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Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally
provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to
the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only
bare nuclearmasses are considered. Nowadays, experimental accuracy challenges the theoretical predictions
of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the
molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been
solved, in general. Here, we present a theoretical and numerical framework to address this problem in a
general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we
include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-
dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear
degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia
of electrons is accounted for and the total mass of the system is recovered. This constitutes a general
framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded
particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well.
We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy
particles are the oxygen atoms towhich the proton is bounded. Inclusion of the light-particle inertia allows us
to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate
position-dependent mass corrections using density functional theory for a few polyatomic molecules at their
equilibrium geometry. These data can serve as input for the computation of high-precisionmolecular spectra.

DOI: 10.1103/PhysRevX.7.031035 Subject Areas: Atomic and Molecular Physics,
Chemical Physics,
Computational Physics

I. INTRODUCTION

The Born-Oppenheimer (BO) [1], or adiabatic, treatment
of the coupled motion of electrons and nuclei in molecular
systems is among the most fundamental approximations in
condensed matter physics and chemical physics. Based on
the hypothesis that part of the system, usually electrons or
protons, evolves on a much shorter time scale than the rest,
i.e., (heavy) nuclei, the BO approximation allows one to
visualize molecules as a set of nuclei moving on a single

potential energy surface that represents the effect of the
electrons in a given eigenstate. Yet, it is an approximation,
yielding the correct dynamics only in the limit of infinite
nuclear masses. For instance, when compared to highly
accurate molecular spectroscopy measurements, theoretical
predictions might deviate from experimentally observed
behavior.
Often in the literature, in relation to calculations of

rotational and vibrational spectra of light molecules, for
instance, hydrogen-based [2–9], the question of which
masses [10–13] are to be considered is addressed, aiming
to provide accurate numerical predictions. However, beyond
the simple interest in spectroscopy applications, this ques-
tion carries a very fundamental significance, which can be
summarized as follows: How is the inertia of the electrons
accounted for in the nuclear motion, when the BO approxi-
mation is employed? In fact, within the BO approximation,
the electrons appear only implicitly in the dynamics, as a
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potential energy contribution to the Hamiltonian driving the
motion of the nuclei. The kinetic energy arising from the
molecular motion then involves only the bare nuclear
masses. Indeed, ideas to improve the agreement between
numerical and experimental spectroscopy results have been
proposed, such as the use of atomic masses [14] or fractional
masses [15]. Such propositions do not unambiguously
answer the above question and, therefore, might still be
of little interest to a broader community.
In addition, performing a full nonadiabatic treatment of the

coupled electron-nuclear problem, with a numerical cost that
is much larger than a BO calculation, does not help from a
fundamental point of view. The following question is still
unanswered: What is the mechanism by which the inertia of
the electrons affects themass of the heavy degrees of freedom
beyond the dependence of the potential energy surface on the
electronic kinetic energy?An alternative approach, pioneered
by Bunker and Moss [2,3,16], is to treat nonadiabatic effects
perturbatively, but applications are still limited to di- and
triatomicmolecules. In connection with the perturbation idea
of Bunker and Moss, accurate numerical calculations have
been performed on small molecules, like H2, D2, HD, H

þ
3

[17–21]. However, despite the effort to push forth the
applications, it seems that the basic formalism still represents
a major obstacle for the treatment of molecular systems
comprisingmore than three atoms. Themain reason for this is
found in the use of internal coordinates, obtained after
separation of the rotational and translational degrees of
freedom of the center of mass of the molecule, as a starting
point for the application of the perturbation approach. Several
complications arise when using internal coordinates:
(i) Internal coordinates are not uniquely defined; thus,
calculations of nuclear displacements, which are crucial to
determine nonadiabatic corrections, have to be reformulated
for each choice of coordinates, either analytically or numeri-
cally. (ii) As the size of the molecular system of interest
increases, derivative operators in internal coordinates become
more and more involved, and their implementation becomes
less and less desirable [22]. (iii) Internal coordinates are
defined in the nuclear center of mass [4], which depends on
the mass of the nuclei; thus, electronic structure calculations
to determine the nonadiabatic corrections have to be repeated
when considering different isotopes. (iv) Derivatives with
respect to nuclear displacements in internal coordinates
cannot take advantage of analytic methods, as is the case
of derivatives in Cartesian coordinates [23].
In the present paper, we examine this problem in the

framework of the exact factorization of the electron-nuclear
wave function [24]. This (nonadiabatic) reformulation of the
quantum-mechanical problem is used as a starting point to
develop a procedure that settles the issue described above in a
rigorous way. The key point in the exact factorization is that
the electronic effect on the nuclear system is taken into
account by time-dependent vector and scalar potentials.
These concepts are the generalization of similar, but static,

quantities appearing also within the BO approximation. We
show that nonadiabatic effects can be accounted for, by
formulating a theory that treats these effects as a perturbation
to the BO problem. Such a framework has been discussed in
previouswork [23] to derive thenuclear velocity perturbation
theory [25] for vibrational circular dichroism [26].Aswewill
show below, here we propose a new perspective on the
nuclear velocity perturbation theory, which will allow us to
access a broader class of both static, e.g., energetics, and
dynamical, e.g., vibrational spectra, problems in quantum
mechanics. Within nuclear velocity perturbation theory,
nonadiabatic effects can be included by taking into account
corrections to theBOapproximation up towithin linear order
in the classical nuclear velocity. We show here that this is
equivalent to a perturbation approach where the small
parameter is the electron-nuclear mass ratio [27].
The major achievement of such a formulation is presented

in this paper: Electronic nonadiabatic effects appear as a
position-dependent mass correction to the bare nuclear mass,
up to within linear order in the perturbation. From a
fundamental perspective, we prove that it is possible to
recover an adiabaticlike structure of the Hamiltonian gov-
erning the dynamics of the heavy degrees of freedom, with a
kinetic energy contribution and a separate potential energy
term. Since the mass correction can be fully identified with
the electronicmass, totallymissing in theBOapproximation,
we propose a theory able to restore a fundamental property,
often overlooked, of the dynamical problem: the translational
invariance of an isolated system with its physical mass, i.e.,
nuclear and electronic. If in the BO approximation the
nuclear masses are made position dependent in the way
proposed in this paper, the center of mass can be separated
from rotations and internal vibrations, and it evolves as a free
particle with mass equal to the total mass of the system
(expected from the Galilean invariance of the problem [13]).
This property enables us to apply the perturbation approach
before moving to the molecular center-of-mass reference
frame, with the formal advantage of a very simple and
intuitive theory. From an algorithmic perspective, the cor-
rections to themass involve only ground-state properties and
can be calculated as a response to the nuclear motion, within
standard perturbation theory [28–30]. Therefore, we are able
to perform numerical studies of molecular systems, easily
pushing the applications beyond di- and triatomicmolecules.
The experimental implications are clear: The approach
proposed here has the potential to predict and to describe
rovibrational spectroscopic data for a large class ofmolecular
systems when high accuracy is required. The theory devel-
opedherewillmake the nuclear velocity perturbation scheme
of Refs. [23,31] consistent. In previous work, we have
focused only on the effect of nuclear motion on electronic
properties, neglecting the “backreaction” of electrons. The
advantage of taking this effect into account as done in the
present work is twofold: (i) From a fundamental perspective,
even a weak coupling to electronic excited states has an
observable effect on nuclear properties, and (ii) from a
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practical perspective, the translationalmotion of the center of
mass of the total system can now be correctly separated from
the internal rotations and vibrations.
The paper is organized as follows. First, we show how,

starting from the exact factorization, nonadiabatic effects
are included by constructing a perturbative scheme based on
the BO approach. Then, we prove that the vector potential of
the theory can be expressed as a position-dependent
correction to the bare nuclear mass. In the nuclear
Hamiltonian, nonadiabatic effects are taken into account
in an adiabaticlike picture, if the nuclear masses are
corrected for the electronic contribution. We prove that
(i) the position-dependent corrections sum up to the total
electronic mass of the complete system, and (ii) the
Hamiltonian with position-dependent dressed masses is
appropriate to compute rotational and vibrational spectra, as
it is possible to exactly separate the center-of-mass motion.
Results are first presented for a model of a hydrogen bond
where the light particle is the shared proton. Then, we
present the computation of the position-dependent mass
corrections using density functional theory (DFT) for some
molecular systems, up to six atoms, at their equilibrium
geometry. To illustrate the effect on vibrational spectra, the
order of magnitude of this nonadiabatic correction is
evaluated in the harmonic approximation.

II. BEYOND THE BORN-OPPENHEIMER
APPROXIMATION

A. Exact factorization of the electron-nuclear
wave function

The exact factorization of the electron-nuclear wave
function has been presented [24] and discussed [32,33] in
previous work. Therefore, we only introduce here the basic
formalism, and we refer to the above references for a
detailed presentation.
A system of interacting particles, which will be taken as

electrons of mass me and nuclei of massesMν, is described
by the Hamiltonian Ĥ ¼ T̂n þ ĤBO, with T̂n the nuclear
kinetic energy and ĤBO the standard BO Hamiltonian. The
evolution of the electron-nuclear wave function Ψðr;R; tÞ,
in the absence of an external time-dependent field, is
described by the time-dependent Schrödinger equation
ĤΨ ¼ iℏ∂tΨ. The symbols r, R collectively indicate the
Cartesian coordinates of Nel electrons and Nn nuclei,
respectively, in a fixed laboratory frame. When the exact
factorization is employed, the solution of the time-
dependent Schrödinger equation is written as the product
Ψðr;R; tÞ ¼ ΦRðr; tÞχðR; tÞ, where χðR; tÞ is the nuclear
wave function and ΦRðr; tÞ is an electronic factor that
parametrically depends on the nuclear configuration R.
Here, ΦRðr; tÞ satisfies the partial normalization conditionR
drjΦRðr; tÞj2 ¼ 1∀R, t, which makes the factorization

unique up to a gauge transformation. Starting from the
time-dependent Schrödinger equation for Ψðr;R; tÞ,

Frenkel’s action principle [34–36] and the partial normali-
zation condition yield the evolution equations for ΦRðr; tÞ
and χðR; tÞ,
½Ĥel − ϵðR; tÞ�ΦR ¼ iℏ∂tΦR and Ĥnχ ¼ iℏ∂tχ: ð1Þ
Here, the electronic and nuclear Hamiltonians are Ĥel ¼
ĤBO þ Ûen½ΦR; χ� and Ĥn ¼

P
ν½−iℏ∇ν þAνðR; tÞ�2=

ð2MνÞ þ ϵðR; tÞ, respectively. The index ν is used to
label the nuclei. The electron-nuclear coupling operator
(ENCO),

Ûen½ΦR; χ� ¼
XNn

ν¼1

1

Mν

�½−iℏ∇ν −AνðR; tÞ�2
2

þ
�
−iℏ∇νχðR; tÞ

χðR; tÞ þAνðR; tÞ
�

× ð−iℏ∇ν −AνðR; tÞÞ
�
; ð2Þ

the time-dependent vector potential (TDVP),

AνðR; tÞ ¼ hΦRðtÞj−iℏ∇νΦRðtÞir; ð3Þ
and the time-dependent potential energy surface (TDPES),

ϵðR; tÞ ¼ hΦRðtÞjĤBO þ Ûen − iℏ∂tjΦRðtÞir; ð4Þ
mediate the exact coupling between the two subsystems;
thus, they include all effects beyond BO. The symbol h…ir
indicates integration over the electronic coordinates. The
TDVP and TDPES transform [24] as standard gauge
potentials when the electronic and nuclear wave functions
transform with a phase θðR; tÞ. The gauge, the only
freedom in the definition of the electronic and nuclear
wave functions, will be fixed below.

