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Asymptotic analysis of the Berry curvature in the E ⊗ e Jahn-Teller model
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The effective Hamiltonian for the linear E ⊗ e Jahn-Teller model describes the coupling between two electronic
states and two vibrational modes in molecules or bulk crystal impurities. While in the Born-Oppenheimer
approximation the Berry curvature has a delta function singularity at the conical intersection of the potential
energy surfaces, the exact Berry curvature is a smooth peaked function. Numerical calculations revealed that
the characteristic width of the peak is h̄K1/2/gM1/2, where M is the mass associated with the relevant nuclear
coordinates, K is the effective internuclear spring constant, and g is the electronic-vibrational coupling. This
result is confirmed here by an asymptotic analysis of the M → ∞ limit, an interesting outcome of which is the
emergence of a separation of length scales. Being based on the exact electron-nuclear factorization, our analysis
does not make any reference to adiabatic potential energy surfaces or nonadiabatic couplings. It is also shown
that the Ham reduction factors for the model can be derived from the exact geometric phase.
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I. INTRODUCTION

Some polyatomic molecules display a peculiar type of
cyclic vibrational motion in which the molecule passes through
a sequence of distorted configurations that are equivalent
modulo rigid rotations of the whole molecule. Since no real
rotation takes place, such motion is called pseudorotation. A
similar phenomenon occurs for bulk crystal impurities, where
the local crystal structure can distort in various symmetry-
equivalent ways, e.g., the environment of an impurity at an
octahedral site can deform tetragonally in x, y, or z directions.
If the potential barriers between equivalent minimum energy
distorted structures are low enough, the rapid interconversion
between them, known as the dynamical Jahn-Teller effect,
restores the higher symmetry of the undistorted state.

If one tracks the electronic Born-Oppenheimer (BO) wave
function along a closed pseudorotational path in nuclear
coordinate space, choosing its phase so that it always remains
real-valued, one finds that it changes sign after one complete
cycle if the path encircles a conical intersection of the adiabatic
potential energy surfaces. The electronic wave function chosen
this way is therefore a double-valued function of the nuclear
coordinates. The sign change, known as the Longuet-Higgins
phase [1,2], is a special case of the Berry phase [3,4], and
its effects are observable in the vibrational spectroscopy of
pseudorotating molecules [5,6] and electron paramagnetic res-
onance [7–11] and optical [12,13] spectroscopy of transition
metal impurities in bulk crystals. Evidence for the dynamical
Jahn-Teller effect in the excited states of the nitrogen-vacancy
center in diamond has been reported [14–18], making the
Longuet-Higgins phase relevant to its optical properties.
Recent theoretical work has explored the sign change in
the bound states of small molecules by ab initio and model
calculations [19–28].

To see that the Longuet-Higgins phase is a special case of
the Berry phase, one can change from the gauge in which the
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electronic wave function �̃BO
R (r) is real and double-valued to

one in which it is complex and single-valued, i.e., �BO
R (r) =

�̃BO
R (r)exp( i

h̄

∫
Aμ dRμ), where the vector potential Aμ is

chosen so that the Dirac phase factor cancels the sign change
[4]. The Longuet-Higgins phase for the pseudorotational path
C is then recovered by evaluating the Berry phase formula

γ BO = 1

h̄

∮
C

Im
〈
�BO

R |∂μ�BO
R

〉
dRμ, (1)

where ∂μ = ∂/∂Rμ,R = {Rμ} denotes the set of nuclear
coordinates, and the inner product is taken with respect to
electronic coordinates r = (r1,r2, . . .) only. Throughout the
paper, an implicit sum over repeated indices is assumed.
Equation (1) can be transformed to an integral over the Berry
curvature BBO

μν = 2h̄ Im〈∂μ�BO
R |∂ν�

BO
R 〉,

γ BO = 1

h̄

∫∫
S

BBO
μν dRμ dRν, (2)

where S is a surface bounded by C. In the BO approximation,
the Berry curvature is zero except at conical intersections of the
adiabatic potential energy surfaces, where it has delta function
singularities.

In this paper, we consider the Berry curvature calculated
with the conditional electronic wave function from the exact
electron-nuclear factorization [29–31] instead of the BO
wave function and study its asymptotic behavior in the
large mass limit of the E ⊗ e Jahn-Teller model. Jahn-Teller
models, which describe the coupling between electrons and
vibrations, were originally introduced to explain the instability
of electronically degenerate nonlinear polyatomic molecules
to static symmetry-lowering distortions [32,33]. Analytical
results for various Jahn-Teller models have been obtained
using perturbative and asymptotic approximations [1,34–
43], a canonical transformation method in second quantiza-
tion [44–50], and approximations based on coherent states
[51–53].

The motivation for a detailed asymptotic analysis of
the Berry curvature comes from a recent nonadiabatic
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generalization of density functional theory [54], where the
exchange-correlation energy is a functional of the Berry
curvature in addition to the density. Unlike standard density
functional theory [55,56], which depends on the BO approx-
imation, nonadiabatic density functional theory is an exact
theory of electrons and nuclei. Having an explicit formula for
the Berry curvature in a representative model system, as well as
an understanding of how it depends on parameters such as the
nuclear mass and electronic-vibrational coupling, might yield
insights into the Berry curvature dependence of the functional.

However, most of the analytical studies cited above have
focused on approximating the eigenvalue spectrum, as needed
to explain the unique spectroscopic signatures of Jahn-Teller
systems, while the Berry curvature is a property of the wave
function. Our purpose here is to revisit the problem using an
exact factorization-based analysis that it is better suited to
evaluating the Berry curvature. We obtain intuitive and com-
pact formulas for the Berry curvature, nuclear wave function,
and nonadiabatic contributions to the potential energy surface
that are accurate for large nuclear mass. Unlike traditional
analyses that take the BO approximation as a starting point,
our calculations make no reference to the adiabatic potential
energy surfaces and nonadiabatic couplings.

Two key aspects of our analysis are a transformation to
coupled nonlinear differential equations and the emergence
of a separation of length scales. These two features justify
our use of different approximations in different regions of
nuclear configuration space. The separation of length scales
may be of interest beyond the E ⊗ e Jahn-Teller model
because it suggests that the Berry curvature, as a function
that is nonzero only in the immediate neighborhood of the
conical intersection, might have effectively higher symmetry
than other variables, e.g., the nuclear wave function. Such
emergent symmetry might be relevant to understanding the
structure of functionals in nonadiabatic density functional
theory. In fact, our present results for the high-symmetry
linear E ⊗ e Jahn-Teller model can be used to self-consistently
incorporate nonadiabatic effects into density functional theory
calculations of lower symmetry systems [57]. Our analysis is
nonperturbative, as the M → ∞ limit is a singular limit of
the Schrödinger equation.

In Sec. II we review the definition of the Berry curvature
beyond the BO approximation. In Sec. III we introduce
the linear E ⊗ e Jahn-Teller Hamiltonian and derive the
coupled electronic and nuclear Schrödinger equations within
the exact factorization scheme. Approximations to the nuclear
wave function and the Berry curvature are derived from an
asymptotic analysis in Sec. IV. Nonadiabatic terms in the
potential energy surface are investigated in Sec. V. Finally,
a relationship between Ham reduction factors and the beyond-
BO molecular Berry phase is derived in Sec. VI.

II. EXACT BERRY CURVATURE

Since the BO ansatz �BO
R (r)χBO(R) is an approximation to

the true electron-nuclear wave function �(r,R), the Longuet-
Higgins phase only approximately characterizes the latter
[30] and is actually an artifact in some cases [26]. An exact
molecular geometric phase can be defined by replacing �BO

R (r)
in Eq. (1) by the conditional electronic wave function �R(r) =

FIG. 1. Adiabatic potential energy surfaces for the linear E ⊗ e

Jahn-Teller model with respect to vibrational normal mode coordi-
nates Q2 and Q3.

