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Abstract. Applying the concept of quantum hydrodynamics on a hydrogen atom, one can
derive an equation of motion which describes the time derivative of the mass current density for
the relative motion of the electron and the proton. Since this derivation can be performed with
the Ehrenfest theorem, we call this equation the Ehrenfest equation of motion. As quantum
hydrodynamics is consistent with Schrödinger’s quantum mechanics, the stationary s-wave
functions satisfy both the Schrödinger equation and the Ehrenfest equation of motion. It is
the purpose of this paper to prove that the stationary s-wave functions satisfy the Ehrenfest
equation of motion. From the quantum hydrodynamical point of view, this result for s-wave
functions can be interpreted that the Coulomb force density that attracts the electron to the
proton is compensated by a quantum force density that is related to the dispersion of the
probability density.

1. Introduction

The concept of quantum hydrodynamics (QHD) for one-electron systems was introduced by
Madelung and Bohm [1–3]. Besides other authors, QHD was developed further by Epstein and
Wyatt [4, 5]. In Refs. [4, 5], an equation is discussed that is related to the momentum balance
of the system. Since the derivation of this momentum balance equation can be performed by
calculating the time derivative of the mass current density with the Ehrenfest theorem [6], we
call this equation the Ehrenfest equation of motion (EEM); it is given by

∂~jm

∂t
+ ∇Π = ~f. (1)

2. System

We analyse below a hydrogen atom in a spherical coordinate system where its origin is located
at the center of mass of the atom. For this system, the quantities appearing in equation (1) –

these are the Coulomb force density ~f , the divergence of the momentum flow density tensor ∇Π,

and the mass current density ~jm – refer to the relative motion of the electron and the proton.
In the following, the proof is shown that all s-wave functions Ψn of the hydrogen atom with

the principal quantum number n = 1, 2, 3, . . . satisfy the EEM (1). This is a generalization of
the calculations in [7], where this proof was performed explicitly for the 1s and the 2s wave

http://creativecommons.org/licenses/by/3.0
offtheo
Schreibmaschinentext
TH-2017-46



2

1234567890

Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012007  doi :10.1088/1742-6596/869/1/012007

functions. Since the s-wave functions are real-valued, ~jm vanishes

~jm = ~0. (2)

The Coulomb force density is given by

~f = −D
e2

4πε0

1

r2
~er. (3)

Here, e is the elementary charge, ε0 is the electric constant, and D = |Ψn|2 is the probability
density of finding the electron and the proton at the relative position ~r = ~re − ~rp, where ~re and
~rp are the electron’s and proton’s positions. Then, r = |~r| is both the electron-proton distance
and the radius in the mentioned spherical coordinate system, and the vector ~er is the radial unit
vector in this system. As the next step, we calculate ∇Π.

We can split up the momentum flow density tensor Π into the classical tensor ΠCl, the

osmotical tensor ΠOs, and the product of the unit matrix 1 and the scalar pressure P [5]

Π = ΠCl + ΠOs + 1P. (4)

The motivation for the naming of the classical tensor ΠCl is that if the physical system is

described by pure classical physics then equation (4) becomes Π = ΠCl. In contrast, both the

osmotical tensor ΠOs and the scalar pressure P are related to the dispersion of the quantum
wave packet and they are pure quantum quantities.
The classical tensor ΠCl is given by

ΠCl = mµD(~v ⊗ ~v), (5)

where mµ = memp/(me + mp) is the reduced mass of the electron (with the mass me) and the
proton (with the mass mp), and the term ~v ⊗ ~v is a dyadic product of the relative velocity ~v of

the two particles. As the mass current density ~jm is related to this velocity ~v by ~jm = mµD~v,

both of them vanish for the analyzed system – so, the classical tensor ΠCl vanishes, too.

Moreover, the osmotical tensor ΠOs is given by

ΠOs = mµD(~d ⊗ ~d). (6)

In the equation above, a dyadic product of the osmotic velocity ~d, defined by

~d = −
~

2mµ

∇D

D
, (7)

appears. In our spherical coordinate system, the s-wave functions Ψn depend only on the radius
r, and not on the angles ϑ and ϕ. So, it holds for the probability density D, too. Thus,
only the radial component dr of the osmotical velocity does not vanish, and therefore only the
ΠOs

rr
-component of the tensor ΠOs is not zero. The result for this tensor component ΠOs

rr
is

ΠOs
rr

=
~

2

4mµ

1

D

(

∂D

∂r

)2

. (8)

The scalar pressure P is given by

P = −
~

2

4mµ

△D = −
~

2

4mµ

(

2

r

∂D

∂r
+

∂2D

∂r2

)

. (9)
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Due to equation (4) and the disappearance of the classical tensor ΠCl, we have to sum up the

two tensor divergence terms ∇ΠOs and ∇(1P ) for the calculation of ∇Π. By regarding how to
calculate tensor divergences in spherical coordinates [8] and by taking into account equations
(8) and (9), finally, we get:

∇Π = −
~

2

4mµ

{

1

D

∂D

∂r

[

1

D

(

∂D

∂r

)2

−
2

r

∂D

∂r
− 2

∂2D

∂r2

]

−
2

r2

∂D

∂r
+

2

r

∂2D

∂r2
+

∂3D

∂r3

}

~er. (10)

