point of
view. We are particularly looking forward to the work in this area of the Bielefeld group.
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Note added in proof. In a recent work, Jones and Madison (1998) have shown that including initial-state distortion
effects in a 3C-type calculation results in improved agreement with theshapeof the measured cross sections, compared
with the 3C results shown in this work. Unfortunately, the absolute values of the cross sections predicted by Jones and
Madison differ substantially from those anticipated by the DS3C and the CCC methods. Therefore, an experimental
verification of the absolute values of the cross sections would be most useful. From a mathematical analysis of
the theory presented by Jones and Madison it is clear, however, that this theory yields cross sections that vanish
exponentially with vanishing excess energies, a fact which is at variance with experimental findings. This behaviour
is due to the properties of the 3C wavefunction (Berakdar 1996b) at low energies.
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