B. Large nuclear mass limit

Starting from the exact factorization described above, we
now consider the limit of large nuclear masses. The ENCO
is inversely proportional to the nuclear massesMν; then, the
BO limit [37] corresponds to the solution of Eq. (1), setting
the ENCO to zero [23,27]. Formally, however, approaching
this limit of large but finite nuclear masses depends on the
physical situation considered [38]. In the time-dependent
case, keeping the kinetic energy fixed, it has been shown
[38] that the BO limit is recovered asymptotically in terms
of a small expansion parameter μ4 used to scale the nuclear
mass, M → MðμÞ ≡M=μ4. Making μ approach zero cor-
responds to the ratio of the nuclear mass over the electron
mass MðμÞ=me going to infinity. This scaling factor will be
used only to perturbatively estimate the order of the terms
in the electronic equation and will be set equal to unity to
recover the values of the physical masses. Since the nuclear
mass is made larger, the nuclear dynamics is slower such
that the time variable must then be scaled as well, by a
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factor μ2, i.e., t → t=μ2 [38], increasing the separation
of time scales between the light and heavy particles.
Similarly, following a simple scaling argument, the nuclear
momentum behaves as μ−2 in the semiclassical limit
(see Appendix A). Then, the ENCO from Eq. (2) scales
with μ4 as

Ûen;μ½ΦR; χ� ¼
XNn

ν¼1

�
μ4

Mν

½−iℏ∇ν −AνðR; tÞ�2
2

þ μ2

Mν
ðλνðR; tÞ þ μ2AνðR; tÞÞ

× ð−iℏ∇ν −AνðR; tÞÞ
�
; ð5Þ

where λνðR; tÞ ¼ μ2f½−iℏ∇νχðR; tÞ�=χðR; tÞg. Note that
λνðR; tÞ tends towards a quantity independent of μ in the
limit of small μ since −iℏ∇νχ=χ is related to the nuclear
momentum [23,33] and thus scales as μ−2.
Using the definition in Eq. (4), the scaled TDPES is

ϵμðR;tÞ¼hΦRðtÞjĤBOjΦRðtÞirþμ2hΦRðtÞj−iℏ∂tjΦRðtÞir

þμ4
XNn

ν¼1

1

2Mν
hΦRðtÞj½−iℏ∇ν−AνðR;tÞ�2jΦRðtÞir;

ð6Þ

noting that the second term in Eq. (5) does not contribute to
the TDPES. This statement can be easily verified in Eq. (2),
by computing the expectation value of the second term on
the right-hand side with the electronic wave function
ΦRðr; tÞ and by recalling the definition of the TDVP given
in Eq. (3): The contribution arising from −iℏ∇ν exactly
cancels the contribution from AνðR; tÞ.

C. Perturbative expansion

The scaled ENCO, from Eq. (5), and the scaled TDPES,
from Eq. (6), are used to rewrite the electronic equation (1)
such that its dependence on μ4 is explicit. To this end, the
time derivative of the right-hand side of Eq. (1) also has to
be scaled with μ2, as indicated above. We thus obtain

½ĤBO þ Ûen;μ½ΦR; χ� − ϵμðR; tÞ�ΦR ¼ iℏμ2∂tΦR; ð7Þ

which can be solved perturbatively in powers of μ2,

with its solution of the form ΦRðr; tÞ ¼ Φð0Þ
R ðr; tÞ þ

μ2Φð1Þ
R ðr; tÞ þ � � � [1,39].

The time dependence appears only at order μ2, as it is
clear from Eqs. (6) and (7). Therefore, the time dependence

of Φð0Þ
R ðr; tÞ ¼ φð0Þ

R ðrÞ can be dropped, and φð0Þ
R ðrÞ satisfies

the zeroth-order equation

½ĤBO − ϵð0ÞðRÞ�φð0Þ
R ¼ 0; ð8Þ

with ϵð0ÞðRÞ the first term on the right-hand side of Eq. (6).

Here, φð0Þ
R ðrÞ is an eigenstate of the BO Hamiltonian with

eigenvalue ϵð0ÞðRÞ ¼ ϵð0ÞBOðRÞ, chosen to be the ground
state.
At the zeroth order, (i) the TDVP identically vanishes,

Að0Þ
ν ðR; tÞ ¼ 0, as in the absence of a magnetic field φð0Þ

R ðrÞ
can be real; (ii) the evolution of the nuclear wave function is
determined by the usual BO equation; (iii) in order to
uniquely determine the nuclear, χðR; tÞ, and electronic,
ΦRðr; tÞ, wave functions via Eq. (1), one has to make a
choice of gauge, and for the derivations presented here, we

impose hφð0Þ
R jΦRðtÞi ∈ R.

The electronic equation at the next order yields

½ĤBO − ϵð0ÞBOðRÞ�Φð1Þ
R ¼ i

XNn

ν¼1

λ0νðR; tÞ · ðℏ∇νφ
ð0Þ
R Þ; ð9Þ

where λ0νðR;tÞ¼½λνðR;tÞþμ2AνðR;tÞ�=Mν from Eq. (2).
We neglected the TDVP from the term in parentheses since
AνðR; tÞ is Oðμ2Þ. However, in λ0ν, we include a term
Oðμ2Þ, which will be analyzed below along with the TDVP.
Appendix B presents the connection between Eq. (9) and
nuclear velocity perturbation theory, thus providing a

numerical scheme [23] to compute Φð1Þ
R ðr; tÞ within per-

turbation theory [25]. To this end, we write Nn Sternheimer
equations

½ĤBO − ϵð0ÞBOðRÞ�φð1Þ
R;νðrÞ ¼ ℏ∇νφ

ð0Þ
R ðrÞ; ð10Þ

which provide an expression forΦð1Þ
R ðrÞ decomposed in Nn

contributions, labeled by the nuclear index ν, i.e., φð1Þ
R;νðrÞ,

independent of λ0νðR; tÞ. Therefore, the electronic wave
function up to within Oðμ2Þ is

ΦRðr; tÞ ¼ φð0Þ
R ðrÞ þ μ2i

XNn

ν¼1

λ0νðR; tÞ · φð1Þ
R;νðrÞ; ð11Þ

where φð1Þ
R;νðrÞ is now given in Eq. (10). Equation (11) is

also valid as an initial condition; i.e., the correction is
included if at the initial time the nuclear velocity [the
classical limit of λ0νðR; tÞ] is nonzero [40].
Here, ΦRðr; tÞ is complex and can thus sustain an

electronic current density [31,41] induced by the nuclear
motion. The crucial point is that this current influences the
nuclear motion through the TDVP.
It is worth noting here that Eq. (11) is a perturbative

solution of the electronic equation (1). For small values of
μ2, or equivalently of λ0ν, the effect of the ENCO is small;
therefore, nonadiabatic effects can be treated as a pertur-
bation to the ground-state dynamics. The theory is appli-
cable in regions of weak nonadiabatic coupling, far away
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from degeneracies between adiabatic potential energy
surfaces.

D. Expression of the time-dependent vector potential

The TDVP becomes nonzero when inserting Eq. (11)
into Eq. (3). As described in more detail in Appendix C,
up to within the linear order in μ2, the expression of the
TDVP is

AνðR; tÞ ¼ −2ℏμ2
Z

dr
XNn

ν0¼1

½λν0 0ðR; tÞ ·φð1Þ
R;ν0 ðrÞ�∇νφ

ð0Þ
R ðrÞ:

ð12Þ

Notice here that φð0Þ
R ðrÞ and φð1Þ

R;ν0 ðrÞ, as defined in Eq. (B7),
are both real quantities, thus yielding a real TDVP. Using
Eq. (10) and replacing the integral sign with h…ir, we can
define the quantity

AðRÞ ¼ 2hφð1Þ
R jĤBO − ϵð0ÞBOðRÞjφð1Þ

R i
r
; ð13Þ

such that AðR; tÞ ¼ −μ2AðRÞλ0ðR; tÞ. Here, the singly

underlined symbols AðR; tÞ, λ0ðR; tÞ, and φð1Þ
R indicate

ð3NnÞ-dimensional vectors, whereas AðRÞ is a
ð3Nn × 3NnÞ-dimensional matrix.
Since λ0ðR; tÞ depends on AðR; tÞ, we find AðR; tÞ self-

consistently, which amounts to including an infinite num-
ber of terms of order μ2n. Recalling that λ ¼ μ2½−iℏ∇ χ=χ�,
the TDVP becomes

A ¼ −μ2AM−1λ; with MðRÞ ¼ M þ μ4AðRÞ: ð14Þ

Here, M≡Mνδνi;ν0j is the ð3Nn × 3NnÞ diagonal mass
matrix. If μ4 ¼ 1, expressions where the physical masses
appear are recovered. From Eq. (13), it is evident thatAðRÞ
is a purely electronic quantity, which affects the nuclear
momentum through the TDVP. Such correction, however,
also appears in the nuclear evolution equation (1).

E. Nuclear time-dependent Schrödinger equation

Having derived the electronic wave function up to order
Oðμ2Þ and then the TDVP up to order Oðμ4Þ, we can now
determine an effective form for the nuclear Hamiltonian.
On one side, the kinetic energy of the nuclei is reexpressed
in a canonical form using the fact that the TDVP is shown
to be proportional to λ, that is, to the nuclear momentum
itself. On the other side, this involves determining the
TDPES from the expansion of the electronic wave function,
leading mainly to a term that describes the kinetic energy of
the electrons induced by the nuclear motion. The detailed
derivation is given in Appendix D. We then arrive at the
nuclear time-dependent Schrödinger equation, written in
matrix form,

�
1

2
ð−iℏ∇ÞTM−1ðRÞð−iℏ∇Þ þ EðRÞ

�
χ ¼ iℏ∂tχ; ð15Þ

where the superscript T indicates the transpose vector and

EðRÞ ¼ ϵð0ÞBOðRÞ þ
XNn

ν¼1

ℏ2

2Mν
h∇νφ

ð0Þ
R j∇νφ

ð0Þ
R ir: ð16Þ

The second term is the diagonal BO correction (DBOC).
The kinetic energy term in Eq. (15) now involves dressed
nuclearmasses. It is important to notice that such a canonical
form of the nuclear time-dependent Schrödinger equation
arises from the self-consistent solution for A.
To better understand the meaning of this effective

Hamiltonian, it is instructive to take the classical limit.
The corresponding classical Hamiltonian [13] is simply
Hn ¼ PTM−1ðRÞP=2þ EðRÞ, with nuclear velocity
_R ¼ M−1ðRÞP. This Hamiltonian contains both the
nuclear and electronic contributions to the kinetic energy,
in the forms _RTM _R=2 and _RTAðRÞ _R=2, respectively.
The key result of the paper is encoded in Eq. (15), where