�(r,R)/χ (R) derived within the exact factorization scheme,
where χ (R) = eiS(R)[

∫ |�(r,R)|2 dr]
1/2

is the nuclear wave
function with arbitrary phase S(R) [26,28,30,31]. Calculations
for a model pseudorotating triatomic molecule found that the
exact geometric phase deviates from the Longuet-Higgins
phase of π due to nonadiabatic effects near the conical
intersection of the adiabatic potential energy surfaces [28]. To
understand these deviations, we write the molecular geometric
phase as a surface integral over the exact Berry curvature
Bμν = 2h̄ Im〈∂μ�R|∂ν�R〉:

γ = 1

h̄

∫∫
S

Bμν dRμ dRν. (3)

If the coordinates Rμ are chosen so that the conical intersection
lies in the (R1,R2) plane, the so-called “branching plane,”
then the relevant elements of the Berry curvature are B12

and B21 = −B12. While B12 is a delta function in the BO
approximation, an exact calculation shows that the delta
function gets broadened into a smooth peaked function while
its integrated weight is preserved. Hence, for a finite surface
S, γ will generally be less then γ BO. The peak in B12 is
centered on the conical intersection and has a characteristic
width of order h̄K1/2/gM1/2 for large M, where M is
the nuclear mass, K is the effective spring constant of the
internuclear repulsion, and g is the electronic-vibrational
coupling [28]. The exact Berry curvature must reduce to the
adiabatic Berry curvature as M → ∞, but it is a nontrivial
problem to determine its functional form as it sharpens and
contracts to a delta function in this limit.

III. LINEAR E ⊗ e JAHN-TELLER MODEL

Some molecules and bulk crystal impurities can be ap-
proximated by an effective Hamiltonian, called a Jahn-Teller
or vibronic coupling model [32,33], comprising just a few
relevant electronic states and vibrational modes. The simplest
such model in which one observes a nontrivial Berry curvature,
the linear E ⊗ e Jahn-Teller model, consists of an electronic
doublet E linearly coupled to a twofold degenerate vibrational
mode e. Its adiabatic potential energy surfaces are shown in
Fig. 1 as a function of the vibrational normal mode coordinates,
denoted Q2 and Q3. The conical intersection at the origin
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occurs for a high-symmetry nuclear configuration, e.g., the
equilateral geometry of a triatomic molecule such as Na3. Due
to the electronic-vibrational (vibronic) coupling, any static
displacement from the origin lifts the electronic degeneracy.
For purely linear vibronic coupling, the potential energy
surfaces are cylindrically symmetric since the interaction is
isotropic. In molecules and crystal defects, quadratic and
higher-order vibronic interactions as well as the coupling to
additional electronic states cause a warping of the potential
energy surfaces that breaks rotational symmetry (see, e.g.,
Refs. [58] and [59]). These effects are not considered here as
they can be accounted for in ab initio calculations, and our
primary focus is on the behavior of the nonadiabatic Berry
curvature near the origin, where the linear vibronic coupling
dominates.

The linear E ⊗ e Jahn-Teller model Hamiltonian is

Ĥ = − h̄2

2M

(
d2

dQ2
2

+ d2

dQ2
3

)
+ K

2

(
Q2

2 + Q2
3

) + Ĥen, (4)

where the linear electronic-vibrational coupling is

Ĥen = g

(
Q2 −Q3

−Q3 −Q2

)
(5)

in a basis of electronic states {|u〉,|g〉} that are odd or even
with respect to Q3 reflection. Defining cylindrical coordinates
Q =

√
Q2

2 + Q2
3 and η = tan−1(Q3/Q2) and applying the

unitary transformation Û = ((i, − i),(1,1))/
√

2 yields the
Hamiltonian in the basis of current-carrying electronic states
|±〉 = (|g〉 ± i|u〉)/√2 as

Ĥ ′ = − h̄2

2M

(
1

Q

d

dQ
Q

d

dQ
+ 1

Q2

d2

dη2

)
+ K

2
Q2 + Ĥ ′

en

(6)

with

Ĥ ′
en = Û †ĤenÛ = g

(
0 −Qe−iη

−Qeiη 0

)
. (7)

To simplify the analysis, we will exploit the electronic-
vibrational (vibronic) symmetry of the model [1,60,61]. First,
define an operator τ̂z such that

τ̂z|±〉 = ±|±〉. (8)

The electronic angular momentum operator l̂z = h̄
2 τ̂z has

eigenvalues l = ±h̄/2. We then define a pseudorotational
angular momentum operator L̂z = −ih̄∂/∂η and the total
angular momentum operator

Ĵz = L̂z + l̂z. (9)

Since Ĵz commutes with the Hamiltonian, all states can be
labeled by the quantum number j = m + l, which takes the
values ±1/2, ± 3/2, ± 5/2, . . .. Only states with the same
value of j are coupled. Ĵz is the generator corresponding to
the rotational symmetry of the model. The general form of a
state with quantum number j is

|�j (Q,η)〉 =
(

aj (Q)ei(j− 1
2 )η)

bj (Q)ei(j+ 1
2 )η)

)
. (10)

The ground state is a j = ±1/2 doublet. Our calculations
will be made for the j = 1/2 state |�〉 = a|+〉 + beiη|−〉,
where here and hereafter we suppress the subscript j . The
Schrödinger equation becomes[

− h̄2

2M

(
1

Q

d

dQ
Q

d

dQ

)
+ K

2
Q2

](
a

b

)

+
(

0 −gQ

−gQ h̄2/2MQ2

)(
a

b

)
= E

(
a

b

)
, (11)

which is a linear system of differential equations for the
functions a = a(Q) and b = b(Q), which are additionally
required to satisfy the normalization condition∫ 2π

0
dη

∫ ∞

0
(a2 + b2)QdQ = 1. (12)

Using the exact factorization scheme [29–31], we define
the nuclear wave function

χ = χ (Q) =
[∫

�∗(r,R)�(r,R) dr

]1/2

=
√

a2 + b2 (13)

and the conditional electronic wave function

|�R〉 = |�(Q,η)〉
χ (Q)

=
(

cos θ
2

sin θ
2 eiϕ

)
, (14)

where the subscript R denotes a parametric dependence on the
nuclear coordinates R = (Q,η) and |�R〉 has been expressed
in terms of the Bloch sphere angles

θ = θ (Q) = 2 tan−1 b

a
and ϕ = η. (15)

The exact factorization scheme converts the original full
Schrödinger equation into separate electronic and nuclear
Schrödinger equations [30]. For the present model, the nuclear
equation is found to be

− h̄2

2M

[
1

Q

d

dQ
Q

d

dQ
− 1

Q2
sin4 θ

2

]
χ + E(Q)χ = Eχ,

(16)

where the second term in the brackets is A2
η(Q) with Aη(Q) =

h̄ Im〈�R|∂η�R〉. The scalar potential E(Q) is

E(Q) = K
2

Q2 − gQ sin θ + Egeo(Q), (17)

where

Egeo(Q) = h̄2

2M

[
1

4

(
dθ

dQ

)2

+ sin2 θ

4Q2

]
(18)

is a term of geometric origin [28]. The θ dependence of E
accounts for nonadiabatic effects, as will be discussed below.
Since |�R〉 is fully determined by θ and ϕ, and ϕ is a known
function of R, the electronic Schrödinger equation can be
replaced by the following differential equation:

Q2 d2θ

dQ2
+

(
1 + Q

d ln |χ |2
dQ

)
Q

dθ

dQ
− sin θ

+ 4gM
h̄2 Q3 cos θ = 0, (19)
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which can be derived from the Euler-Lagrange equation for the
stationarity of E or directly from the Schrödinger equation. We
observe that the d2θ/dQ2 and dθ/dQ terms come from the
first term of Egeo, the sin θ term comes from the sum of A2

η

and the second term of Egeo, and the last term comes from the
coupling gQ sin θ .

We have thus transformed the original Schrödinger equa-
tion, Eq. (11), into a pair of coupled nonlinear equations, one
for the nuclear variable χ and one for the electronic variable θ .
This transformation can be realized as the simple change of
variables (a,b) → (χ,θ ).

To obtain the ground state, we need to solve Eqs. (16)
and (19) subject to the inner and outer boundary conditions,
θ (0) = 0 and θ (∞) = π/2, and the normalization condition in
Eq. (12). The inner boundary condition is necessary in order for
the j = 1/2 state to have bounded energy, since the rotational
energy〈

�

∣∣∣∣ − h̄2

2MQ2

d2

dη2

∣∣∣∣�
〉

=
∫ ∞

0
dQ

πh̄2χ2

MQ
sin2 θ

2
(20)

diverges unless either χ (0) = 0 or θ (0) = 0. It will later be
shown that χ (0) 
= 0, so we must have θ (0) = 0. The outer
boundary condition is necessary in order to obtain the ground
state: since Eq. (11) reduces to the BO equation in the Q → ∞
limit, the solution must converge to the lower energy BO state,
implying a(∞) = b(∞) and hence the boundary condition
θ (∞) = π/2.

