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Abstract: We investigate the strong-field ionization from p± orbitals
driven by circularly polarized laser fields by solving the two-dimensional
time-dependent Schrödinger equation in polar coordinates with the La-
grange mesh technique. Enhancement of ionization is found in the deep
multiphoton ionization regime when the helicity of the laser field is opposite
to that of the p electron, while this enhancement is suppressed when the
helicities are the same. It is found that the enhancement of ionization is
attributed to the multiphoton resonant excitation. The helicity sensitivity of
the resonant enhancement is related to the different excitation-ionization
channels in left and right circularly polarized laser fields.
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1. Introduction

Strong-field ionization is the first step of consequent strong-field processes such as high-order
above-threshold ionization [1–4], nonsequential/sequential double ionization [5–8] and high-
order harmonic generation [9–14]. Therefore, investigation on the strong-field ionization is of
great importance for the research area of strong-field physics. On the other hand, manipulation
of the strong-field ionization process itself stimulates many applications such as attosecond
angular streaking [15–19] and molecular orbital probing [20–23], which help people gain a
deeper insight into the microscopic (Ångstrom scale) and ultrafast (attosecond scale) world.
The strong-field ionization process can be understood in the multiphoton or tunneling regime
determined by the Keldysh parameter γ = ω0

√
2Ip/E0 (Ip is the ionization potential of the

target, E0 and ω are the peak amplitude and frequency of the laser field, respectively, atomic
units are used through this paper). γ � 1 indicates the ionization is dominated by tunneling and
γ � 1 indicates the ionization is better understood as multiphoton ionization. γ ≈ 1 is the grey
area between two regimes usually viewed as the non-adiabatic tunneling regime [16, 24]. The
ionization process in both regimes has been widely investigated in the past tens of years.

Previously, it was generally considered that the strong-field ionization rate is only related to
the modulus of magnetic quantum number |m| of the target orbital [24–26]. However, it was
recently shown that the ionization rate under circularly polarized laser field is also dependent on
the sign of non-zero m (i.e. the direction of angular momentum of the “orbiting” electron) both
in theory [27, 28] and numerical simulations [29]. Specifically, the strong field preferentially
removes the electron counter-rotating to the circularly polarized laser field rather than the co-
rotating electron. This predication has been partially proved in experiment by measuring strong-
field sequential double ionization yields of argon in two time-delayed near-circularly polarized
laser pulses with same and opposite helicities [30]. Studies on the strong-field ionization from
states with non-zero angular momentum also suggest new applications. For example, it was
found that the internal angular momentum will shift the offset angle of the maximum in the
photoelectron momentum distribution in an angular streaking setup, which offers a potential
tool for studying orbital structures and ring currents in atomic and molecular systems [31, 32].
It was also proposed to produce photoelectrons with up to 100% spin polarization resulting
from m-dependent strong-field ionization and spin-orbit coupling [33].

In this work, strong-field ionization of p± orbitals under circularly polarized laser fields
in the wide range of wavelengths from deep multiphoton regime to tunneling regime is in-
vestigated. The ionization processes are simulated by numerically solving the two-dimensional
time-dependent Schrödinger equation (2D-TDSE) in polar coordinates with the Lagrange mesh
technique. Ionization peaks are observed in the deep multiphoton ionization regime when the
electric field counter-rotates to the p electron, while the peaks vanish when the electric field co-
rotates with the p electron. It is shown that these peaks result from the resonant enhancement
of ionization and the helicity sensitivity is due to different excitation-ionization channels.
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2. Theoretical model

In this section, we present an efficient and accurate method for the non-perturbative numerical
solution of the 2D-TDSE in polar coordinates. To simulate the ionization dynamics of a valence
p electron in a strong circularly polarized laser pulse, we consider to solve the 2D-TDSE

i
∂Ψ(r, t)

∂ t
=

[
−∇2

2
+Vc(r)+Ve(r, t)

]
Ψ(r, t)

=

[
−1

2

(
1
ρ

∂
∂ρ

ρ
∂

∂ρ
+

1
ρ2

∂ 2

∂θ 2

)
+Vc(ρ)+ r ·E±(t)