MðRÞ ¼ M þAðRÞ since we have taken μ4 ¼ 1. Even in
the presence of (weak) nonadiabatic effects, the dynamical
problem can be expressed in terms of nuclei moving on a
single, static, potential energy surface—the electronic
ground state (plus DBOC)—with masses that are corrected
by the presence of the electrons. We have shown how, in a
very simple and intuitive way, the electrons are carried
along by the nuclei: AðRÞ, the A matrix, is a position-
dependent mass correction that dresses the bare nuclear
masses M. The A matrix is a purely electronic quantity,
obtained by considering the lowest-order correctionsOðμ2Þ
to the BO electronic wave function, and it appears both in
the definition of the TDVP and in the nuclear Hamiltonian.
The nuclear equation (15), together with the electronic
equations (8) and (9), represents the limit of the exact
factorization equations (1) up to Oðμ4Þ (see Appendix D).
The A matrix is the new and fundamental quantity
introduced in this study, for which we are able to provide
a rigorous derivation, in the context of the exact factori-
zation; an intuitive interpretation, in terms of electronic
mass carried along by the motion of the nuclei; and an
efficient computation scheme, based on perturbation
theory [23].
In the pioneering work of Bunker and Moss [2] on H2

and D2, the nuclear kinetic energy associated with the one-
dimensional vibrational motion appears in the form
ð2MredÞ−1P(1þ βðRÞ)P, with Mred the reduced nuclear
mass. Starting from the expression (15), it is straightfor-
ward algebra to rewrite M−1ðRÞ ¼ (M þAðRÞ)−1 in the
form M−1(1þ βðRÞ) by assuming that AðRÞ ≪ M.
Further discussions on the connection between the
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approach proposed in this work and previous analytical
studies [12,13] are provided in Appendix C.
As we will now see, applying the correction to the mass

matrix, through a resummation of an infinite number of
terms μ2n, implies that the nuclear Hamiltonian has
Galilean invariance.

III. PROPERTIES OF THE DRESSED POSITION-
DEPENDENT MASS CORRECTION

When Cartesian coordinates are employed as done here,
theAmatrix has the property of yielding the total electronic
mass of the system when summed over all nuclei,

XNn

ν;ν0¼1

Aij
νν0 ðRÞ ¼ meNelδij ∀ R; ð17Þ

supporting its interpretation as a correction term to the
nuclear mass (indices ν and ν0 run over the nuclei, and i and
j over the three spatial dimensions). Here, me is the
electronic mass. It should also be noticed that the A matrix
is positive definite in a ground-state dynamics [13]. The
proof of Eq. (17) uses the property of the BO electronic
wave function of being invariant under a translation of the
reference system [13,42], and Eq. (9) (see Appendix E).
This leads to

XNn

ν;ν0¼1

½AðRÞ�
νν0

¼ me

e

XNn

ν¼1

½PðRÞ�
ν
¼ meNelI ð3Þ; ð18Þ

where ½AðRÞ�νν0 and ½PðRÞ�ν are (3 × 3) matrices (in

Cartesian components) and I ð3Þ is the identity matrix.

Here, ½PðRÞ�ν ¼ ∇νh μ̂ðelÞðRÞiBO is the electronic contri-
bution to the atomic polar tensor, defined as the variation
with respect to nuclear positions of the electronic dipole
moment (here averaged over the BO state) [43]. The second
equality in Eq. (18) is obtained using the known property of
the atomic polar tensor of yielding the total electronic
charge of the system when summed over all nuclei [42,44].
It is common [2] to separate the c.m. motion before

introducing the BO approximation. Calculations are then
performed in internal coordinates. In this case, thus work-
ing within the molecular frame, the procedure presented
here can be straightforwardly applied, by choosing coor-
dinates in which the kinetic energy operator is the sum of
two separated terms, i.e., nuclear and electronic. However,
using the above sum rule, Eq. (18), it is possible to perform
the calculations in Cartesian coordinates and to separate the
c.m. motion a posteriori, still recovering the full mass of
the system. In Cartesian coordinates, nuclear derivatives
can be computed analytically via perturbation theory.
Starting from Cartesian coordinates, we make the

following change of coordinates:

R0
1 ¼ M−1

tot

�XNn

ν¼1

MνRν þme

XNel

k¼1

hr̂kiBO
�
;

R0
ν ¼ Rν −R1 with ν ≥ 2; ð19Þ

with Mtot ¼
P

νMν þmeNel. From the sum rule (18), the
nuclear Hamiltonian of Eq. (15) becomes

Ĥn ¼
P̂2
c.m.

2Mtot
þ 1

2
ð−iℏ∇0ÞTM−1ðR0Þð−iℏ∇0Þ

þ EðR0Þ: ð20Þ

Note that P̂c.m. is the momentum (operator) associated with
the c.m. coordinate in Eq. (19); thus, the first term accounts
for the motion of the c.m. as a free particle. The mass
associated with the c.m. is, correctly, the total mass
of the system, i.e., nuclei and electrons, rather than the
nuclear mass only, as in the BO approximation. The
following terms in Eq. (20) are the kinetic and potential
energies corresponding to the internal, rotational and
vibrational, degrees of freedom. Notice that, due to the
fact that the Hamiltonian contains the gradient operator, the
Jacobian of the transformation from Cartesian to internal
coordinates has to be calculated. Therefore, the kinetic
energy term in Eq. (15), ð−iℏ∇ÞTM−1ð−iℏ∇Þ, becomes

ð−iℏ∇0ÞTðJM−1JTÞð−iℏ∇0Þ. Here, JM−1JT can be sep-
arated into a contribution from the c.m. [the first term on the
right-hand side of Eq. (20)] and a contribution depending
on the position-dependent mass matrix in internal coor-
dinates [the second term of Eq. (20)]. Appendix F proves
that off-diagonal contributions identically vanish with this
choice of internal coordinates.

IV. APPLICATIONS

The formalism introduced above is employed to con-
struct a numerical procedure that (i) is fundamentally
adiabatic, namely, only a single (static) potential energy
surface is explicitly involved, but (ii) able to account for
effects beyond BO via the position-dependent corrections
to the bare nuclear masses.
The key quantity in the examples reported below is the

nuclear Hamiltonian of Eq. (15). In the first numerical
study of Sec. IVA, quantum mechanically, this
Hamiltonian will be used to compute the spectrum of a
model of a proton involved in a one-dimensional hydrogen
bond [45]. In the same model system, interpreted classi-
cally, the Hamiltonian will be employed as the generator of
the classical evolution of the oxygen atoms in the presence
of a quantum proton. Furthermore, we have quantum
mechanically computed the first four vibrational states of
the whole system and compared them with the first four
vibrational states of the reduced Hamiltonian. This model
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system allows us to study the mass dependence of the error
made by each approximation.
In Sec. IV B, the second numerical study presents results

for some molecular systems, i.e., H2, H2O, NH3, H3Oþ,
CH4, and CH3OH. The A matrix is computed for such
molecules, proving that our approach can easily handle
systems comprising more than three atoms. Furthermore,
transforming the nuclear Hamiltonian of Eq. (15) to internal
coordinates and within the harmonic approximation,
position-dependent corrections are included in the calcu-
lation of the vibrational frequencies. Numerical details are
given in Appendix G.

A. Proton transfer

As a first application, we consider a model of a proton
involved in a one-dimensional hydrogen bond O─H─O
[45], in which nonadiabatic (vibrational) effects are known
to be important [46]. The light particle is the proton,
assumed to be in its vibrational ground state. In this case,
everything that has been discussed on the electronic nature
of the A matrix has to be adapted, as the A matrix now
describes a mass correction to the heavy nuclei, the
oxygens, because of the coupling with the proton.
Hence, the A matrix is a purely protonic quantity. We
use an asymmetric potential mimicking a strong hydrogen
bond (as shown in Fig. 1): The proton is bonded to the
oxygen atom O− at large distances (we denote O− the
oxygen atom that is located on the left and Oþ the one on
the right), whereas at short distances, it is shared by the two
oxygen atoms and is localized around the center of the
O─O bond. The proton density corresponding to the
ground state is shown in Fig. 2. At large distances, we
expect the effective mass of O− to be close to 17 a.m.u. as it
carries the proton along. This is clear in Fig. 3, where it is
shown that the elementAO−O−ðRÞ of theAmatrix tends to a
constant (equal to 1 a.m.u., the mass of the proton) at
R > 3 Å, whereas all other components are zero, as

expected from the sum rule of Eq. (18) (adapted to the
present case—thus, with meNel replaced by mp, the
total proton mass of the system). We show this schemati-
cally in Fig. 4, where we plot the proton density along the
O─O bond. We also report an estimate of the amount of
proton mass associated with each oxygen, as the sum
over the columns of the A matrix, e.g., MO−ðRÞ ¼
MO− þ ½AO−O−ðRÞ þAOþO−ðRÞ�. At short distances, the
proton is instead shared by the oxygens: The elements of
the A matrix are nonzero, but the O− diagonal contribution
remains dominant. Notice that it is not surprising that the
off-diagonal elements of the A matrix are negative, as only
two conditions are physically relevant: The diagonal
elements must be non-negative, in a ground-state dynamics,
and the sum of the elements must yield the proton mass, in

FIG. 2. Proton density corresponding to the BO ground state,
showing that in its vibrational ground state and for large O─O
distances, the proton tends to be localized around the oxygen
atom O− because of the asymmetry of the potential.

E
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.)

FIG. 3. Elements of the A matrix as functions of R. As
expected, for a large O─O distance, the proton mass associated
with the oxygen O− tends to unity, while all other contributions
tend to zero since the proton localizes around O−.

FIG. 1. Potential of the hydrogen bond model as a function of
theO─Odistance (R) and of the proton position (r)measured from
the center of the O─O bond. The energy is measured in kcal/mol.
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a translationally invariant system. As seen in Fig. 4, the two
oxygens then have similar masses at very short distances.
Figure 5 shows the classical trajectories of the two

oxygen atoms starting from a compressed O─O distance
and zero velocity. Calculations have been performed
both in the standard adiabatic approximation (BO) and
with position-dependent corrections to the oxygen masses

(BOþM). The two sets of calculations are compared with
Ehrenfest dynamics, where nonadiabatic effects are
included explicitly. Ehrenfest-type simulations, being
explicitly nonadiabatic, require calculations of excited-state
quantities, limiting not only the size of the accessible
systems but also the time scales. BOþM calculations,
based on the perturbation to the ground state, are instead
easily affordable. The distance of the oxygens is plotted
along with the mean position of the proton at the final steps
of the dynamics. The masses are MOþ ¼ MO− ¼ 16 a:m:u:
and MHþ ¼ 1 a:m:u: In Fig. 6, it is shown that the c.m. of
the system is perfectly fixed when position-dependent
masses are employed, in contrast to the BO approximation.
BO dynamics is faster than the Ehrenfest dynamics because
the heavy atoms only have the bare nuclear mass. We have
tested an ad hoc correction to the mass of the oxygen O−,
i.e., MO− ¼ 17 a:m:u: This improves the conservation of
the c.m. but does not fix it completely. Changing MO− to
17 a.m.u. improves the result, but only including the
position-dependent dressed mass leads to a systematic
convergence to the Ehrenfest results. We have further
compared the error with respect to Ehrenfest dynamics,
of BO and BOþM dynamics, as a function of the inverse
mass ratio μ−4 ¼ MO=MHþ . This is shown in Fig. 7 as
the root-mean-square deviation (RMSD) computed on the
O─O distance along the trajectory with respect to the
reference Ehrenfest trajectory. The position-dependent
dressed mass greatly improves the precision of the dynam-
ics even at small values of μ−4 (¼ 4 is the smallest value
used) and leads to an error 4 orders of magnitude smaller
than BO at large mass ratios. While at the physical value of
the mass ratio, i.e., μ−4 ¼ 16, the population of the vibra-
tional ground state along the Ehrenfest dynamics never
decreases below 0.95, it reaches values as small as 0.8 for

Proton density

D
en

si
ty

FIG. 4. Proton density at two values of the O─O distance (2.0 Å
black and 2.8 Å red), where the masses of the oxygens (sum of
columns of the matrix M, see text) MOþ and MO− indicate the
A matrix effect.