Even before solving the differential equations, we can eval-
uate the Berry curvature and molecular Berry phase in terms
of θ (Q) and discuss the consequences of the inner and outer
boundary conditions. Since the nuclear configuration space
is two-dimensional, the Berry curvature can be represented
as a 2 × 2 matrix. Since it is an antisymmetric matrix, it is
completely determined by the single element

BQ2Q3 = 1

Q
BQη = h̄

2

1

Q
sin θ

dθ

dQ
. (21)

The electronic variable θ (Q) determines the shape of the
Berry curvature as a function of Q. Figure 2 shows that θ (Q)
develops a sharp step at Q = 0 in the M → ∞ limit. As
θ (Q) approaches a step function, the Berry curvature
BQ2Q3 (Q) approaches a delta function, thus recovering the
BO result. The nonadiabatic effects captured by θ (Q) are
responsible for smearing out the delta function to the smooth
function BQ2Q3 (Q) [28].

The molecular geometric phase for a circular path C with
radius Q in the (Q2,Q3) plane can be evaluated according to
Eq. (2) as

γ (Q) = 1

h̄

∫ 2π

0
dη

∫ Q

0
dqBQη(q)

= π [1 − cos θ (Q)]. (22)

The inner boundary condition θ (0) = 0 forces the exact
geometric phase to vanish as Q→ 0, in contrast to the
adiabatic case where the Longuet-Higgins phase remains
equal to π for any finite Q > 0, no matter how small. The
vanishing of the geometric phase coincides with a transfer
of angular momentum from nuclei to electrons as Q → 0.
Since we have chosen a gauge in which χ is real, we have

FIG. 2. Nuclear wave function χ (Q) and the electronic variable
θ (Q) for increasing values ofM (light red to dark red). The minimum
of the adiabatic potential energy surface occurs at Q/Q0 = 1.

the identity 〈�R|L̂z|�R〉 + 〈�R|l̂z|�R〉 = h̄/2. The second
term, 〈�R|l̂z|�R〉 = (h̄/2) cos θ , is the angular momentum
carried by the electrons, conditional on Q. Since θ (0) = 0,
the electrons carry the full angular momentum of the state
when Q = 0. The conditional angular momentum carried
by the nuclei is directly related to the geometric phase via
〈�R|L̂z|�R〉 = h̄(γ /2π ).

As a consequence of the outer boundary condition θ (∞) =
π/2, the exact geometric phase γ approaches π as Q→ ∞,
recovering the Longuet-Higgins phase. This proves that
although the Berry curvature is spread out by nonadiabatic
effects, its integral over all space, h/2, is conserved.

IV. LARGE MASS LIMIT

A. Overview of approximation strategy

Before beginning the calculations, we briefly summarize
our strategy and introduce the length scales needed to analyze
the M → ∞ limit.

The exact factorization scheme transforms the original
Schrödinger equation into coupled nonlinear differential
equations, Eqs. (16) and (19), for the functions χ (Q) and
θ (Q). Since most asymptotic methods are designed for linear
differential equations, it appears that the exact factorization
equations will be even more difficult to approximate than the
original Schrödinger equation. However, a key feature of these
exact factorization equations is the emergence, as M → ∞,
of a separation of length scales that is not manifest in the linear
equations. As visible in Fig. 2, χ (Q) becomes localized in the
classically allowed region near Q = Q0, where Q0 ≡ g/K
is the radius at which the adiabatic potential energy surface
reaches its minimum, while θ (Q) is essentially constant
throughout that region and undergoes significant changes only
near the origin, i.e., on a much shorter length scale. We will
denote the region near the origin where θ (Q) rises from 0 to

062503-4



ASYMPTOTIC ANALYSIS OF THE BERRY CURVATURE IN . . . PHYSICAL REVIEW A 96, 062503 (2017)

π/2 as the inner region and all larger Q as the outer region;
these regions are depicted in Fig. 2.

In the outer region, θ (Q) is readily approximated by a
slowly varying function. Substituting an approximate θ (Q)
into the equation for χ (Q), Eq. (16), yields a linear differential
equation that can be approximated by standard semiclassical
methods. In the inner region, an adequate zeroth-order approx-
imation for χ (Q) and θ (Q) can be obtained by neglecting the
gQ and (K/2)Q2 terms in Eq. (16). Matching the inner and
outer approximations gives a global approximation to χ (Q),
which can then be used in the equation for θ (Q). To make
these arguments more precise, we now define the relevant
length scales and a dimensionless small parameter ε.

The two relevant length scales in the outer region are Q0

and the amplitude of zero-point motion

Qzp =
(

h̄2

KM

)1/4

. (23)

A dimensionless small parameter that quantifies the degree of
localization of χ (Q) is the ratio

ε =
(

Qzp

Q0

)2

= h̄K3/2

g2M1/2
. (24)

The M → ∞ limit can be realized by taking the limit ε → 0.
This dimensionless parameter can be equivalently expressed as
ε = h̄�/2�, i.e., the ratio of the zero-point energy h̄�/2 to the
Jahn-Teller stabilization energy � ≡ g2/2K; the fundamental
frequency is � ≡ √

K/M. Longuet-Higgins et al. defined a
parameter k quantifying the strength of electronic-vibrational
coupling in the adiabatic potentials (1/2)r2 ± kr , where r is
a dimensionless radial coordinate [1]. Since k = ε−1/2, their
strong coupling limit k → ∞ is equivalent to our ε → 0 limit.

The relevant length scale in the inner region is the
characteristic length, denoted as Qwidth, over which θ (Q) rises
from 0 to π/2. This gives the characteristic width of the peak
in the Berry curvature. The analysis in the following section
will demonstrate that

Qwidth = h̄K 1
2

gM 1
2

, (25)

which is consistent with the numerical results of Ref. [28].
Since Qwidth = εQ0 and Qzp = ε1/2Q0, we have the hierarchy
of length scales Qwidth � Qzp � Q0.

B. Asymptotic analysis in the outer region

To analyze the outer region, we first perform a change of
variables to bring the nuclear equation to the standard form
of the Wentzel-Kramers-Brillouin (WKB) method so that it
can be approximated by the method of comparison equations
[62–64]. After changing the independent variable to q =
Q/Q0, Eqs. (16) and (19) become

−ε2

(
1

q

d

dq
q

d

dq
− 1

q2
sin4 θ

2

)
χ + E

�
χ = E

�
χ (26)

and

q2 d2θ

dq2
+

(
1 + q

d ln |χ |2
dq

)
q

dθ

dq
− sin θ

+ 4

ε2
q3 cos θ = 0 (27)

with

E
�

= q2 − 2q sin θ + ε2

[
1

4

(
dθ

dq

)2

+ sin2 θ

4q2

]
. (28)

Next, changing the dependent variable to μ = q1/2χ , the
nuclear equation becomes

d2μ

dq2
+ 1

ε2

[
E

�
− E

�
− ε2

q2

(
sin4 θ

2
− 1

4

)]
μ = 0, (29)

which is in standard WKB form. The method of comparison
equations provides an approximation that is asymptotic to the
exact solution in the ε → 0 limit, but unlike the WKB solution,
it is uniformly valid across both turning points, so there is no
need to use connection formulas to relate the solutions in
classically allowed and classically forbidden domains. Having
a uniform approximation is an advantage if one needs to
evaluate integrals over the solutions, as we do in Sec. VI.