]
Ψ(r, t), (1)

in polar coordinates, where r = ρ cosθ ex + ρ sinθ ey. The right (+) and left (−) circularly
polarized electric field E±(t) is expressed by

E±(t) = E0 sin2
( tπ

τ

)
[cos(ω0t)ex ± sin(ω0t)ey] (2)

where E0 is the amplitude, ω0 is the angular frequency, τ is the total duration of
the laser pulse and 0 ≤ t ≤ τ . Therefore, Ve(r, t) = ρ cosθ E0 sin2(tπ/τ)cos(ω0t) +
ρ sinθ E0 sin2(tπ/τ)sin(ω0t). As in [29], we consider a 2D model of neon atom and the ef-
fective Coulomb potential Vc(ρ) is written as

Vc(ρ) =− Zc√
ρ2 +a

=−1+9exp(−ρ2)
√

ρ2 +a
(3)

with the soft-core parameter a = 2.88172, that enables us to obtain the correct energy of the
valence 2p orbital of −0.793 a.u. [29].

The numerical difficulty in Eq. (1) comes from the singularity of the Laplacian in polar coor-
dinates. To overcome this difficulty, Bandrauk et al. [34,35] introduced a unitary discrete Lapla-
cian operator and adopted the Crank-Nicholson method to solve Eq. (1). However, this method
does not insure that the wave function Ψ(r, t) =Ψ(ρ ,θ , t) can completely eliminate the parasite
modes. Note that a function contains parasite modes is not a regular function and can lead to
error and unstabitily in the simulation. To minimize this error, a more general Crank-Nicholson
scheme has to be used in [34, 35]. On the other hand, special carefulness should be paid to
the problem of singularity at the boundary ρ = 0. In this work, we introduce a more efficient
and accurate way to solve Eq. (1) by adopting the Lagrange mesh technique [36]. The effec-
tiveness of the Lagrange mesh method has been demonstrated in lots of applications [37–39],
e.g. solutions of Dirac equations [37], time-dependent Kohn-Sham equations [38], and also
TDSE in spheroidal [36] and cylindrical coordinates [39]. Here, we solve Eq. (1) by utilizing
the Lagrange mesh method for polar coordinates. Details about the Lagrange mesh technique
are summarized in [36]. In the following, we outline our method in solving TDSE.

First, we remove the first derivative in ρ by introducing the new wave function

ψ(ρ ,θ , t) =
1√ρ

Ψ(ρ ,θ , t). (4)

Then, the TDSE (1) becomes

i
∂ψ(ρ ,θ , t)

∂ t
=

[
−1

2

(
∂ 2

∂ρ2 +
1

4ρ2 +
1

ρ2

∂ 2

∂θ 2

)
+Vc(ρ)+ r ·E±(t)

]
ψ(ρ ,θ , t). (5)

Second, the wave function is discretized in polar coordinates. The numbers of discrete points
for ρ and θ are defined as N and M, respectively. It follows that the maximum possible numbers
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of basis functions in ρ and θ are N and M, respectively. For the discretization of θ , we use the
truncated Fourier series

ψ(ρ ,θ , t) =
1
M

M/2−1

∑
m=−M/2

φm(ρ , t)exp(imθ), (6)

which can be effectively calculated by using the discrete fast Fourier transform algorithm. By
inserting Eq. (6) into Eq. (5), we get

i
∂φm(ρ , t)

∂ t
= [Tρ +Tθ +Vc(ρ)+ r ·E±(t)]φm(ρ , t)

=

[
−1

2

(
∂ 2

∂ρ2 +
1

4ρ2

)
+

m2

2ρ2 +Vc(ρ)+ r ·E±(t)
]

φm(ρ , t). (7)

Next, we consider to treat the coordinate ρ with the Lagrange mesh method. As in [36,39], we
rescale the radial variable ρ = hx, where the scaling factor h is set to be 0.065 in our simulation.
The mesh points xi are the roots of Lα