As the next step, we multiply the EEM (1) with the vector −
4mµ

~2 ~er and use the results

(equations (2), (3) and (10)) of the mass current density ~jm, the Coulomb force density ~f and
the divergence of the momentum flow density tensor ∇Π. In addition, we regard that the

modified Bohr radius for a finite nuclear mass is given by aµ = 4πε0~
2

mµe2 . Then, we get this

differential equation:

1

D

∂D

∂r

[

1

D

(

∂D

∂r

)2

−
2

r

∂D

∂r
− 2

∂2D

∂r2

]

−
2

r2

∂D

∂r
+

2

r

∂2D

∂r2
+

∂3D

∂r3
=

4

aµr2
D. (11)

3. Proof

Now, we show that this differential equation is solved by the quantum textbook result for
stationary s-wave functions Ψn with the principal quantum number n = 1, 2, 3, . . . (see e.g. [9]).
Therefore, we introduce a parameter λ = 2

naµ
and a dimensionless coordinate ρ = λr. The

mentioned quantum textbook result for Ψn is

Ψn(ρ) = C g(ρ) exp

(

−
ρ

2

)

, (12)

where C is a real prefactor independent of the coordinate ρ. In addition, g(ρ) is equal to the
associated Laguerre polynomial L1

n(ρ) that satisfies this differential equation [9]:

ρ
∂2L1

n
(ρ)

∂ρ2
+ (2 − ρ)

∂L1
n
(ρ)

∂ρ
+ (n − 1)L1

n(ρ) = 0. (13)

Therefore, the probability density D is given by

D(ρ) = C2 [g(ρ)]2 exp (−ρ) . (14)

As the next step, we handle equation (14) as an ansatz for D(ρ) and insert it into the
differential equation (11). After some straightforward transformations, we find the differential
equation for g(ρ),

g
∂3g

∂ρ3
+

(

1 −
2

ρ

)(

∂g

∂ρ

)2

−
∂g

∂ρ

∂2g

∂ρ2
+

(

2

ρ
− 1

)

g
∂2g

∂ρ2
−

2g

ρ2

∂g

∂ρ
−

n − 1

ρ2
g2 = 0, (15)

and define

y(ρ) := ρ
∂2g

∂ρ2
+ (2 − ρ)

∂g

∂ρ
+ (n − 1)g, (16)

where, according to equation (13), the solution of y(ρ) = 0 is g(ρ) = L1
n
(ρ), and

h(ρ) :=
y

ρ
. (17)
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Now, we evaluate

g
∂h

∂ρ
= g

∂

∂ρ

[

∂2g

∂ρ2
+

(

2

ρ
− 1

)

∂g

∂ρ
+

n − 1

ρ
g

]

,

= g
∂3g

∂ρ3
+

(

2

ρ
− 1

)

g
∂2g

∂ρ2
−

2g

ρ2

∂g

∂ρ
+

n − 1

ρ
g

∂g

∂ρ
−

n − 1

ρ2
g2, (18)

and

−
∂g

∂ρ
h = −

∂g

∂ρ

[

∂2g

∂ρ2
+

(

2

ρ
− 1

)

∂g

∂ρ
+

n − 1

ρ
g

]

,

= −
∂g

∂ρ

∂2g

∂ρ2
+

(

1 −
2

ρ

)(

∂g

∂ρ

)2

−
n − 1

ρ
g

∂g

∂ρ
. (19)

Combining equations (18) and (19), the differential equation (15) is rewritten as

g
∂h

∂ρ
−

∂g

∂ρ
h = 0, (20)

or simply

g
∂h

∂ρ
=

∂g

∂ρ
h. (21)

Now, we can use the new version (21) of the differential equation (15) for g(ρ) to prove that
g(ρ) = L1

n(ρ) solves this differential equation (15). It is trivial that h(ρ) = 0 solves equation
(21), and then y(ρ) = ρh(ρ) = 0 is true. So, we have shown that g(ρ) = L1

n(ρ) solves (15) and,
as a consequence, we have shown that the quantum textbook result for Ψn is a solution of the
EEM (1), too.

4. Discussion

The fact that the s-wave functions Ψn satisfy the EEM means that these wave functions have
such a form that the Coulomb force density, ~f , that attracts the electron to the proton, and
the divergence of the momentum flow density tensor, ∇Π, that is related to the dispersion of

the probability density, are consistent. Hereby, since only the quantum quantities ΠOs and P
contribute to the tensor Π, the term ∇Π can be interpreted as a pure quantum force density.

The arguments presented in this paper advance a new view of the properties of the s-wave
functions Ψn that are obtained by the analysis of the EEM.

References
[1] Madelung E 1926 Z. Phys. 40 322–326
[2] Bohm D 1952 Phys. Rev. 85 166–179
[3] Bohm D 1952 Phys. Rev. 85 180–193
[4] Epstein S T 1975 J. Chem. Phys. 63 3573–3574
[5] Wyatt R E 2005 Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (New York:

Springer) pp 326–328
[6] Schwabl F 2005 Quantum Mechanics softcover reprint of hardcover 3rd ed. (Berlin: Springer) pp 28–30
[7] Deb B M and Bamzai A S 1978 Mol. Phys. 35 1349–1367
[8] Lai M, Krempl E and Ruben D 2009 Introduction to Continuum Mechanics 4th ed. (Burlington, MA:

Butterworth-Heinemann) p 65
[9] Bransden B H and C J Joachain 2003 Physics of Atoms and Molecules 2nd ed. (Harlow: Pearson Education)

pp 155–161