Although Eq. (29) is linear in μ, it depends nonlinearly on θ

through E and the sin4(θ/2) term. To see how to approximate
θ in the outer region, consider Eq. (27) and recall the outer
boundary condition θ (∞) = π/2. Since θ (q) is approximately
constant, a dominant balance [65] is achieved by neglecting
the first two terms in Eq. (27). Hence, the lowest-order outer
approximation is

θout,0 = tan−1 4q3

ε2
+ O(ε3). (30)

An effective potential Eeff,out(q) in Eq. (29) can be identified
by combining the centrifugal potential with E(q). Substituting
θout,0 into Eeff,out and expanding in ε gives

Eeff,out(q)

�
= q2 − 2q sin θ + ε2

[
1

4

(
dθ

dq

)2

+ sin2 θ

4q2

]

+ ε2 sin4 θ
2 − 1

4

q2

= q2 − 2q + ε2

4q2
− ε4

16q5
+ O(ε6). (31)

Keeping only the terms up to O(ε2) corresponds to setting
θ = π/2 and gives the equation

d2μ0

dq2
+ 1

ε2
p2(q)μ0 = 0, (32)

with

p2(q) = E

�
− q2 + 2q − ε2

4q2
. (33)

The last term comes from the second term of Egeo and the
centrifugal potential ε2[sin4(θ/2) − 1/4]/q2.

The idea behind the method of comparison equations is to
choose an exactly solvable reference equation (the so-called
comparison equation) that resembles the original equation in
the sense that it has the same number and type of turning
points. In the present case, we choose

d2U

dX2
+ 1

ε2
P 2(X)U = 0; P 2(X) = 2J − X2. (34)
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This is similar to Eq. (32) because P 2(X), like p2(q), has
two simple turning points. It describes a harmonic oscillator
with energy J = 1

2 (P 2 + X2). The ground state is

U (X) = 1√
2πQ0

(
1

πε

)1/4

e−X2/2ε, (35)

which implies the following approximation for μ0(q):

μ0(q) = Nout√
2πQ0

(
1

πε

)1/4(
dX

dq

)−1/2

e−X2(q)/2ε, (36)

where Nout is a normalization constant and X = X(q) is
defined implicitly via [62]∫ X

−√
2J

P (X′) dX′ =
∫ q

q1

p(q ′) dq ′. (37)

The lower limits of the integrals are the turning points
defined by P (−√

2J ) = 0 and p(q1) = 0. The right-hand side
depends on the energy eigenvalue E, a first estimate for which
can be obtained from the semiclassical Bohr-Sommerfeld
quantization condition (for n = 0)

1

ε

∫ q2

q1

p(q) dq = π

2
. (38)

With p(q) given by Eq. (33) this integral can be evaluated
analytically. If we neglect the ε2/4q2 term of p(q), it gives

E0 = −� + h̄�

2
, (39)

which is simply the sum of the Jahn-Teller stabilization energy
and the zero-point energy of radial motion. Since∫ +√

2J0

−√
2J0

P (X) dX = πJ0, (40)

Eqs. (37) and (38) imply J0 = ε/2. To determine E sys-
tematically to higher order, two solutions should be matched
together in the classically allowed region: one originating from
a solution that decays to the left and the other from a solution
that decays to the right. However, the error in the semiclassical
energy is here only O(ε4), which is small enough for our
purposes.

We now derive the function X = X(q) according to the
definition in Eq. (37). The function X(q) acts as a kind
of deformation function, accounting for the perturbation of
the harmonic oscillator wave function due to the repulsive
potential ε2/4q2. The left-hand side of Eq. (37) can be
evaluated exactly to give∫ X

−√
2J

P (X′) dX′ = 1

2
XP + J

[
π

2
+ tan−1 X

P

]
. (41)

The right-hand side can be evaluated in terms of elliptic
functions, but the result is too lengthy to record here. Thus,
we can construct X = X(q) by equating the analytical results
for the left- and right-hand sides of Eq. (37) and finding
the solution numerically. The zeroth-order approximation
is X0(q) = q − 1. Since the repulsive potential is a small
perturbation for q  ε, dX/dq is slowly varying for large
q. In Fig. 3 we plot X(q) − X0(q), which shows the small but
crucial O(ε2) contribution to X(q).

FIG. 3. The function X1(q) = X(q) − X0(q) for ε2 = 0.0025.

Substituting the function X = X(q) into Eq. (36) and
changing back to the dependent variable χ gives

χout,0(q) = Nout√
2πqQ0

(
1

πε

)1/4(
dX

dq

)−1/2

e−X2(q)/2ε. (42)

In Fig. 4 χout,0(q) is compared with the exact function χexact(q).
The error, O(ε4), which is too small to be seen in Fig. 4, will
be shown in Fig. 6. The approximations for θout and χout could
be systematically improved by keeping higher powers of ε in
Eqs. (27) and (29).

The differential equation for θ (q) depends only on
d ln χ2/dq, i.e., the relative rate of change of χ as opposed
to its actual value. Figure 5 shows the exact d ln χ2/dq for
several values of ε. The asymptotic behavior for large q is
2(1 − q)/ε, consistent with χ (q) approaching a Gaussian [1]

χ (q) = 1√
2πqQ0

(πε)−1/4e−(q−1)2/2ε (43)

as ε → 0. It is worth noting the following simple approxima-
tion to d ln χ2/ds:

d ln χ2

ds
= βs

(1 + s)(1 + s2)
+

[
2(1 − εs) − 1

1 + s

]
s2

1 + s2
,

which was constructed to have the correct asymptotic behavior
in the limits s → 0 and s → ∞; β is a constant determined
in the next section. The maximum error 0.05 is approximately
independent of ε.

FIG. 4. The exact function χexact(q) (black) and the approxima-
tion χout,0(q) (red dashed).
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FIG. 5. The function d ln χ 2/dq is plotted for the series of values
ε = ( 1

120 , 1
100 , 1

80 , 1
60 , 1

40 , 1
20 ) (dark red to light red).

C. Asymptotic analysis in the inner region

To set up the equations in the inner region, we make
a sequence of changes to the independent and dependent
variables. First, the independent variable is changed to s =
Q/Qwidth, where Qwidth is the natural length scale for the inner
region. Equations (16) and (19) become

1

s

d

ds
s
dχ

ds
+

(
E

�
− Eeff,in

�

)
χ = 0 (44)

with

Eeff,in

�
= 1

4

(
dθ

ds

)2

+ sin2 θ
2

s2
− 2εs sin θ + ε2s2 (45)

and

s2 d2θ

ds2
+

(
1 + s

d

ds
ln |χ |2

)
s
dθ

ds
− sin θ + 4εs3 cos θ = 0.

(46)

Following Ref. [66], we apply the Langer transformation
s = ex [64], which takes the independent variable s restricted
to the half line to a variable x whose domain is the real axis.
Defining χ̃ (x) = χ (ex) and θ̃(x) = θ (ex), Eqs. (44) and (46)
transform to

d2χ̃

dx2
+ k̃2(x)χ̃ = 0 (47)

with

k̃2(x) = E

�
e2x − 1

4

(
dθ̃

dx

)2

− sin2 θ̃

2

+ 2εe3x sin θ̃ − ε2e4x (48)

and

d2θ̃

dx2
+ d ln |χ̃ |2

dx

dθ̃

dx
− sin θ̃ + 4εe3x cos θ̃ = 0. (49)

The θ̃ dependence in Eq. (47) accounts for nonadiabatic
effects. The rate of decay of χ̃ as x → −∞ is not only
controlled by (E/�)e2x but also by (dθ̃/dx)2 and sin2(θ̃/2),
since the latter two terms will be seen to be proportional to
e2x . Hence, nonadiabatic effects crucially influence the rate of
decay of χ̃(x) as x → −∞.

FIG. 6. The error χuniform(q) − χexact(q).

We have applied the method of comparison equations in the
inner region following Ref. [66]; however, to obtain a simple
zeroth-order approximation to Eqs. (47) and (49), it is more
convenient to go back to the linear equations for the dependent
variables a and b. After changing the independent variable to
s = Q/Qwidth, Eq. (11) transforms to

1

s

d

ds
s

d

ds

(
a

b

)
−

(
ε2s2 −2εs

−2εs s−2 + ε2s2

)(
a

b

)
= E

�

(
a

b

)
.

To zeroth order in ε, the equations for a and b decouple into
separate equations for a free particle in cylindrical symmetry
[41]. The solutions are the Bessel functions

a0(s) = AI0

(√
−E

�
s

)
, (50)

b0(s) = BI1

(√
−E

�
s

)
. (51)

From these solutions we can define χin,0 =
√

a2
0 + b2

0 . To
fix the undetermined coefficients A and B, we match the
inner and outer χ and their derivatives dχ/ds at s = 1.
Patching together the outer approximation in Eq. (42) and
the inner approximation χin,0(s) defines a compact, uniform
approximation χuniform(s), whose O(ε4) error is shown in Fig. 6
for ε2 = 0.0025.