N(xi) = 0, where i = 1, . . . ,N and Lα
N is the generalized

Laguerre polynomial [40]. Note that such mesh points are nonuniformly spaced: Very dense
grid points are located at the origin and, therefore, the Coulomb potential can be accurately
described. On the other hand, the grid points becomes more and more sparse as ρ increases,
where the Coulomb potential becomes weak and smooth. Note that uniform grid points are
commonly adopted in the finite difference method [34, 35]. In this case, a large number of grid
points are required to accurately represent the Coulomb potential because of the singularity at
the origin. By contrast, the Lagrange mesh is more efficient and requires less grid points than
the uniform grid mesh. Then, we consider to reconstruct a set of orthonormal basis functions
based on the generalized Laguerre polynomials [36]

gn(x) =

(
Γ(n+1)

Γ(α +n+1)

)1/2

xα/2e−x/2Lα
n (x), (8)

where n = 1, . . . ,N. These functions form an orthonormal set in the range [0, ∞),
∫ ∞

0
gl(x)gn(x) = δln. (9)

The corresponding Lagrange functions can be constructed by

fi(x) = λ−1/2
i

(
1

g′N(xi)

)
gN(x)
x− xi

, (10)

where xi are the Lagrange mesh points and

λi =
1

xig′N(xi)2 . (11)

These functions are discrete, orthonormal, and also obey the Lagrange interpolation formula.
By adopting the Gaussian quadrature, we get matrix elements for the Hamiltonian with the
basis functions obtained from Eq. (10) as

(Tρ)i j =
1

2h2 ×
⎧
⎨

⎩

(α+1)2

4x2
i

+Sii, (i = j)

(−1)i− j
[

α+1
2√xix j

(
1
xi
+ 1

x j

)
+Si j

]
(i �= j),
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where

Si j =
√

xix j ∑
p�=i, j

1
xp(xp − x j)(xp − xi)

. (12)

Note that, in our calculation, the generalized Laguerre polynomial Lα
N with α = 1 is applied.

More details can be found in [36]. Moreover, one can easily derive that

(Tθ )i j =
m2

2h2x2
i

δi j (13)

and

(Vc)i j =− Zc√
h2x2

i +a
δi j. (14)

We apply the second-order split-operator method to solve the propagation of the wave func-
tion in time

ψ(ρ ,θ , t +δ t) = exp(−iH0δ t/2)exp(−iVeδ t)exp(−iH0δ t/2)ψ(ρ ,θ , t)+O(δ t3), (15)

where H0 is the field-free Hamiltonian. The propagation can be split into three steps. The first
step is

ψ(1)(ρ ,θ , t) = exp(−iH0δ t/2)ψ(ρ ,θ , t)

=
1
M

M/2−1

∑
m=−M/2

exp(imθ)exp[−iH(m)
0 δ t/2]φm(ρ , t), (16)

where H(m)
0 = Tρ +Tθ +Vc. The propagator exp[−iH(m)

0 δ t/2] can be built by eigenvectors χ(m)
k

and eigenvalues η(m)
k of the field-free Hamiltonian

exp[−iH(m)
0 δ t/2] =

N

∑
k=1

exp(−iη(m)
k δ t/2)×|χ(m)

k 〉〈χ(m)
k |. (17)

Note that the field-free m-dependent Hamiltonian H(m)
0 is a N ×N matrix and its elements are

expressed by Eqs. (12)–(14). Since the Hamiltonian H(m)
0 depends on the value of m2, we need

to solve M/2 eigenvalue equations H(m)
0 χ(m)

k = η(m)
k χ(m)

k .
The external field operator exp(−iVeδ t) is a diagonal matrix in coordinate representation.