Time (fs)

FIG. 5. Distance of the oxygens and position of the proton
during the final steps of the dynamics: BO approximation with
MOþ ¼ MO− ¼ 16 a:m:u: (blue lines), BO approximation adding
the proton mass MH ¼ 1 a.m.u. to the mass of MO− (red lines),
the BO approximation corrected by the position-dependent
dressed mass (orange lines), and Ehrenfest dynamics (black
lines). When position-dependent mass corrections are included
in the BO approximation, the dynamics approaches reference
results (Ehrenfest) that explicitly take into account nonadiabatic
effects. As expected, the mass corrections yield a slower
evolution than BO dynamics with bare oxygen masses.

Time (fs)

FIG. 6. Position of the c.m. as a function of time. The color code
is the same as that used in Fig. 5. Here, we show how the position
of the center of mass is fixed when the position-dependent mass
corrections are included in the BO approximation.
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μ−4 ¼ 4. In this latter situation, nonadiabatic effects
become substantial, but they are correctly captured by
the BOþM.
Compared to Ehrenfest dynamics, the BOþM dynam-

ics is much less computationally expensive, having a cost
similar to the BO dynamics itself. Also, when interested in
calculating electronic current densities induced by nuclear
motion in molecules, an approach that takes into account
excited-state effects is required to actually observe (in the
simulation) a nonzero current [23,31]. The Ehrenfest
approach is indeed suitable for such calculations, provided
that all electronic excited states are accessible. The
BOþM would indeed be preferred, as it yields (i) the
correct electronic current density (employing the NVPT
idea) and (ii) a correct description of the electronic effect on
nuclear dynamics (via the A matrix), without the need for
explicitly including all excited states, which might not be
easy to compute anyway.
The proposed Hamiltonian formulation allows for a full

quantum treatment of the nuclear dynamics: It maintains
the simplicity of the BO approximation, making calcula-
tions of large systems feasible; at the same time, it gains
accuracy.
To illustrate this, we have computed the four lowest

eigenstates of the full quantum Hamiltonian at different
values of μ−4. The diagonalization of the full Hamiltonian
is compared to three approximations: BO, BOþ DBOC,
and BOþ DBOCþM (where we also include the
position-dependent correction). Figure 8 shows the
error on the eigenvalues (the exact lowest eigenvalue is
−4127.08527 cm−1 at MOþ ¼ MO− ¼ 16 a:m:u:). At small

μ−4, the BO approximation is expected to fail: The mass
corrections allow us to gain 1 order of magnitude in the
eigenvalues, even if compared to the case where the DBOC
is included. Overall, in the static situation, the mass
correction also leads to highly accurate results. At a mass
ratio μ−4 ¼ 1600, an accuracy on the eigenvalues of about
10−5 cm−1 is reached, whereas it is only 0.5 cm−1 using the
BO approximation. However, such an important gain of
accuracy keeps the same favorable scaling and reduction of
complexity as BO with respect to a full nonadiabatic
treatment.

B. Molecules: H2, H2O, NH3, H3O+ , CH4, CH3OH

The major numerical result of this work is the possibility
of computing from first principles the A matrix, a position-
dependent mass correction to add to the bare nuclear
masses in order to account for nonadiabatic effects.
These position-dependent mass corrections were computed
at the DFT level using analytical perturbation theory. The
accuracy of DFT for this type of calculation can be asserted
from the rotational g factors whose computation requires
many similar terms. It has been shown that at equilibrium
geometries, DFT gives very accurate results for the rota-
tional g factors [47]. For the smaller molecules, H2 and

FIG. 7. Root-mean-squared deviations of the O─O distance
between Ehrenfest results and the BO approximation (black) or
the BO approximation corrected by the position-dependent
dressed mass (red). The results are shown as functions of the
inverse mass ratio μ−4. The comparison shows that orders of
magnitude in accuracy are gained with respect to the BO
approximation, when the position-dependent mass correction is
taken into account.

State 1
State 2
State 3
State 4

FIG. 8. Error between the four lowest eigenvalues of the full
Hamiltonian and the BO approximation (solid lines with circles);
the BO approximation corrected by adding the diagonal BO
correction, BOþ DBOC (dashed lines with crosses); and the BO
approximation corrected by adding the diagonal BO correction
and the position-dependent mass, BOþ DBOCþM (dotted
lines with squares). The results are shown as functions of
the inverse mass ratio μ−4. As in Fig. 7, high precision is
achieved when position-dependent mass corrections are taken
into account.
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H2O, the results presented here are an improvement on the
only available data in the literature [4] obtained at the self-
consistent field (SCF) level with single excitations for
excited states and numerical derivatives.
Once the A matrix is accessible, properties such as, but

not limited to, corrections to harmonic vibrational frequen-
cies can be determined. Therefore, we show in Tables I and
II theAmatrix for the molecules H2 and H2O, verifying the
sum rule (17).
For larger molecules, the optimized geometries are listed

in Appendix G 2, whereas the A matrix will be reported in
Appendix H for readability reasons. A few comments can
be made about these results. First, it appears that these
matrices have significant off-diagonal contributions. The
electrons give rise to inertial coupling between the nuclear
motions that should not be neglected if we are aiming at
high-accuracy molecular spectra. These off-diagonal terms
are also rather long range in CH3OH, as inertial coupling is
found between the H(C) and O or even H(O) (see Table VI).
Nevertheless, if we inspect the diagonal terms for the
hydrogen atoms, we observe from H3Oþ and H2O, to NH3,
and then CH4 or CH3OH a clear correlation with the
electronegativity of the atom it is bonded to. While
hydrogens bonded to O have an additional mass of about
one half electron, the signature of the ionicity of the OH
bond, it is nearly one full electron mass in the case of
CH bonds.

In order to illustrate the effect of these position-
dependent mass corrections on the vibrational frequencies,
in Table III, we further report the values of the nonadiabatic
corrections derived from the A matrix on vibrational
frequencies for all molecules listed above. The corrected
frequencies νþ Δν have been computed by diagonalizing
the matrix ½M−1ðR0ÞKðR0Þ� at the equilibrium geometry
R0, where K is the Hessian computed from the ground-
state adiabatic potential energy surface. Negative frequency
shifts will be computed: Nonadiabatic effects perturbing
the ground-state dynamics tend to induce excitations of the
light particles, and the energy necessary for the transition is
“removed” from the heavy particles. Comparison with
other theoretical predictions from the literature, when
available, shows that the theory is capable of predicting
accurate nonadiabatic corrections, even if working within
the harmonic approximation (concerning the vibrational
analysis) and with the generalized gradient approximation
to DFT. Reference results [4] are determined at the SCF
level, with excited states considered within a single-
excitation CI approach and with an accurate quantum-
mechanical calculation of anharmonic frequencies with the
nuclear Hamiltonian.
What the approach developed in this study contributes to

the field is the possibility of easily extending the numerical
applications beyond di- and triatomic molecules
[17–21,48]. To prove this, we provide the first predictions
to the nonadiabatic corrections of vibrational frequencies of
NH3, H3Oþ, CH4, and CH3OH. It can be seen that the
shifts of the N─H stretch frequencies of NH3 are larger than
those of the O─H stretch frequencies of H3Oþ, due to the
fact that the N─H bonds are less ionic; as a result, the mass
carried by the protons is larger in NH3 than in H3Oþ as
observed above. The inertial coupling through the elec-
tronic motion also gives rise to different corrections for
each vibrational mode. In particular, we observe that the
stretch is more affected than bending. From these harmonic
frequency shifts, it can be seen that correctly taking into
account the electronic mass can lead to shifts of about
1 cm−1. The mass matrices reported here should now allow
for very accurate computations of molecular spectra.

TABLE II. The A matrix for the molecule H2O at the equilibrium geometry [rOH ¼ 97.2 pm and ∠ðHOHÞ ¼ 104.5°]. The sum rule
(17) yields (10.0004, 9.9997, 9.9999) for i, j ¼ xx, yy, zz, as the system contains 10 electrons.

A Oxygen Hydrogen 1 Hydrogen 2

Oxygen 8.0054 0.3122 0.3122
8.3000 0.0796 0.1302 0.0796 −0.1302

7.8025 0.2799 0.2585 −0.2799 0.2585
Hydrogen 1 0.3365 0.0366

0.6718 −0.2802 0.0187 −0.0842
0.5383 0.0842 0.0435

Hydrogen 2 0.3365
0.6718 0.2802

0.5383

TABLE I. Elements of the symmetric A matrix for the H2

molecule at its equilibrium geometry, with the H─H bond length
set to 0.743 Å and oriented along the z axis. The sum rule (17)
yields (1.998, 1.998, 1.998) for i, j ¼ xx, yy, zz, as the system
contains two electrons.

Hydrogen 1 Hydrogen 2

Hydrogen 1 0.553 0.446
0.553 0.446

0.868 0.131
Hydrogen 2 0.553

0.553
0.868
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C. Methods

In the static calculations of the O─H─O model, the
eigenvalues of the full Hamiltonian are determined using a
Gaussian quadrature method with 20 points for R (the O─O
distance) and 34 for r (the position of the proton from the
center of the O─O bond). In the dynamics, we use the three
coordinates, i.e., ROþ , RO− , and r ¼ rH, in order to test the
conservation of the position of the c.m.. The velocity-Verlet
algorithm is used to integrate the classical nuclear equa-
tions, with a time step of 1 fs; the Crank-Nicolson [49]
algorithm for the proton (quantum) equation in Ehrenfest
dynamics, with a time step of 10−4 fs; the Euler algorithm
with a time step of 0.0625 fs for BOþM calculations,
where the force depends on the velocity. For the vibrational
spectra, the A matrix has been computed using density
functional perturbation theory [23,25,50], and it has been
checked that the sum rule of Eq. (18) is satisfied. The
numerical scheme has been implemented in the electronic
structure package CPMD [51]. Calculations have been
performed using Troullier-Martins [52] pseudopotentials
in the Becke-Lee-Yang-Parr [53,54] (BLYP) approximation
of the exchange-correlation kernel. The equilibrium
molecular geometry is determined at the BLYP level,
employing the aug-cc-pVTZ basis set [55] in the
Gaussian electronic structure program [56].