As anticipated from Fig. 2, θ (s) is approximately linear
for small s. The proportionality constant α is related to the
energy eigenvalue E/� and the rate of growth of χ (s). We will
demonstrate this by first assuming θ (s) = αs in Eq. (44) and
subsequently verifying the self-consistency of this assumption.
Since the sum of the geometric and centrifugal terms in
Eeff,in(s) then simplifies to

1

4

(
dθ

ds

)2

+ sin2 θ
2

s2
= α2

2
, (52)

the solution to Eq. (44) within this approximation is

χ (s) ∼ I0(
√

βs). (53)

The constant β = α2/2 − E/� relates the rate of growth of
χ (s) to α and E/�. Neglecting the d ln χ2/ds term in Eq. (46)
for small s gives, to zeroth order in ε,

s2 d2θ

ds2
+ s

dθ

ds
− θ = 0, (54)
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which has a solution θ = αs satisfying the inner boundary
condition. This confirms the self-consistency of the assump-
tion.

D. Analytical expression for the Berry curvature

The uniform approximation to χ (q) derived in the previous
section provides a compact and physically intuitive expression
that accurately incorporates nonadiabatic effects near the
conical intersection. It has proved difficult to derive a similar
approximation for θ (s) due to the nonlinearity of its differential
equation. Moreover, since θ (s) is defined in terms of the ratio
of two small quantities, a(s) and b(s), it is also challenging to
approximate starting from the linear equations. In this section,
we propose a one-parameter approximation that provides an
accurate fit to θ (s) over a range of ε.

The approximation we propose is

1 − cos θ (s) = [1 + (s/s0)−ν]−μ. (55)

To determine the parameters, we require that θ (s) has the
correct local behavior θ (s) ∼ αs as s → 0, where α was
related to the energy eigenvalue in the previous section. This
implies μν = 2 and s0 = √

2/α. Setting μ = 2/ν, the one
remaining parameter ν has been determined as a function of
ε by fitting Eq. (55) to the numerically exact solution. The
resulting ν(ε) is a slowly varying function of ε that can be
accurately fit by

ν = 2.436 + 0.225 ε1/2

1 + 0.124 ε1/2
(56)

over the range ε = (0.01,0.5). The above approximation for
θ (s) directly determines the Berry phase in Eq. (22). The
corresponding Berry curvature in Eq. (21) is

BQ2Q3 = h̄

Q2
0ε

2

1

ss0
[1 + (s/s0)−ν]−1−μ(s/s0)−1−ν .

As expected, the Berry curvature is localized at the origin, and
its width in terms of the variable s is s0 = O(1). Translated
back to the original coordinate Q, this implies a width of
order h̄K 1

2 /gM 1
2 , as anticipated in Eq. (25) and confirming

the numerical analysis of Ref. [28].

V. EXACT POTENTIAL ENERGY SURFACE

An important product of the exact electron-nuclear fac-
torization [29–31] is the derivation of a potential energy
surface E(R) which is exact in the sense that when it is used
together with the induced vector potential Aμ(R) in the nuclear
Schrödinger equation, the solution reproduces the nuclear
wave function of the exact electron-nuclear factorization.
Here we examine the nonadiabatic contributions to this exact
potential energy surface in the large mass limit of the linear
E ⊗ e Jahn-Teller model.

Nonadiabatic effects enter solely through the θ dependence
of the exact potential energy surface. Since these effects are
localized near the origin, we will focus on the effective one-
dimensional potential Eeff,in(s) that appears in the differential
equation for χ (s) in the inner region, Eq. (44). Eeff,in(s) is
the sum of E(s) and the centrifugal repulsion sin4(θ/2)/s2,
which originates from the vector potential. If we had an

FIG. 7. The effective potential energy surfaceEeff,in(s) (black) and
BO potential energy surface with (without) the centrifugal potential
[dashed red (dotted blue)] are plotted for ε = 1/20.

uncoupled nuclear equation with angular momentum quantum
number l, the centrifugal repulsion would be l2/s2. However,
as mentioned above, in the E ⊗ e Jahn-Teller model with
l = 1/2 the coupling causes a transfer of angular momentum
from nuclei to electrons as s → 0. The resulting s-dependent
nuclear angular momentum Lz(s)/h̄ = sin2(θ/2) quenches the
divergent centrifugal potential as s → 0, as seen in the exact
surface (black curve) in Fig. 7. In the BO approximation,
θ = π/2 and there is no quenching (dashed red curve).

A second nonadiabatic effect is the smoothing of the
nonanalytic cusp associated with the conical intersection. The
BO potential energy surface without the centrifugal repulsion,
the dotted blue curve in Fig. 7, shows the characteristic linear
dependence near the origin. In the exact surface Eeff,in(s),
the sin θ factor multiplying the bare electronic-vibrational
coupling 2εs changes the linear behavior to a regular quadratic
behavior, since θ ∼ αs.

The remaining nonadiabatic contribution is the following
term of geometric origin [28], which is responsible for the
additional peak in the exact surface near s = 0:

Egeo(s) = 1

4

(
dθ

ds

)2

+ sin2 θ
2

s2
. (57)

We will denote the first term as Egeo,1(s) and the second term as
Egeo,2(s). These contributions are plotted for a series of ε values
in Fig. 8. According to the definition in Eq. (18), the geometric
term Egeo(Q) vanishes as M−1 as M → ∞. Instead, Egeo,1(s)
and Egeo,2(s) are seen to approach universal functions since
Egeo(s) = ε−2Egeo(Q). In fact, Egeo,1(s) and Egeo,2(s) have the
same s = 0 intercept equal to α2/4, though Egeo,2(s) decays
more slowly.

VI. HAM REDUCTION FACTORS

When the induced vector potential Aμ(R) is calculated
with the exact conditional electronic wave function, the
path-dependent geometric phase γ = ∮

Aμ dRμ is an exact
and proper gauge-invariant quantity, but it remains an open
question to identify experiments that can differentiate it from
γ BO. Here we show that Ham reduction factors [36,67,68],
which have long been used to explain the vibronic coupling-
induced weakening of the response of Jahn-Teller systems
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FIG. 8. The geometric contributions Egeo,1 (top panel) and Egeo,2

(bottom panel) to the effective potential energy surface are plotted for
the same series of ε values as in Fig. 5.

to external perturbations such as magnetic fields, spin-orbit
coupling, and strain, can be expressed as integrals of the exact
geometric phase weighted by the nuclear probability density.
This provides a way to infer the difference between γ and γ BO.

To see how electronic-vibrational coupling weakens the
response of the E ⊗ e Jahn-Teller model to external perturba-
tions, first consider the uncoupled problem. By assumption, the
uncoupled electronic states are assumed to be degenerate and
transform as an irreducible representation E of the symmetry
group, which may be, e.g., the D3h group of a triatomic
molecule or the octahedral group Oh of a bulk transition metal
impurity.

In the absence of electronic-vibrational coupling, the action
of a general perturbation on the electronic states of E symmetry
can be represented as

V̂ = V0Î + �V · �̂σ (58)

in the basis {|u〉,|g〉} of electronic states; �̂σ are the Pauli
matrices. The physical effect of the perturbation is fully
described by the matrix elements 〈α|V̂ |β〉; α,β = u,g.

When the electronic-vibrational coupling is turned on, the
electronic states |u〉 and |g〉 evolve into vibronic states |�u〉 and
|�g〉 with the same symmetry as the original electronic states.
Therefore, the coupling preserves the symmetry, but now the
matrix elements describing the response of the system to the
external perturbation V̂ need to be calculated with respect
to |�u〉 and |�g〉. Since the vibronic wave functions contain
electronic and vibrational parts, these matrix elements are
reduced in magnitude with respect to the corresponding purely
electronic matrix elements. The action of the perturbation on
the vibronic states of E symmetry is therefore

V̂ = V0Î + qV1σ1 + pV2σ̂2 + qV3σ3, (59)

where the reduction factors are defined by

p = 〈�u|σ̂2|�g〉
〈u|σ̂2|g〉 (60)

and

q = 〈�u|σ̂1|�g〉
〈u|σ̂1|g〉 = 〈�u|σ̂3|�u〉

〈u|σ̂3|u〉 . (61)

In the linear E ⊗ e Jahn-Teller model, p and q are related by
the identity q = (1 + p)/2 [36].