Therefore, the second step of the short-time propagation can be multiplied straightforwardly

ψ(2)(ρ ,θ , t) = exp(−iVeδ t)×ψ(1)(ρ ,θ , t). (18)

Then, ψ(2)(ρ ,θ , t) is expanded in the Fourier series again and the third step of the short-time
propagation is treated as the same as the first step,

ψ(3)(ρ ,θ , t) = exp(−iH0δ t/2)ψ(2)(ρ ,θ , t)

=
1
M

M/2−1

∑
m=−M/2

exp(imθ)exp[−iH(m)
0 δ t/2]φ (2)

m (ρ , t). (19)

This procedure completes the short-time propagation according to Eq. (15), i.e. ψ(ρ ,θ , t +
δ t) = ψ(3)(ρ ,θ , t). By repeating this process, the wave function can be obtained sequentially
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starting at t = 0 and ending at t = τ . The initial state is adopted by the eigenvector correspond-
ing to the 2p orbital and the ionization energy (i.e. the negative eigenvalue of the field-free
Hamiltonian) is 0.793 a.u.. Note that there are two degenerate 2p orbitals: the one with mag-
netic quantum number m =−1 is 2p− and the one with m = 1 is 2p+.

To avoid unphysical reflections at grid boundaries and to calculate ionization yields, the wave
function ψ(3)(ρ ,θ , t) in our simulation is multiplied by an absorbing function

W (ρ) =

{
1, (ρ ≤ ρabs)

sin2
[

(ρmax−ρ)π
2(ρmax−ρabs)

]
(ρ > ρabs).

Without absorbing function, the norm of the time-dependent wave function is kept to be 1. How-
ever, with absorbing function, the norm decays with the increase of t and the time-dependent
depletion of the initial wavefunction can be calculated as

P1(t) = 1−|ψ(ρ ,θ , t)|2. (20)

On the other hand, since the eigenvalue equations of the field-free Hamiltonian are solved in
our simulation, we can also calculate the time-dependent population in the continuum as

P2(t) = 1−
M

∑
m=1

N

∑
k=1

η(m)
k <0

|〈χ(m)
k |ψ(ρ ,θ , t)〉|2. (21)

The ionization probability can be determined from P1 and P2 at the end of the laser pulse.
To test the above Lagrange mesh scheme, we simulate the ionization process in a few-cycle

laser pulse. As in [29], the pulse duration is set to be 3 optical cycles, the electric field amplitude
is 0.09 a.u., and the wavelength is 800 nm. The grid mesh has N×M = 900×90 points. In this
case, the maximum of ρ is ρmax ≈ 230 a.u., which is twice of that in [29], and ρabs is set to be
60 a.u.. By contrast, large grid points of 2048× 2048 are needed in [29]. As discussed above,
the nonuniform grid used in Lagrange mesh scheme is much more efficient. Furthermore, since
the short-time propagator is built by eigenvectors and eigenvalues, the simulation procedure
is quite stable and the results converge already at δ t = 0.1 a.u.. By contrast, a much smaller
time step of δ t = 0.005 a.u. is adopted in [29]. Therefore, the computation time can be greatly
shortened by using our method. Figure 1 shows the calculated P1(t) and P2(t) by using a right
circularly polarized laser field. It is found that the ionization probabilities and the ratios of the
ionization rates from 2p− to 2p+ orbitals agree well with those in [29]. We also calculate the
ionization ratios for other laser parameters listed in Table I of [29] and the values of ratios agree
with those in [29] to the first decimal places.

3. Result and discussion

Below, we investigate the ionization probability in a wide range of laser wavelengths. Through-
out the following simulations, the laser pulse is sine squared with total pulse duration of 10
optical cycles. We scan the laser wavelength in the range from 110 nm to 6400 nm for laser
intensities 5× 1014 W/cm2 and 1× 1015 W/cm2. Both right and left circularly polarized laser
fields are considered. For right circularly polarized laser fields, the 2p− electron is counter-
rotating with respect to the rotation of the laser field and the 2p+ electron is co-rotating. For
left circularly polarized laser fields, the 2p− electron is co-rotating and the 2p+ electron is
counter-rotating.