V. CONCLUSIONS

This work provides a rigorous theory to include the
effect of light-particle motion on heavy-particle dynamics
in molecules, within the adiabatic framework. The theory
derived in this work has been developed by referring to
coupled electron-nuclear systems, and we will adopt such
an electron-nuclear perspective in the following discussion
as well. However, we stress once again that the theory can

be straightforwardly applied to a more general situation, as
proven by the numerical study of Sec. IVA.
Nuclear masses are dressed by position-dependent cor-

rections that are purely electronic quantities and a conse-
quence of the fact that electrons do not rigidly follow the
motion of the nuclei. Various applications are discussed,
yielding, in all cases, striking agreement with the bench-
marks, either exact or highly accurate quantum-mechanical
calculations. The idea of perturbatively including non-
adiabatic electronic effects on the nuclear motion has been
introduced previously [2,5,17,23,26,31], mainly as a tool to
resolve some of the issues encountered in the context of
theoretical vibrational spectroscopy when working in the
BO approximation. Similarly, the idea of accounting for
corrections to the nuclear masses has been proposed
[2,5,12,13,57] to cure some fundamental inconsistencies
of the BO treatment. The novelty of the present study is
thus to be found in the overall picture that our work
conveys: The theory is developed based on a rigorous
starting point, the exact factorization of the molecular wave
function; the perturbation treatment is justified in terms of
the electron-nuclear mass ratio, as in the seminal paper of
Born and Oppenheimer; the algebraic procedure is very
simple, easily allowing for applications not restricted to
di- and triatomic molecules; the proposed numerical
scheme requires standard electronic structure calculations
to determine the mass corrections, as the expressions of
such corrections are explicitly given in terms of electronic
properties. We expect that the theory will be able to provide
solid information to predict and interpret highly accurate
spectroscopy experiments in a large class of molecular
systems.
Conceptually, we have resolved a well-known [58]

fundamental inconsistency of the BO approximation. In a
translationally invariant problem, the center of mass moves
as a free particle with mass that equals the total mass of the

TABLE III. Harmonic frequencies ν (in cm−1) and their nonadiabatic corrections Δν. Benchmark values are taken from Ref. [4] when
indicated. They have been calculated using a SCF approach for the ground state and including the nonadiabatic corrections in a single-
excitation CI framework. Differences are observed in the predicted frequencies (ν), which might be ascribed to the use of a different
electronic structure approach and to the fact that in Ref. [4] the diagonal BO correction term has been included in the calculation of the
ground-state potential for the vibrational analysis.

Molecule H2 H2 [4] H2O H2O [4] NH3 H3Oþ CH4 CH3OH

ν, Δν 4343.28, −0.89−0.74 1594.93, −0.09 1597.60, −0.07 1016.73, −0.08 837.27, −0.05 1306.81, −0.12 297.67, −0.03
3656.19, −0.96 3661.00, −0.69 1628.30, −0.12 1639.25, −0.07 1522.48, −0.18 973.53, −0.14
3757.77, −0.81 3758.63, −0.77 3358.91, −0.97 3438.80, −0.47 2964.31, −0.68 1043.18, −0.16

3471.93, −0.89 3522.10, −0.37 3057.48, −0.88 1131.23, −0.19
1331.39, −0.11
1433.73, −0.15
1458.72, −0.20
1469.75, −0.20
2918.76, −0.87
2959.41, −1.12
3034.70, −0.91
3677.79, −1.06
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systems, i.e., nuclei and electrons, not only the nuclearmass.
This feature is naturally built in the theory and corrects for a
deficiency of the BO approximation, providing exactly the
missingmass of the electrons. From amore practical point of
view, our approach is very general and can be applied
whenever a “factorization” of the underlying physical
problem is possible, e.g., in the case of proton and oxygen
atoms or in the case of electrons and nuclei.
Further applications are indeed envisaged since the

perturbative incorporation of nonadiabatic effects greatly
reduces the complexity of the fully coupled problem. For
instance, the approximations can be applied to nuclear
wave-packet methods for the calculation of highly accurate
vibrational spectra beyond the BO approximation. The
position-dependent mass is also shown to be related to the
ionicity of the bonds and may serve as a proxy to access
electronic properties.
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APPENDIX A: ADIABATIC LIMIT OF THE
EXACT FACTORIZATION

In this section, we argue that (i) the correct scaling of the
time variable is μ2, when the parameter μ4 is used to scale
the nuclear mass Mν, and (ii) the term in the electron-
nuclear coupling operator of Eq. (2) containing the nuclear
wave function scales with μ2 as well.
Statement (i) is obtained by taking the large mass limit,

or small μ4 limit, as in Ref. [38]. In this situation, the
dynamics of the heavy nuclei becomes semiclassical, and
our scaling argument will make the nuclear kinetic energy
tend towards a constant. In the classical limit, it is easy to
see that at different values of μ4 the trajectories of the nuclei
can be superimposed if the physical time s is rescaled to a
common time t ¼ μ2s [27]. At each configuration RðsÞ
along the dynamics, the scaling of the time variable has the
effect of yielding a kinetic energy that is a constant of μ4. In
other words, the velocities VðsÞ scale as μ−2. Notice that
this is possible because we do not scale the positions with
μ4, and therefore, the potential energy is not affected by the
scaling. Using the common rescaled time t to describe the
nuclear trajectory, it then becomes possible to make a
convergence statement about the nuclear dynamics.
Following Ref. [38], the nuclear wave packet can be

considered to be a Gaussian wave packet localized at the
position RðtÞ, with momentum PðtÞ:

χðR;tÞ¼ π−3Nn=4μ−3Nn=2ðdetσðtÞÞ1=4

×ef−½ðR−RðtÞÞ
TσðtÞðR−RðtÞÞ�=2μ2gþði=ℏÞf½PðtÞ�=μ2g·ðR−RðtÞÞ�;

ðA1Þ

with σðtÞ a ð3Nn × 3NnÞ symmetric matrix yielding the
spatial extension of the wave packet. Notice here that both
the amplitude and phase of the nuclear wave function are
assumed to depend on μ4, and this dependence is inserted as
μ−2 in the real and in the complex exponents. From this
expression, we see that statement (ii) holds: −iℏ∇νχ=χ
scales as μ−2; thus, λνðR; tÞ ¼ μ2f½−iℏ∇νχðR; tÞ�=χðR; tÞg
tends towards a quantity independent of μ.

APPENDIX B: NUCLEAR VELOCITY
PERTURBATION THEORY

In this section, we show the relation between the μ4

expansion proposed in the paper and the nuclear velocity
perturbation theory (NVPT) of Ref. [23]. We recall here the
definition of λ0νðR; tÞ,

λ0νðR; tÞ ¼ 1

Mν

�
μ2

−iℏ∇νχðR; tÞ
χðR; tÞ þ μ2AνðR; tÞ

�
ðB1Þ

¼ 1

Mν
ðλνðR; tÞ þ μ2AνðR; tÞÞ: ðB2Þ

In the framework of NVPT, we have used λνðR; tÞ=Mν as
the perturbation parameter that controls the degree of
nonadiabaticity of the problem. The electronic equation
(7) can be written using λ0νðR; tÞ as

½ĤBO − ϵð0ÞBOðRÞ�ðφð0Þ
R ðrÞ þ μ2Φð1Þ

R ðr; tÞÞ

¼ μ2
XNn

ν¼1

λ0νðR; tÞ · ½iℏ∇ν þAνðR; tÞ�φð0Þ
R ðrÞ: ðB3Þ

Also, as will be proved in Appendix C, the TDVP is itself
Oðμ2Þ; thus, it will be neglected from the term in square
brackets on the right-hand side. If we solve this equation
order by order, Eqs. (8) and (9) are easily obtained. In
particular, we recall here Eq. (9) whose solution yields

Φð1Þ
R ðr; tÞ,

½ĤBO − ϵð0ÞBOðRÞ�Φð1Þ
R ðr; tÞ

¼ i
XNn

ν¼1

λ0νðR; tÞ · ðℏ∇νφ
ð0Þ
R ðrÞÞ: ðB4Þ

We have assumed that λ0νðR; tÞ is small because of its
dependence on μ2, the small parameter adopted in the

perturbation approach. The correction Φð1Þ
R ðr; tÞ to the

electronic wave function can therefore be computed
directly by inverting Eq. (B4) if λ0νðR; tÞ itself is known.
Moreover, the “resolution” of the perturbation in terms of
Nn (nuclear) contributions is somehow missing, which
would make the numerical computation straightforward. To
this end, we use below the same derivation proposed in
Ref. [23], but we replace the small parameter used there,
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i.e., λνðR; tÞ=Mν, with the parameter introduced in this
work, i.e., λ0νðR; tÞ: We assume that λ0νðR; tÞ is itself a small
quantity. The formal derivation is exactly the same as in
Ref. [23], but the final result reported in Eq. (B9) will allow

us to (i) decompose Φð1Þ
R ðr; tÞ as a sum of Nn independent

contributions and (ii) compute each contribution without
explicit knowledge of λ0νðR; tÞ.
We start from the electronic Hamiltonian of the form

used in Ref. [23], replacing λνðR; tÞ=Mν with λ0νðR; tÞ,

Ĥel ¼ ĤBO þ
XNn

ν¼1

λ0νðR; tÞ · ð−iℏ∇νÞ; ðB5Þ

and we have solved it perturbatively, using ĤBO as the
unperturbed Hamiltonian. It is clear, as stated above, that
λ0νðR; tÞ is the small parameter that controls the strength of
the perturbation and that −iℏ∇ν is the (nonadiabatic)
perturbation. We have looked for the eigenstates of Ĥel
in the form

ΦRðr; tÞ ¼ φð0Þ
R ðrÞ þ

X
e≠0

hφðeÞ
R j − iℏ

P
νλ0νðR; tÞ · ∇νφ

ð0Þ
R ir

ϵð0ÞBOðRÞ − ϵðeÞBOðRÞ
× φðeÞ

R ðrÞ; ðB6Þ

as straightforwardly follows from the application of stan-
dard time-independent perturbation theory. The first-order
perturbation to the BO ground state can be written as

iφð1Þ
R;νðrÞ ¼ i

X
e≠0

dν;e0ðRÞ
ωe0ðRÞ φðeÞ

R ðrÞ ðB7Þ

with ωe0ðRÞ ¼ ½ϵðeÞBOðRÞ − ϵð0ÞBOðRÞ�=ℏ and dν;e0ðRÞ ¼
hφðeÞ

R j∇νφ
ð0Þ
R ir, the nonadiabatic coupling vectors. This

leads to a new expression of ΦRðr; tÞ,

ΦRðr; tÞ ¼ φð0Þ
R ðrÞ þ i

XNn

ν¼1

λ0νðR; tÞ · φð1Þ
R ðrÞ; ðB8Þ

which is exactly Eq. (11) when setting μ2 ¼ 1, to obtain the
physical nuclear mass.
In the framework of NVPT, the perturbation parameter

has been interpreted classically as the nuclear velocity
[23,33,59]. It is worth mentioning here that, when perform-
ing a numerical simulation, such dependence on the nuclear
velocity shall also be correctly accounted for in the
preparation of the initial electronic state. When using
NVPT to perform the calculations, the electronic evolution
is not explicit, in the sense that at each time the electronic
wave function is simply reconstructed using ground-state
properties that are then inserted in Eq. (B8). However,
when NVPT results are (or can be) compared with
quantum-mechanical fully nonadiabatic results, the initial

electronic state cannot be simply prepared in the ground
state, unless the initial nuclear velocity is zero. If this is not
the case, then the first-order contribution in Eq. (B8),
proportional to the finite value of the initial nuclear
velocity, has to be included in the initial condition.
Then, NVPT and nonadiabatic results can be directly
compared, as the same initial conditions are used in both.
Equating the first-order corrections to the BO eigenstate,

from the μ4 and the λ0νðR; tÞ expansion, yields

Φð1Þ
R ðr; tÞ ¼ i

XNn

ν¼1

λ0νðR; tÞ · φð1Þ
R ðrÞ: ðB9Þ

The comparison between the μ4 expansion and NVPT
allows us, first of all, to derive an explicit expression of

φð1Þ
R ðrÞ as given in Eq. (B7) and, second, to decompose the

perturbed state as a sum of independent (linear) responses
to the nonadiabatic perturbations, thus leading to

½ĤBO − ϵð0ÞBOðRÞ�φð1Þ
R;ναðrÞ ¼ ℏ∂ναφ

ð0Þ
R ðrÞ: ðB10Þ

As above, the index ν is used to label the nuclei, and α
labels the Cartesian components of the gradient. This
equation can now be easily solved by employing density
functional perturbation theory as described in Ref. [23].