It is now simple to show that in the linear E ⊗ e Jahn-Teller
model p and q can be expressed in terms of the exact geometric
phase in Eq. (22). In the notations of Sec. III, the expressions
for p and q become

p = 2π

∫ ∞

0
dQQ|χ (Q)|2 cos θ (Q),

q = 2π

∫ ∞

0
dQQ|χ (Q)|2 1 + cos θ (Q)

2
. (62)

Since cos θ (Q) is proportional to the conditional electronic
angular momentum lz(Q), p will be small if the electronic
angular momentum is effectively quenched at all values of Q

for which |χ (Q)|2 is appreciable. This is clearly the case for
the states shown in Fig. 2, as cos θ (Q) is only significantly
different from zero in the classically forbidden region near
the origin where |χ (Q)|2 is exponentially small. Using the
expression for the exact geometric phase in Eq. (22), p can be
expressed as

p =
∫ ∞

0
dQQ|χ (Q)|2

[
1 − γ (Q)

π

]
. (63)

The more rapidly γ (Q) saturates to its asymptotic value, i.e.,
the more localized the Berry curvature, the smaller the value
of p. In the BO limit, p = 0.

VII. CONCLUSIONS

The adiabatic molecular Berry phase depends on the
nonanalyticity implied by conical intersections of BO potential
energy surfaces. Yet points of conical intersection are precisely
where the BO approximation breaks down most severely,
raising doubts about whether the molecular Berry phase would
survive in an exact calculation. In fact, an example was found
in which the molecular Berry phase becomes identically zero
when calculated with the conditional electronic wave function
from the exact factorization scheme instead of the BO wave
function [26]. Hence, the adiabatic molecular Berry phase is
in this case an artifact of the BO approximation.

Spectroscopic signatures of the Berry phase have been ob-
served in Jahn-Teller systems since the 1960s [9–11]. Although
the BO approximation breaks down at conical intersections in
these systems, the effects of the Berry phase are nevertheless
observable because they influence the global behavior of the
conditional electronic wave function far from the point of con-
ical intersection. However, the specific topological character
of the adiabatic Berry phase in Jahn-Teller systems is not a
true and observable feature of the exact wave function [28].

When the Berry phase is calculated with the exact con-
ditional electronic wave function in Jahn-Teller systems, it
becomes a genuinely path-dependent quantity that is close
to but slightly less than π for most paths. The deviation
from π is a nonadiabatic effect that arises because the
Berry curvature—a featureless Dirac delta function in the
BO approximation—gets broadened into a smooth peaked

062503-9



RYAN REQUIST, CÉSAR R. PROETTO, AND E. K. U. GROSS PHYSICAL REVIEW A 96, 062503 (2017)

function in an exact calculation based on Eq. (3). That the
Berry phase is close to π follows from the fact that the Berry
curvature is highly localized so that all but the smallest paths
pick up most of the weight of the peak and thus almost recover
the adiabatic result. In physical terms, the breakdown of the
BO approximation at conical intersections has only a small
perturbative effect on the exact conditional electronic wave
function at faraway points, and since the wave function at
those points is therefore close to the BO wave function, the
value of the Berry phase calculated on a path that stays away
from the conical intersection is close to its BO value.

The precise value of the Berry phase for a given path de-
pends on the detailed shape and extent of the Berry curvature.
One of the main objectives of this paper was to derive an
analytical formula that accurately describes the Berry curva-
ture in the large mass limit of the prototypical linear E ⊗ e

Jahn-Teller model. Although we have found numerically that
the Berry curvature approaches a universal function in the
limit M → 0, we were not able to find its analytical form in
terms of special functions. Nevertheless, we have proposed a
compact formula that we hope will prove helpful in designing
functional approximations in a nonadiabatic generalization of
density functional theory, in which the exchange-correlation
energy depends on the Berry curvature [54].

Since we cannot force the nuclei to move along any given
path, the exact molecular Berry phase can only be inferred from
an observable that will involve an integral over nuclear con-
figuration space of a parametrically R-dependent conditional

variable weighted by the nuclear probability density. It has
been an open question to identify an experimental observable
that clearly distinguishes between the molecular geometric
phase calculated with the exact conditional electronic wave
function from that calculated with the BO wave function. We
have shown here that Ham reduction factors, which describe,
e.g., how electronic-vibrational coupling modifies g-factors in
electron spin resonance experiments, are related to an integral
over the exact molecular geometric phase. Thus, experimental
measurements of Ham reduction factors are sensitive to the
difference between the exact and adiabatic molecular Berry
phases.

Note added. Two articles relevant to dynamical Jahn-Teller
effects and Berry phases have recently appeared. Ribeiro and
Yuen-Zhou explain the reason for ground state degeneracies
in Jahn-Teller models with maximal continuous symmetries
[69]. Thiering and Gali present ab initio calculations for the
dynamical Jahn-Teller induced damping (Ham effect) of the
spin-orbit interaction in diamond nitrogen-vacancy centers
[70].

ACKNOWLEDGMENTS

C.R.P. thanks Consejo Nacional de Investigaciones Cien-
tíficas y Técnicas (CONICET) for partial financial support,
Grant No. PIP 2014-2016, and ANCyT under Grant No. PICT
2016-1087.

[1] H. C. Longuet-Higgins, U. Öpik, M. H. L. Pryce, and R. A.
Sack, Proc. R. Soc. London A 244, 1 (1958).

[2] G. Herzberg and H. C. Longuet-Higgins, Discuss. Faraday Soc.
35, 77 (1963).

[3] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[4] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 70, 2284

(1979).
[5] H. von Busch, V. Dev, H.-A. Eckel, S. Kasahara, J. Wang, W.

Demtröder, P. Sebald, and W. Meyer, Phys. Rev. Lett. 81, 4584
(1998).

[6] G. Delacretaz, E. R. Grant, R. L. Whetten, L. Wöste, and J. W.
Zwanziger, Phys. Rev. Lett. 56, 2598 (1986).

[7] R. E. Coffman, Phys. Lett. 19, 475 (1965).
[8] R. E. Coffman, Phys. Lett. 21, 381 (1966).
[9] F. S. Ham, in Electron Paramagnetic Resonance, edited by

S. Geschwind (Plenum, New York, 1972), p. 1.
[10] R. Englman, The Jahn-Teller Effect in Molecules and Crystals

(Wiley-Interscience, New York, 1972).
[11] F. S. Ham, Phys. Rev. Lett. 58, 725 (1987).
[12] M. D. Sturge, in Advances in Research and Applications, Solid

State Physics, Vol. 20, edited by F. Seitz, D. Turnbull, and H.
Ehrenreich (Academic Press, New York, 1967), p. 91.

[13] M. D. Sturge, Phys. Rev. B 1, 1005 (1970).
[14] G. Davies, J. Phys. C 12, 2551 (1979).
[15] K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B.

Manson, and R. G. Beausoleil, Phys. Rev. Lett. 103, 256404
(2009).

[16] T. A. Abtew, Y. Y. Sun, B.-C. Shih, P. Dev, S. B. Zhang, and P.
Zhang, Phys. Rev. Lett. 107, 146403 (2011).

[17] T. Plakhotnik, M. W. Doherty, and N. B. Manson, Phys. Rev. B
92, 081203(R) (2015).

[18] R. Ulbricht, S. Dong, I.-Y. Chang, B. M. K. Mariserla, K. M.
Dani, K. Hyeon-Deuk, and Z.-H. Loh, Nat. Commun. 7, 13510
(2016).

[19] B. Kendrick, Phys. Rev. Lett. 79, 2431 (1997).
[20] H. Koizumi and I. B. Bersuker, Phys. Rev. Lett. 83, 3009 (1999).
[21] P. B. Allen, A. G. Abanov, and R. Requist, Phys. Rev. A 71,

043203 (2005).
[22] V. Perebeinos, P. B. Allen, and M. Pederson, Phys. Rev. A 72,

012501 (2005).
[23] R. Baer, Phys. Rev. Lett. 104, 073001 (2010).
[24] J. Lee, S. M. Perdue, A. R. Perez, P. Z. El-Khoury, K. Honkala,

and V. A. Apkarian, J. Phys. Chem. A 117, 11655 (2013).
[25] L. Joubert-Doriol, I. G. Ryabinkin, and A. F. Izmaylov, J. Chem.