The ionization probabilities for the 2p− orbital are shown in Fig. 2 as blue (for I = 5×1014

W/cm2) and red (for I = 1×1015 W/cm2) curves. Results with right circularly polarized laser
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Fig. 1. Time-dependent depletions of the initial wavefunctions P1(t) and time-dependent
populations in the continuum P2(t) for (a) 2p− and (b) 2p+ orbitals driven by a right circu-
larly polarized 3-cycle laser field with 800 nm and E0 = 0.09 a.u.

fields are presented as solid curves and results with left circularly polarized laser fields are pre-
sented as dashed curves. Three phenomena are found in Fig. 2. First, in all cases, the ionization
probability drops rapidly when the short wavelength increases. Then, it stays approximately the
same forming a minimum and finally increases gradually with the increase of the laser wave-
length. To better understand the variation of the ionization probability, we calculate Keldysh
parameters γ for different laser parameters.

The values of γ for the minima of four curves are approximately in the range from 0.4 to 1 as
shown in Fig. 2. Therefore, the tendency of the ionization probabilities can be understood. For
short wavelengths before the minima, the orbital is ionized via multiphoton ionization. With
the increase of the laser wavelength, the necessary number of photons for ionization increases,
leading to the dramatic decrease of the ionization rate. Then, with the further increasing of
the laser wavelength, the ionization regime changes into the tunneling regime. In this case,
the ionization rate is not sensitive to the wavelength and the decrease of the ionization rate
slows down. On the other side, the laser pulse duration increases with the increase of the laser
wavelength (the pulse duration is 10 optical cycles for different wavelengths) and it finally leads
to the increase of the ionization probability.

The second phenomenon in Fig. 2 is that, in the short wavelength region, the ionization
probabilities for right circularly polarized laser fields (counter-rotating to the 2p− electron) are
larger than those for left circularly polarized laser fields (co-rotating with the 2p− electron)
as indicated in [27–29]. In the very long wavelength region, the ionization probabilities for
right circularly laser fields are smaller than those for left circularly polarized laser fields. This
phenomenon was also found in numerical simulations in [29] and is due to the role of the
adiabatic laser-dressed orbitals. The Keldysh parameters at the cross points of the solid and
dashed curves are also shown in Fig. 2. The values at the cross points are about 0.2, which
agree with those in [29].
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Fig. 2. Ionization probabilities for the 2p− orbital and for laser intensities I = 5× 1014

W/cm2 (blue curve) and I = 1× 1015 W/cm2 (red curve) and laser wavelengths varying
from 110 nm to 6400 nm. Results for right circularly polarized laser fields are presented
as solid curves and results for left circularly polarized laser fields are presented as dashed
curves.

The third phenomenon is the oscillation in the very short wavelength region for right circu-
larly polarized intense (I = 1× 1015 W/cm2) laser fields, which can be more clearly observed
in Fig. 3. In Fig. 3, we zoom into the range from 110 nm to 300 nm and calculate the ioniza-
tion probabilities for laser intensities from I = 1.1× 1015 W/cm2 to 1.5× 1015 W/cm2. The
results for the 2p− orbital are shown in Fig. 3(a) and those for the 2p+ orbital are shown in
Fig. 3(b). The ionization probabilities for right circularly polarized laser fields are presented as
solid curves and those for left circularly polarized laser fields are presented as dashed curves.
It shows that the ionization peaks indicating enhancement of ionization appear only in solid
curves of Fig. 3(a) and in dashed curves of Fig. 3(b). The first peak at the short wavelength
side is strongest and the subsequent peaks become weaker and finally disappear. At first sight,
it seems that the peaks appear for high ionization probabilities. To check whether the appear-
ance of the peaks is determined by the ionization probability, we also calculate the ionization
probabilities for much higher intensities I = 2.0× 1015 W/cm2 and I = 3.0× 1015 W/cm2 for
the 2p− orbital under left circularly polarized laser field. The corresponding results are shown
as additional dotted curves in Fig. 3(a): Although the ionization probabilities are already very
high, the peaks are still not found. Therefore, we conclude that the appearance of the peaks is
not related to high ionization probabilities.