APPENDIX C: ANALYSIS OF THE
PERTURBATION PARAMETER

The TDVP, defined in Eq. (3), is written using Eq. (11) as

AνðR; tÞ ¼
D
φð0Þ
R þ iμ2

XNn

ν0¼1

λ0ν0 ðR; tÞ · φð1Þ
R;ν0

���
−iℏ∇νφ

ð0Þ
R þ μ2ℏ∇ν

XNn

ν0¼1

λ0ν0 ðR; tÞ · φð1Þ
R;ν0

E
r

:

ðC1Þ

Up to within the linear order in μ2 [or, more precisely,
μ2λ0ν0 ðR; tÞ], this expression is

AνðR; tÞ ¼ −2ℏμ2
Z

dr
XNn

ν0¼1

½λ0ν0 ðR; tÞ · φð1Þ
R;ν0 ðrÞ�∇νφ

ð0Þ
R ðrÞ;

ðC2Þ

where we can use Eq. (B10) to identify the A matrix,

AðRÞ ¼ 2hφð1Þ
R jĤBO − ϵð0ÞBOðRÞjφð1Þ

R i
r
: ðC3Þ

We derive the following expression of the TDVP, namely,

AðR; tÞ ¼ −μ2AðRÞλ0ðR; tÞ: ðC4Þ
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Once again, we keep the term Oðμ2Þ in λ0, but we show
below how it will be included in the definition of the small
parameter λ. Here, AðRÞ is a matrix, thus the double-
underlined notation, with (3Nn × 3Nn) elements, whereas

φð1Þ
R ðrÞ is a vector with (3Nn) components (and each

component is a function of 3Ne electronic coordinates,
r, with parametric dependence on 3Nn nuclear coordinates,
R). We have also written the TDVP and the parameter in
matrix notation, with AðR; tÞ and λ0ðR; tÞ ð3NnÞ-
dimensional vectors. The elements of the A matrix are

Aij
ν0νðRÞ ¼ hφð1Þ

R;ν0ijĤBO − ϵð0ÞBOðRÞjφð1Þ
R;νjir; ðC5Þ

with i, j labeling the Cartesian components and ν0, ν the
nuclei. When using Eq. (B7), the elements of the A matrix
can be written in terms of the nonadiabatic coupling vectors
and of the BO eigenvalues as

Aij
ν0νðRÞ ¼ 2ℏ

X
e≠0

dν0i;e0ðRÞdνj;e0ðRÞ
ωe0ðRÞ ðC6Þ

from which it follows that the A matrix is symmetric. The
A matrix is also positive definite (i.e., for all nonzero real
vectors v, the relation vTA v ≥ 0 holds) with non-negative
diagonal elements, i.e.,

Aii
ννðRÞ ¼ 2ℏ

X
e≠0

jdνi;e0ðRÞj2
ωe0ðRÞ ≥ 0: ðC7Þ

This property is essential for the interpretation of the A
matrix as a position-dependent mass correction. The
components of the TDVP can be expressed in terms of
the components of the A matrix,

AνiðR; tÞ ¼ −μ2
XNn

ν0¼1

X
j¼x;y;z

Aij
νν0 ðRÞλ0ν0jðR; tÞ: ðC8Þ

This expression is used in the definition of the parameter
λ0νiðR; tÞ, given in Eq. (B1),

λ0νiðR; tÞ ¼ M−1
ν λνiðR; tÞ

− μ4M−1
ν

X
ν0;j

Aij
νν0 ðRÞλ0ν0jðR; tÞ; ðC9Þ

where

λνiðR; tÞ ¼ μ2
−iℏ∂νiχðR; tÞ

χðR; tÞ ; ðC10Þ

which, we recall, tends towards a quantity independent of μ
if μ → 0.
Writing Eq. (C9) in matrix form and solving for λðR; tÞ,

we obtain

λðR; tÞ¼ ½Mþμ4AðRÞ�λ0ðR; tÞ¼MðRÞλ0ðR; tÞ; ðC11Þ

where M is a diagonal (3Nn × 3Nn) matrix containing the
masses of the nuclei and we have defined a position-
dependent mass matrix MðRÞ. This equation can be
inverted to obtain

λ0ðR; tÞ ¼ M−1ðRÞλðR; tÞ; ðC12Þ
yielding the TDVP in the form given in Eq. (14),

AðR; tÞ ¼ −μ2AðRÞM−1ðRÞλðR; tÞ; ðC13Þ

with μ4 ¼ 1, where only λ appears.
Equation (C8) shows that the TDVP is at least first order

in the perturbation parameter, and this is the reason why it
is not considered in the definition of the perturbed
electronic Hamiltonian in Eq. (B5). Because of the explicit
dependence of AνðR; tÞ on λ0νðR; tÞ, which is known via
the A matrix, we have been able to isolate the “actual”
small parameter, i.e., λðR; tÞ. In all expressions, however,
we find λ0ðR; tÞ, the matrix product of M−1ðRÞ and
λðR; tÞ, which is a gauge-invariant quantity.
As anticipated in Sec. II E, we now draw connections

between the position-dependent mass corrections derived
in this work and Refs. [12,13]. Starting from a perturbed
Hamiltonian of the type introduced in Ref. [23], namely,
where the perturbation is driven by the nuclear velocity,
Goldhaber [13] identifies a position-dependent inertia
tensor, also discussed there as a metric tensor, exactly as
in Eq. (C6). The tensor diverges as the third power of the
energy difference between the electronic ground state and
the excited states, preventing an adiabaticlike dynamics to
drive nuclear motion too close to a region of degeneracy.
Somehow different are the numerical results proposed by
Kutzelnigg [12]. While the idea of assigning position-
dependent mass corrections to the vibrational and rotational
nuclear degrees of freedom of a diatomic molecule, i.e., Hþ

2

and H2, is similar to the one presented in this work (by
considering the variation of the electronic ground state with
respect to the nuclear position), the numerical results are
not in accordance with our findings. The reason for this is
probably because of the level of electronic structure theory
considered in Ref. [12], i.e., LCAO with noninteracting
electrons.

APPENDIX D: NUCLEAR HAMILTONIAN

In this section, we describe the procedure leading to the
appearance of the position-dependent mass MðRÞ in the
nuclear evolution equation (1) of the exact factorization.
Taking into account the μ4 scaling, the action of the kinetic

energy operator ~̂Tn ¼
P

νμ
4½−iℏ∇ν þAν�2=ð2MνÞ on the

nuclear wave function χðR; tÞ can be written in matrix
form as
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~̂Tnχ ¼ 1

2
½−iℏμ2∇þ μ2A�TM−1½−iℏμ2∇þ μ2A�χ: ðD1Þ

As discussed previously, the terms −iℏμ2∇ areOð1Þ. From
Eq. (C13) for the TDVP, the term μ2A ¼ −μ4AM−1λ is of

order Oðμ4Þ. Using expression (C13), we then identify the
following terms:

~̂Tnχ ¼ 1

2
½ð−iℏμ2∇ÞTM−1ðI − μ4AM−1Þð−iℏμ2∇Þ

− ðμ4AM−1λÞTM−1MðM−1λÞ
þ ðμ4AM−1λÞTM−1ðμ4AM−1λÞ�χ: ðD2Þ

In the second term on the right-hand side, we have again
used the definition of λ to write −iℏμ2∇χ ¼ λχ, and we
have inserted the definition of the identity matrix in the
form I ¼ M−1M. We recall the expression of the posi-

tion-dependent mass matrix, M ¼ M þ μ4A, leading to
the kinetic energy operator in the nuclear Hamiltonian (1),

~̂Tnχ ¼ 1

2
ð−iℏμ2∇ÞTM−1ð−iℏμ2∇Þχ

−
1

2
μ4ðM−1λÞTAðM−1λÞχ; ðD3Þ

where only the position-dependent mass (and mass cor-
rection) appears. In the second term on the right-hand side,
we have used the property of the A matrix of being
symmetric; thus, AT ¼ A. It is interesting to note that
no approximation has been invoked in deriving Eq. (D3)
from Eq. (D1). The second term in Eq. (D3) is Oðμ4Þ, and
there is no additional contribution of the same order in ~̂Tn.
We now turn to the TDPES, ϵðR; tÞ, appearing in the

nuclear Hamiltonian from the exact factorization, in
Eq. (1). We shall see that in its expansion up to order
μ4, a kineticlike contribution, which can be identified as the
induced electronic kinetic energy due to the nuclear
motion, exactly balances the second term in Eq. (D3).
We first write the expression of hΦRðtÞjĤBOjΦRðtÞir up

to terms in μ4, when the electronic wave function is
expanded as

ΦRðr; tÞ ¼ φð0Þ
R ðrÞ þ μ2λ0ðtÞφð1Þ

R ðrÞ
þ μ4λ02ðtÞφð2Þ

R ðrÞ: ðD4Þ

Here, we use a simplified notation, also using the property
that the only time dependence in the electronic wave
function appears via λ0νðR; tÞ. Using this form of the
electronic wave function, we write

hΦRðtÞjĤBOjΦRðtÞir
¼ ϵð0ÞBOðRÞ þ μ4λ02ðtÞhφð1Þ

R jĤBOjφð1Þ
R ir

þ μ4λ02ðtÞϵð0ÞBOðRÞ½hφð2Þ
R jφð0Þ

R ir þ hφð0Þ
R jφð2Þ

R ir�
þOðμ6Þ; ðD5Þ

and, by using the partial normalization condition up to
within second order,

hφð0Þ
R jφð0Þ

R ir þ μ4λ02ðtÞhφð1Þ
R jφð1Þ

R ir þ μ4λ02ðtÞhφð2Þ
R jφð0Þ

R ir
þ μ4λ02ðtÞhφð0Þ

R jφð2Þ
R ir ¼ 1; ðD6Þ

we find

hφð2Þ
R jφð0Þ

R ir þ hφð0Þ
R jφð2Þ

R ir ¼ −hφð1Þ
R jφð1Þ

R ir ðD7Þ

since the normalization condition is already satisfied at
zeroth order. We insert this result in Eq. (D5) to obtain

hΦRðtÞjĤBOjΦRðtÞir
¼ ϵð0ÞBOðRÞ þ μ4λ02ðtÞhφð1Þ

R jĤBO − ϵð0ÞBOðRÞjφð1Þ
R ir

þOðμ6Þ: ðD8Þ

In the second term on the right-hand side, we identify theA
matrix, and we thus write

hΦRðtÞjĤBOjΦRðtÞir
¼ ϵð0ÞBOðRÞ þ μ4

X
ν;ν0

X
i;j

1

2
λ0νiðR; tÞAij

νν0 ðRÞλ0ν0jðR; tÞ

ðD9Þ

¼ ϵð0ÞBOðRÞ þ μ4
1

2
λ0TðR; tÞAðRÞλ0ðR; tÞ; ðD10Þ

where Eq. (D10) is Eq. (D9) in matrix form. Inserting the
expression of λ0ðR; tÞ in terms of λðR; tÞ given in
Eq. (C12), we can express the second term of Eq. (D10) as