Phys. 139, 234103 (2013).
[26] S. K. Min, A. Abedi, K. S. Kim, and E. K. U. Gross, Phys. Rev.

Lett. 113, 263004 (2014).
[27] R. Englman, Chem. Phys. Lett. 635, 224 (2015).
[28] R. Requist, F. Tandetzky, and E. K. U. Gross, Phys. Rev. A 93,

042108 (2016).
[29] G. Hunter, Int. J. Quantum Chem. 9, 237 (1975).
[30] N. I. Gidopoulos and E. K. U. Gross, Philos. Trans. R. Soc.

London A 372, 20130059 (2014).
[31] A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett.

105, 123002 (2010).
[32] H. A. Jahn and E. Teller, Proc. R. Soc. London A 161, 220

(1937).
[33] J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939).

062503-10

https://doi.org/10.1098/rspa.1958.0022
https://doi.org/10.1098/rspa.1958.0022
https://doi.org/10.1098/rspa.1958.0022
https://doi.org/10.1098/rspa.1958.0022
https://doi.org/10.1039/df9633500077
https://doi.org/10.1039/df9633500077
https://doi.org/10.1039/df9633500077
https://doi.org/10.1039/df9633500077
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1063/1.437734
https://doi.org/10.1063/1.437734
https://doi.org/10.1063/1.437734
https://doi.org/10.1063/1.437734
https://doi.org/10.1103/PhysRevLett.81.4584
https://doi.org/10.1103/PhysRevLett.81.4584
https://doi.org/10.1103/PhysRevLett.81.4584
https://doi.org/10.1103/PhysRevLett.81.4584
https://doi.org/10.1103/PhysRevLett.56.2598
https://doi.org/10.1103/PhysRevLett.56.2598
https://doi.org/10.1103/PhysRevLett.56.2598
https://doi.org/10.1103/PhysRevLett.56.2598
https://doi.org/10.1016/0031-9163(65)90109-5
https://doi.org/10.1016/0031-9163(65)90109-5
https://doi.org/10.1016/0031-9163(65)90109-5
https://doi.org/10.1016/0031-9163(65)90109-5
https://doi.org/10.1016/0031-9163(66)90493-8
https://doi.org/10.1016/0031-9163(66)90493-8
https://doi.org/10.1016/0031-9163(66)90493-8
https://doi.org/10.1016/0031-9163(66)90493-8
https://doi.org/10.1103/PhysRevLett.58.725
https://doi.org/10.1103/PhysRevLett.58.725
https://doi.org/10.1103/PhysRevLett.58.725
https://doi.org/10.1103/PhysRevLett.58.725
https://doi.org/10.1103/PhysRevB.1.1005
https://doi.org/10.1103/PhysRevB.1.1005
https://doi.org/10.1103/PhysRevB.1.1005
https://doi.org/10.1103/PhysRevB.1.1005
https://doi.org/10.1088/0022-3719/12/13/019
https://doi.org/10.1088/0022-3719/12/13/019
https://doi.org/10.1088/0022-3719/12/13/019
https://doi.org/10.1088/0022-3719/12/13/019
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.103.256404
https://doi.org/10.1103/PhysRevLett.107.146403
https://doi.org/10.1103/PhysRevLett.107.146403
https://doi.org/10.1103/PhysRevLett.107.146403
https://doi.org/10.1103/PhysRevLett.107.146403
https://doi.org/10.1103/PhysRevB.92.081203
https://doi.org/10.1103/PhysRevB.92.081203
https://doi.org/10.1103/PhysRevB.92.081203
https://doi.org/10.1103/PhysRevB.92.081203
https://doi.org/10.1038/ncomms13510
https://doi.org/10.1038/ncomms13510
https://doi.org/10.1038/ncomms13510
https://doi.org/10.1038/ncomms13510
https://doi.org/10.1103/PhysRevLett.79.2431
https://doi.org/10.1103/PhysRevLett.79.2431
https://doi.org/10.1103/PhysRevLett.79.2431
https://doi.org/10.1103/PhysRevLett.79.2431
https://doi.org/10.1103/PhysRevLett.83.3009
https://doi.org/10.1103/PhysRevLett.83.3009
https://doi.org/10.1103/PhysRevLett.83.3009
https://doi.org/10.1103/PhysRevLett.83.3009
https://doi.org/10.1103/PhysRevA.71.043203
https://doi.org/10.1103/PhysRevA.71.043203
https://doi.org/10.1103/PhysRevA.71.043203
https://doi.org/10.1103/PhysRevA.71.043203
https://doi.org/10.1103/PhysRevA.72.012501
https://doi.org/10.1103/PhysRevA.72.012501
https://doi.org/10.1103/PhysRevA.72.012501
https://doi.org/10.1103/PhysRevA.72.012501
https://doi.org/10.1103/PhysRevLett.104.073001
https://doi.org/10.1103/PhysRevLett.104.073001
https://doi.org/10.1103/PhysRevLett.104.073001
https://doi.org/10.1103/PhysRevLett.104.073001
https://doi.org/10.1021/jp311894n
https://doi.org/10.1021/jp311894n
https://doi.org/10.1021/jp311894n
https://doi.org/10.1021/jp311894n
https://doi.org/10.1063/1.4844095
https://doi.org/10.1063/1.4844095
https://doi.org/10.1063/1.4844095
https://doi.org/10.1063/1.4844095
https://doi.org/10.1103/PhysRevLett.113.263004
https://doi.org/10.1103/PhysRevLett.113.263004
https://doi.org/10.1103/PhysRevLett.113.263004
https://doi.org/10.1103/PhysRevLett.113.263004
https://doi.org/10.1016/j.cplett.2015.06.075
https://doi.org/10.1016/j.cplett.2015.06.075
https://doi.org/10.1016/j.cplett.2015.06.075
https://doi.org/10.1016/j.cplett.2015.06.075
https://doi.org/10.1103/PhysRevA.93.042108
https://doi.org/10.1103/PhysRevA.93.042108
https://doi.org/10.1103/PhysRevA.93.042108
https://doi.org/10.1103/PhysRevA.93.042108
https://doi.org/10.1002/qua.560090205
https://doi.org/10.1002/qua.560090205
https://doi.org/10.1002/qua.560090205
https://doi.org/10.1002/qua.560090205
https://doi.org/10.1098/rsta.2013.0059
https://doi.org/10.1098/rsta.2013.0059
https://doi.org/10.1098/rsta.2013.0059
https://doi.org/10.1098/rsta.2013.0059
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1103/PhysRevLett.105.123002
https://doi.org/10.1098/rspa.1937.0142
https://doi.org/10.1098/rspa.1937.0142
https://doi.org/10.1098/rspa.1937.0142
https://doi.org/10.1098/rspa.1937.0142
https://doi.org/10.1063/1.1750327
https://doi.org/10.1063/1.1750327
https://doi.org/10.1063/1.1750327
https://doi.org/10.1063/1.1750327


ASYMPTOTIC ANALYSIS OF THE BERRY CURVATURE IN . . . PHYSICAL REVIEW A 96, 062503 (2017)

[34] A. D. McLachlan, Mol. Phys. 4, 417 (1961).
[35] J. C. Slonczewski and V. L. Moruzzi, Physics 3, 237 (1967).
[36] F. S. Ham, Phys. Rev. 166, 307 (1968).
[37] M. C. M. O’Brien, J. Phys. C 4, 2524 (1971).
[38] A. I. Voronin, S. P. Karkach, V. I. Osherov, and V. G. Ushakov,

Zh. Ek. Teor. Fiz. 71, 884 (1976) [Sov. Phys. JETP 44, 465
(1976)].