λ0TðR; tÞAðRÞλ0ðR; tÞ
¼ ½M−1ðRÞλðR; tÞ�TAðRÞ½M−1ðRÞλðR; tÞ�;

which exactly cancels the second term on the right-hand
side of Eq. (D3).
The TDPES for the nuclei contains a further term of

order μ4 [see Eq. (6)] referred to as the diagonal BO
correction (DBOC). Altogether, the nuclear Hamiltonian of
Eq. (15) is thus derived (setting μ4 ¼ 1),

Ĥn ¼
1

2
ð−iℏ∇ÞTM−1ðRÞð−iℏ∇Þ þ EðRÞ: ðD11Þ

ON THE MASS OF ATOMS IN MOLECULES: … PHYS. REV. X 7, 031035 (2017)

031035-15



The potential energy is time independent and contains the
BO energy, from the first term in Eq. (D10), and the DBOC,
according to

EðRÞ ¼ ϵð0ÞBOðRÞ þ
XNn

ν¼1

ℏ2

2Mν
h∇νφ

ð0Þ
R j∇νφ

ð0Þ
R ir: ðD12Þ

It is worth noting that the first-order contribution to the
time-dependent potential ϵðR; tÞ is zero; thus, only ϵð0ÞðRÞ,
the zeroth-order term, appears as potential energy in the
nuclear Hamiltonian of Eq. (15). This statement has already
been proven in Ref. [23] using the definition in Eq. (4) and
the expression of the electronic wave function up to within
first-order terms in the perturbation. In between the DBOC
and the position-dependent correction to the mass, all terms
of order μ4 are included in the nuclear Hamiltonian given
in Eq. (D11).
The correspondence principle of quantum mechanics

enables us to determine the classical nuclear Hamiltonian
as

Hn ¼
1

2
PTM−1ðRÞPþ EðRÞ; ðD13Þ

where P ¼ MðRÞ _R is the nuclear momentum.

APPENDIX E: ELECTRONIC MASS
AND THE A MATRIX

The derivation of Eq. (17) uses the property of the BO
electronic wave function of being invariant under a trans-
lation of the coordinate reference system, namely,φð0Þ

R0 ðr0Þ ¼
φð0Þ
R ðrÞ, with R0 ¼R0

1;…;R0
Nn

¼R1þηΔ;…;RNn
þηΔ,

and analogously for r0. Notice that Δ is a three-dimensional
vector and that all positions, electronic and nuclear, are
shifted of the same amount of ηΔ. Translational invariance
[42] means

0 ¼ ∂φð0Þ
R0 ðr0Þ
∂η

¼
X
i¼x;y;z

�XNn

ν¼1

∂φð0Þ
R0 ðr0Þ
∂R0

νi

∂R0
νi

∂η þ
XNel

k¼1

∂φð0Þ
R0 ðr0Þ
∂r0ki

∂r0ki
∂η

�

¼
X
i¼x;y;z

Δi

�XNn

ν¼1

∂φð0Þ
R0 ðr0Þ
∂R0

νi
þ
XNel

k¼1

∂φð0Þ
R0 ðr0Þ
∂r0ki

�

¼ Δ ·

�XNn

ν¼1

∇νφ
ð0Þ
R0 ðr0Þ þ

XNel

k¼1

∇kφ
ð0Þ
R0 ðr0Þ

�
; ðE1Þ

which is valid for all values of Δ. Identifying ∇k as the
position representation of the momentum operator p̂k
corresponding to the kth electron (divided by −iℏ), which
can also be written as

p̂k ¼
im
ℏ
½Ĥ; r̂k� ¼

im
ℏ
½ĤBO; r̂k�; ðE2Þ

and projecting the two terms in square brackets in Eq. (E1)

onto φð1Þ
R;νiðrÞ, from Eq. (B7),

XNn

ν¼1

hφð1Þ
R;ν0ijℏ∇νφ

ð0Þ
R ir ¼

m
ℏ

XNel

k¼1

hφð1Þ
R;ν0ij½ĤBO; r̂k�jφð0Þ

R i; ðE3Þ

we identify theA matrix on the left-hand side and, for each
Cartesian component j, we write

XNn

ν¼1

Aij
ν0νðRÞ ¼ −

m
ℏ

XNel

k¼1

hφð1Þ
R;ν0ij½ĤBO; r̂kj�jφð0Þ

R ir: ðE4Þ

From the term on the right-hand side, we derive the
expression of the atomic polar tensor (APT). First, we write
the commutator explicitly, and we use Eq. (B10) to obtain

hφð1Þ
R;ν0ij½ĤBO; r̂kj�jφð0Þ

R ir
¼

Z
drφð1Þ

R;ν0iðrÞ½ĤBO − ϵð0ÞBOðRÞ�rkjφð0Þ
R ðrÞ ðE5Þ

¼ −ℏ
Z

drð∂ν0iφ
ð0Þ
R ðrÞÞrkjφð0Þ

R ðrÞ: ðE6Þ

Then, we identify the expectation value of the electronic
dipole moment operator over the BO wave function in the
following expression:

∂ν0i

XNel

k¼1

Z
drφð0Þ

R ðrÞrkjφð0Þ
R ðrÞ ¼ 1

e
∂ν0ihμ̂ðelÞj ðRÞi

BO
: ðE7Þ

The derivative with respect to the ith Cartesian component,
relative to the ν0th nucleus, of the jthCartesian component of
the electronic dipole moment is the definition of the
electronic contribution to the APT [43] Pν

ijðRÞ. This leads
to the relation [42,44]

XNn

ν;ν0¼1

Aij
ν0νðRÞ ¼

XNn

ν¼1

m
e
Pν

ijðRÞ ¼ mNelδij; ðE8Þ

when we further sum over the index ν. This result states that
when theAmatrix is summed up over all nuclei, it yields the
total electronic mass of the complete system. In Eqs. (15)
and (D11), this means that the mass effect of the electrons is
completely taken into account by the position-dependent
mass corrections to the nuclear masses within the order of
the perturbation considered here.
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APPENDIX F: SEPARATION OF THE
CENTER OF MASS

We introduce the coordinate transformation

R0
1 ¼ Rc:m: ¼

1

Mtot

�XNn

ν¼1

MνRν þm
XNel

k¼1

hr̂kiBO
�

ðF1Þ

R0
ν ¼ Rν −R1 with ν ≥ 2; ðF2Þ

with the position of the c.m. defined in Eq. (19) and
Mtot ¼

P
νMν þmNel the total mass of the system. Such

coordinate transformation is applied to the kinetic and
potential energy terms in the nuclear Hamiltonian (D11).
Since we need to evaluate the gradient of χ, we have to
compute the Jacobian matrix of the transformation from
Cartesian to internal coordinates. The Jacobian is a
(3Nn × 3Nn) matrix, whose elements are

Jijνν0 ¼
∂R0

νi

∂Rν0j
¼

(
1

Mtot

�
Mν0δij þ m

e P
ν0
ji

�
if ν ¼ 1

−δ1ν0δij þ δνν0δij if ν ≥ 2;
ðF3Þ

with Pν0
ji the electronic APT of Eq. (E7). It can be proved

with some simple, but tedious, algebra that the determinant
of the Jacobian is unity. In Eq. (D11), we replace ∇with ∇0
according to

ð−iℏ∇ÞTM−1ð−iℏ∇Þ ¼ ½JTð−iℏ∇0Þ�TM−1½JTð−iℏ∇0Þ�
¼ ð−iℏ∇0ÞTðJM−1JTÞð−iℏ∇0Þ;

ðF4Þ

where the position-dependent mass in the last term on the
right-hand side depends on R0, namely,

M−1ðR0Þ ¼ JM−1ðRÞJT: ðF5Þ

We rewrite the Jacobian matrix as the sum of two terms,
Jc:m: and Jint: The first three rows of Jc:m: are the same as J,

and thus given by Eq. (F3) for ν ¼ 1, i.e., ðJc.m.Þijνν0 ¼
δν1J

ij
νν0 , with each row composed of 3Nn entries; all other

elements of Jc:m: are zeros. The first three rows of Jint are
zero, and the remaining 3ðNn − 1Þ rows are the same as J,
and thus given by the second expression in Eq. (F3). We
now introduce the operator T , defined as T ij

νν0 ¼ δijδν01,
and we notice that the product of the position-dependent
mass matrix and T yields

MðRÞT ¼ Mtot½Jc.m.�T; ðF6Þ

as we will now prove. First, we recall the expression of the
position-dependent mass matrix,

Mij
νν0 ðRÞ ¼ Mνδνν0δij þAij

νν0 ðRÞ; ðF7Þ

and then we write the matrix product with T as the sum of
their components, namely,

X
j¼x;y;z

XNn

ν0¼1

Mij
νν0 ðRÞT jk

ν0ν00 ¼
�
Mνδik þ

m
e
Pν

ikðRÞ
�
δν001

¼ Mtot½δν001Jikνν00 �T; ðF8Þ

where we used the sum rule of Eq. (18) in the first equality
and Eq. (F3) in the second. We identify the term in square
brackets in the last equality as Jc.m.. Further relations that
will be used below are

Jc.m.T ¼
�
Ið3Þ 0

0 0

�
; ðF9Þ

JintT ¼ 0. ðF10Þ

Equation (F5) is written by introducing the two compo-
nents, c.m. and int, of the Jacobian as

M−1ðR0Þ ¼ Jc.m.M−1ðRÞ½Jc.m.�T þ JintM−1ðRÞ½Jint�T
þ JintM−1ðRÞ½Jc.m.�T þ Jc.m.M−1ðRÞ½Jint�T:

ðF11Þ

Using Eq. (F6), the first term on the right-hand side can be
rewritten as

Jc.m.M−1ðRÞ½Jc.m.�T ¼ 1

Mtot
Jc.m.M−1ðRÞMðRÞT

¼ 1

Mtot
Jc.m.T ; ðF12Þ

and from Eq. (F9), we obtain

1

2
ð−iℏ∇0ÞT ½Jc.m.M−1ðRÞ½Jc.m.�T �ð−iℏ∇0Þ ¼ P̂2

c.m.

2Mtot
:

ðF13Þ

A similar procedure, which uses Eq. (F10), is employed to
show that the cross terms (second and third terms on the
right-hand side) in Eq. (F11) do not contribute to the kinetic
energy. Therefore, the final result reads

Ĥn ¼
P̂2
c.m.

2Mtot
þ 1

2
ð−iℏ∇0ÞTM−1ðR0Þð−iℏ∇0Þ

þ EðR0Þ: ðF14Þ
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APPENDIX G: NUMERICAL DETAILS

1. Proton-transfer model

A model of a proton involved in a one-dimensional
hydrogen bond like O−H−O is considered [45], with
potential

Vðr; RÞ ¼ D½e−2a½ðR=2Þþr−d� − 2e−a½ðR=2Þþr−d� þ 1�
þDc2½e−½ð2aÞ=c�½ðR=2Þ−r−d� − 2e−ða=cÞ½ðR=2Þ−r−d��

þ Ae−BR −
C
R6

: ðG1Þ

Here, r indicates the position of the proton measured
from the center of the O−O bond, and R stands for the
O−O distance. The chosen parameters of the Morse
potential are D¼60kcal=mol, d¼0.95Å, a ¼ 2.52 Å−1;
c ¼ 0.707 makes the potential for the proton asymmetric,
mimicking a strong O−H−O bond. The other parameters
are A ¼ 2.32 × 105 kcal=mol, B ¼ 3.15 Å−1, and C ¼
2.31 × 104 kcal=mol=Å6. The full Hamiltonian of the
system involves Vðr; RÞ and the kinetic energies of the
oxygen atoms and of the proton, namely,

Ĥðr; RO− ; ROþÞ ¼
X
ν¼þ;−

−ℏ2∇2
Oν

2MOν
þ −ℏ2∇2

r

2MH

þ V̂ðr; RO− ; ROþÞ ðG2Þ

¼
X
ν¼þ;−

−ℏ2∇2
Oν

2MO
þ ĤBOðr; RO− ; ROþÞ;

ðG3Þ

where V̂, according to Eq. (G1), depends only on the
distance between the oxygen atoms, R ¼ jRO− − ROþj.
In the static calculations, the adiabatic states have been

computed by diagonalizing the BO Hamiltonian in
Eq. (G3) on a 400 × 400 spatial grid. The eigenvalues of
the full Hamiltonian in Eq. (G2) are determined using a
Gaussian quadrature method with 20 points for R, the
distance between the two heavy atoms, and 34 for r, the
displacement of the proton from the c.m. of the heavy
atoms. When the Hamiltonian with position-dependent
dressed masses is used for computing the eigenvalues, R
is again the distance between the two heavy atoms. In this
case, as described in the text, the BO approximation has
been introduced before separating the c.m. motion, and the
eigenvalues of the Hamiltonian in internal coordinates
[indicated by the prime symbols in Eq. (20)] have been
computed.
In the dynamics, we use the three coordinates, i.e., ROþ ,

RO− , and r ¼ rH, in order to test the conservation of the
position of the c.m. The results in the paper are shown for

the same number of periods in all cases, using the
following: the velocity-Verlet algorithm to integrate the
classical equations, with a time step of 1 fs; the Crank-
Nicolson [49] algorithm for the proton (quantum) equation
in Ehrenfest, with a time step of 10−4 fs; and the Euler
algorithm if the force depends on the velocity [see
Eq. (G7)], with a time step of 0.0625 fs, where the
stability of the integration has been tested based on the
energy conservation. The position of the proton is esti-
mated as the expectation value of the position operator on
the proton wave function at the instantaneous O−O
geometry.

2. Molecular geometries

The position-dependent mass corrections, A matrix,
and the vibrational spectra of the molecular systems of
Sec. IV B have been performed on geometries that have
been optimized with the Gaussian electronic structure
package [56] at the BLYP/aug-cc-pVTZ level. Bond
lengths and angles for the molecules H2O, H3Oþ, NH3,
and CH4 are listed in Table IV, whereas Cartesian coor-
dinates of CH3OH are given in Table V.

3. Calculation of the A matrix

We have computed the A matrix using density func-
tional perturbation theory [25,28–30,50,60] as described
in Ref. [23] and checked that the sum rule of Eq. (18)
is satisfied. The numerical scheme has been implemented
in the electronic structure package CPMD [51]. Calculations

TABLE IV. Optimized geometries of H2O, H3Oþ, NH3, and
CH4 given in internal coordinates, i.e., bonds lengths and angles.

Molecule Coordinate Value

H2O rOH 97.2 pm
∠(HOH) 104.5°

H3Oþ rOH 99.0 pm
∠(HOH) 112.0°

NH3 rNH 102.2 pm
∠(HNH) 106.7°

CH4 rCH 109.4 pm
∠(HCH) 109.5°

TABLE V. Optimized geometry of CH3OH given in Cartesian
coordinates.

Molecule Atom x y z

CH3OH O −0.6937 −0.0071 0.1741
C 0.7177 0.0086 −0.1244
H 1.2358 0.0367 0.8388
H 1.0055 0.8983 −0.7048
H 1.0335 −0.8950 −0.6675
H −1.1832 −0.0322 −0.6644
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have been performed using Troullier-Martins [52]
pseudopotentials in the Becke-Lee-Yang-Parr [53,54]
(BLYP) approximation of the exchange-correlation
kernel. As stated above, the molecular geometry is the
equilibrium geometry at the BLYP level, employing the
aug-cc-pVTZ basis set [55] in the Gaussian electronic
structure program [56].
Remember that the A matrix is a (3Nn × 3Nn) matrix.

For the H2 molecule shown in Table I, the blocks of the
matrix are

� ðAH1H1
Þij ðAH1H2

Þij
ðAH2H1

Þij ðAH2H2
Þij

�
ðG4Þ

and indices i, j running over the Cartesian components x, y,
z. Each block is then a (3 × 3) matrix. The sum rule in
Eq. (18) reads, in this case,

XNn

ν;ν0¼1

Axx
ν0νðRÞ ¼ ½ðAH1H1

Þxx þ ðAH1H2
Þxx

þ ðAH2H1
Þxx þ ðAH2H2

Þxx�
¼ 1.998≃ 2 ðG5Þ

and similarly for the other Cartesian components. This
result is obtained by summing the entries of the matrix in
Table I, and we indeed find the total electronic mass
(me ¼ 1; Nel ¼ 2) of the system as expected from Eq. (18).

4. Normal mode analysis

It is easy to prove that, given a Lagrangian of the form

Lð _R;RÞ ¼ 1

2
_RTMðRÞ _R − EðRÞ; ðG6Þ

TABLE VI. A matrix for H3Oþ. The sum rule yields (9.9997, 9.9997, 9.9997) for i, j ¼ xx, yy, zz, as 10 electrons are present in the
system.

A Oxygen Hydrogen 1 Hydrogen 2 Hydrogen 3

Oxygen 7.7280 0.4013 0.1174 −0.1639 −0.0121 0.1174 0.1639 0.0121
7.7280 0.0227 0.0140 −0.1639 0.3067 −0.0070 0.1639 0.3067 −0.0070

7.4688 0.1232 0.2546 −0.1067 −0.0616 0.2546 0.1067 −0.0616 0.2546

Hydrogen 1 0.2427 0.0073 0.0392 −0.0191 0.0073 −0.0392 0.0191
0.3900 −0.0692 −0.0353 0.0096 −0.0297 0.0353 0.0096 −0.0297

0.2740 0.0162 0.0314 0.0302 −0.0162 0.0314 0.0302

Hydrogen 2 0.3532 0.0638 0.0599 0.0107 0.0373 0.0353
0.2795 0.0346 −0.0373 0.0062 −0.0017

0.2740 −0.0353 −0.0017 0.0302

Hydrogen 3 0.3532 −0.0638 −0.0599
0.2795 0.0346

0.2740

TABLE VII. A matrix for NH3. The sum rule yields (9.9965, 9.9965, 9.9991) for i, j ¼ xx, yy, zz, as 10 electrons are present in the
system.

A Nitrogen Hydrogen 1 Hydrogen 2 Hydrogen 3

Nitrogen 6.8077 0.4125 0.0517 0.2084 −0.0108 0.0517 −0.2083 0.0108
6.8077 −0.0685 −0.0125 0.2083 0.2922 0.0062 −0.2083 0.2922 0.0062

6.6408 0.2059 0.2826 0.1783 −0.1029 0.2826 −0.1783 −0.1029 0.2826

Hydrogen 1 0.4186 0.0121 −0.0663 0.0334 0.0121 0.0663 −0.0334
0.9147 −0.2215 0.0175 0.0403 −0.0492 −0.0175 0.0403 −0.0492

0.4932 −0.0259 0.0535 0.0305 0.0259 0.0535 0.0305

Hydrogen 2 0.7907 −0.2148 −0.1919 0.0543 −0.0419 −0.0593
0.5426 0.1107 0.0419 −0.0020 −0.0043

0.4932 0.0593 −0.0043 0.0305

Hydrogen 3 0.7907 0.2148 0.1919
0.5426 0.1107

0.4932
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the classical Hamiltonian of Eq. (D13) can be derived as its
Legendre transform. Therefore, nuclear motion is classi-
cally governed by the Euler-Lagrange equation

MðRÞR̈ ¼ −∇EðRÞ − 1

2
_RT ½∇MðRÞ� _R: ðG7Þ

This classical equation of motion is integrated using the
Euler algorithm as described in Appendix G. If (i) we use
internal coordinates, since the free motion of the c.m. can
be separated as in Eq. (F14), (ii) we introduce the harmonic
approximation of EðRÞ, and (iii) we neglect the velocity-
dependent term, we obtain

R̈ ¼ −½M−1ðR0ÞKðR0Þ�R; ðG8Þ
with K the Hessian matrix computed from the ground-state
electronic potential. The term in square brackets is evalu-
ated at the equilibrium geometry R0. The diagonalization
of the matrix in square brackets yields corrected νþ Δν
frequencies, as Δν includes the effect of electrons that
follow the motion of the nuclei nonadiabatically, namely,
not instantaneously.

APPENDIX H: A MATRIX
FOR H3O+ , NH3, CH4, CH3OH

At the equilibrium geometries reported in Appendix G 2,
we have determined theAmatrix for H3Oþ, NH3, CH4, and
CH3OH. The matrices are reported in the following tables.
Table VI shows the results for H3Oþ, where the sum rule of
Eq. (17) is verified in the caption of the table. Tables VII,
VIII, and IX similarly report the A-matrices for NH3, CH4,
and CH3OH, respectively. The sum rules are verified in the
captions as well.
The sum rule has been used to determine the number of

digits of the reported values of the elements of the position-
dependent mass correction matrix: We have dropped all
digits for which the sum rule numerically deviates from the
expected value.
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