[39] M. C. M. O’Brien, J. Phys. C 9, 2375 (1976).
[40] S. P. Karkach and V. I. Osherov, Mol. Phys. 36, 1069 (1978).
[41] M. C. M. O’Brien and D. R. Pooler, J. Phys. C 12, 311

(1979).
[42] B. R. Judd, J. Phys. C 12, 1685 (1979).
[43] A. G. Darlison, J. Phys. C 20, 5051 (1987).
[44] J. S. Alper and R. Silbey, J. Chem. Phys. 52, 569 (1970).
[45] M. Wagner, Z. Phys. 256, 291 (1972).
[46] E. Sigmund and M. Wagner, Phys. Status Solidi B 57, 635

(1973).
[47] M. J. Shultz and R. Silbey, J. Chem. Phys. 65, 4375 (1976).
[48] H. Barentzen and O. E. Polansky, J. Chem. Phys. 68, 4398

(1978).
[49] H. G. Reik, P. Lais, M. E. Stützle, and M. Doucha, J. Phys. A

20, 6327 (1987).
[50] M. Szopa and A. Ceulemans, J. Phys. A 30, 1295 (1997).
[51] B. R. Judd and E. E. Vogel, Phys. Rev. B 11, 2427 (1975).
[52] C. C. Chancey, J. Phys. A 17, 3183 (1984).

[53] J. L. Dunn and M. R. Eccles, Phys. Rev. B 64, 195104
(2001).

[54] R. Requist and E. K. U. Gross, Phys. Rev. Lett. 117, 193001
(2016).

[55] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[56] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[57] R. Requist and E. K. U. Gross (unpublished).
[58] P. García-Fernández, I. B. Bersuker, J. A. Aramburu, M. T.

Barriuso, and M. Moreno, Phys. Rev. B 71, 184117 (2005).
[59] I. B. Bersuker, The Jahn-Teller Effect (Cambridge University

Press, New York, 2006).
[60] W. Moffitt and A. D. Liehr, Phys. Rev. 106, 1195 (1957).
[61] W. Moffitt and W. Thorson, Phys. Rev. 108, 1251 (1957).
[62] S. C. Miller, Jr. and R. H. Good, Jr., Phys. Rev. 91, 174 (1953).
[63] R. B. Dingle, Appl. Sci. Res. B 5, 345 (1956).
[64] R. E. Langer, Phys. Rev. 51, 669 (1937).
[65] C. M. Bender and S. A. Orszag, Advanced Mathematical

Methods for Scientists and Engineers (Springer-Verlag, New
York, 1999).

[66] M. V. Berry and A. M. O. de Almeida, J. Phys. A 6, 1451
(1973).

[67] F. S. Ham, Phys. Rev. 138, A1727 (1965).
[68] H. D. McConnell, J. Chem. Phys. 34, 13 (1961).
[69] R. F. Ribeiro and J. Yuen-Zhou, arXiv:1706.00039.
[70] G. Thiering and A. Gali, Phys. Rev. B 96, 081115(R) (2017).

062503-11

https://doi.org/10.1080/00268976100100581
https://doi.org/10.1080/00268976100100581
https://doi.org/10.1080/00268976100100581
https://doi.org/10.1080/00268976100100581
https://doi.org/10.1103/PhysRev.166.307
https://doi.org/10.1103/PhysRev.166.307
https://doi.org/10.1103/PhysRev.166.307
https://doi.org/10.1103/PhysRev.166.307
https://doi.org/10.1088/0022-3719/4/16/017
https://doi.org/10.1088/0022-3719/4/16/017
https://doi.org/10.1088/0022-3719/4/16/017
https://doi.org/10.1088/0022-3719/4/16/017
https://doi.org/10.1088/0022-3719/9/12/020
https://doi.org/10.1088/0022-3719/9/12/020
https://doi.org/10.1088/0022-3719/9/12/020
https://doi.org/10.1088/0022-3719/9/12/020
https://doi.org/10.1080/00268977800102181
https://doi.org/10.1080/00268977800102181
https://doi.org/10.1080/00268977800102181
https://doi.org/10.1080/00268977800102181
https://doi.org/10.1088/0022-3719/12/2/019
https://doi.org/10.1088/0022-3719/12/2/019
https://doi.org/10.1088/0022-3719/12/2/019
https://doi.org/10.1088/0022-3719/12/2/019
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1088/0022-3719/12/9/010
https://doi.org/10.1088/0022-3719/20/31/010
https://doi.org/10.1088/0022-3719/20/31/010
https://doi.org/10.1088/0022-3719/20/31/010
https://doi.org/10.1088/0022-3719/20/31/010
https://doi.org/10.1063/1.1673024
https://doi.org/10.1063/1.1673024
https://doi.org/10.1063/1.1673024
https://doi.org/10.1063/1.1673024
https://doi.org/10.1007/BF01391977
https://doi.org/10.1007/BF01391977
https://doi.org/10.1007/BF01391977
https://doi.org/10.1007/BF01391977
https://doi.org/10.1002/pssb.2220570221
https://doi.org/10.1002/pssb.2220570221
https://doi.org/10.1002/pssb.2220570221
https://doi.org/10.1002/pssb.2220570221
https://doi.org/10.1063/1.432988
https://doi.org/10.1063/1.432988
https://doi.org/10.1063/1.432988
https://doi.org/10.1063/1.432988
https://doi.org/10.1063/1.435519
https://doi.org/10.1063/1.435519
https://doi.org/10.1063/1.435519
https://doi.org/10.1063/1.435519
https://doi.org/10.1088/0305-4470/20/18/033
https://doi.org/10.1088/0305-4470/20/18/033
https://doi.org/10.1088/0305-4470/20/18/033
https://doi.org/10.1088/0305-4470/20/18/033
https://doi.org/10.1088/0305-4470/30/4/029
https://doi.org/10.1088/0305-4470/30/4/029
https://doi.org/10.1088/0305-4470/30/4/029
https://doi.org/10.1088/0305-4470/30/4/029
https://doi.org/10.1103/PhysRevB.11.2427
https://doi.org/10.1103/PhysRevB.11.2427
https://doi.org/10.1103/PhysRevB.11.2427
https://doi.org/10.1103/PhysRevB.11.2427
https://doi.org/10.1088/0305-4470/17/16/019
https://doi.org/10.1088/0305-4470/17/16/019
https://doi.org/10.1088/0305-4470/17/16/019
https://doi.org/10.1088/0305-4470/17/16/019
https://doi.org/10.1103/PhysRevB.64.195104
https://doi.org/10.1103/PhysRevB.64.195104
https://doi.org/10.1103/PhysRevB.64.195104
https://doi.org/10.1103/PhysRevB.64.195104
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/PhysRevLett.117.193001
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.71.184117
https://doi.org/10.1103/PhysRevB.71.184117
https://doi.org/10.1103/PhysRevB.71.184117
https://doi.org/10.1103/PhysRevB.71.184117
https://doi.org/10.1103/PhysRev.106.1195
https://doi.org/10.1103/PhysRev.106.1195
https://doi.org/10.1103/PhysRev.106.1195
https://doi.org/10.1103/PhysRev.106.1195
https://doi.org/10.1103/PhysRev.108.1251
https://doi.org/10.1103/PhysRev.108.1251
https://doi.org/10.1103/PhysRev.108.1251
https://doi.org/10.1103/PhysRev.108.1251
https://doi.org/10.1103/PhysRev.91.174
https://doi.org/10.1103/PhysRev.91.174
https://doi.org/10.1103/PhysRev.91.174
https://doi.org/10.1103/PhysRev.91.174
https://doi.org/10.1007/BF02933318
https://doi.org/10.1007/BF02933318
https://doi.org/10.1007/BF02933318
https://doi.org/10.1007/BF02933318
https://doi.org/10.1103/PhysRev.51.669
https://doi.org/10.1103/PhysRev.51.669
https://doi.org/10.1103/PhysRev.51.669
https://doi.org/10.1103/PhysRev.51.669
https://doi.org/10.1088/0305-4470/6/10/005
https://doi.org/10.1088/0305-4470/6/10/005
https://doi.org/10.1088/0305-4470/6/10/005
https://doi.org/10.1088/0305-4470/6/10/005
https://doi.org/10.1103/PhysRev.138.A1727
https://doi.org/10.1103/PhysRev.138.A1727
https://doi.org/10.1103/PhysRev.138.A1727
https://doi.org/10.1103/PhysRev.138.A1727
https://doi.org/10.1063/1.1731552
https://doi.org/10.1063/1.1731552
https://doi.org/10.1063/1.1731552
https://doi.org/10.1063/1.1731552
http://arxiv.org/abs/arXiv:1706.00039
https://doi.org/10.1103/PhysRevB.96.081115
https://doi.org/10.1103/PhysRevB.96.081115
https://doi.org/10.1103/PhysRevB.96.081115
https://doi.org/10.1103/PhysRevB.96.081115