The above results and discussion indicate that the appearance of the peaks is associated with
the relative helicity between the electric field and the p electron. The ionization enhancement
occurs at particular laser wavelengths when the electric field rotates in the opposite direction
of the p electron (i.e. the sign of the spin of the photon and the sign of the angular momentum
of the p orbital are different). The ionization enhancement is suppressed when the electric field
and p electron rotate in the same direction (i.e. the sign of the spin of the photon and the sign of
the angular momentum of the p orbital are the same). Note that, with the increase of the laser
intensity, the positions of the peaks shift to shorter wavelengths.

As a comparison, Fig. 4 shows the ionization probabilities for 2p± orbitals driven by linearly
polarized laser fields with laser intensities from I = 1.1× 1015 W/cm2 to 1.5× 1015 W/cm2.
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Fig. 3. Ionization probabilities for (a) 2p− and (b) 2p+ orbitals and for laser intensities
from I = 1.1×1015 W/cm2 to 1.5×1015 W/cm2 and laser wavelengths varying from 110
nm to 300 nm. Ionization probabilities for the 2p− orbital and for much higher intensities
I = 2.0×1015 W/cm2 and I = 3.0×1015 W/cm2 of the left circularly polarized laser field
are also shown as additional dotted curves in panel (a).

This figure shows that the ionization peaks appear for both 2p− and 2p+ orbitals and the cor-
responding curves of the ionization probability are the same for each laser intensity. Similarly,
with the increase of the laser intensity, the positions of the peaks shift to shorter wavelength.
These results show that the ionization enhancement also exists for linearly polarized driving
laser fields, while the enhancement is insensitive to the rotation direction of the p electron.

The wavelength dependent ionization enhancement can be understood as the resonant en-
hancement [41–43], where the electron is first resonantly promoted to the excited state via
resonant multiphoton excitation and then removed from this excited state. With the increase of
the laser intensity, the photon density increases and the probability of the multiphoton excita-
tion becomes larger. Therefore, the enhancement peaks appear when the laser intensity is high.
With the increase of the laser intensity, the positions of the peaks shift to shorter wavelengths
because the energy gaps between the ground and excited states are enlarged due to the Stark ef-
fect. The remaining question why the enhancement is sensitive to the relative helicity between
the circularly polarized laser field and the p orbital will be answered below.
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Fig. 4. Ionization probabilities for (a) 2p− and (b) 2p+ orbitals driven by linearly polarized
laser fields with laser intensities from I = 1.1×1015 W/cm2 to 1.5×1015 W/cm2 and laser
wavelength varying from 110 nm to 400 nm. With linearly polarized laser fields, the curves
of the ionization probabilities for 2p− and 2p+ orbitals are the same for each laser intensity.

To uncover the process of the resonant enhancement driven by circularly polarized laser
fields in detail, we study the time evolution of the occupations of the excited states. Accord-
ing to the requirement of the angular momentum conservation, when an electron with initial
magnetic quantum number mi absorbs ξ photons of the right or left circularly polarized laser
pulse with photon spin of +1 or −1, the electron will be excited to the highly-lying state with
final magnetic quantum number m = mi+ξ or mi−ξ , respectively. Therefore, we should focus
on transitions among states with different m. It can be easily done with our method of solving
TDSE. For example, the results for the 2p− orbital (mi =−1), I = 1.1×1015 W/cm2, and 150
nm are shown in Fig. 5. The laser field in Fig. 5(a) is right circularly polarized and in Fig. 5(b)
left circularly polarized. The horizontal axis is m and vertical axis is time t. The color denotes
the value of log10[C(m, t)], where

C(m, t) =
N

∑
k=1

η(m)
k <0

∣
∣∣〈χ(m)

k |ψ(t)〉
∣∣∣
2

(22)

is the sum of modulus square of the projections of the wave function ψ(t) onto field-free bound

eigenstates χ(m)
k for particular m.

In the counter-rotating case shown in Fig. 5(a), the 2p− electron will be excited to states with
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Fig. 5. Time evolution of the occupations of the bound states with different magnetic quan-
tum numbers m starting from the 2p− orbital driven by a (a) right or (b) left circularly
polarized laser field with laser intensity I = 1.1× 1015 W/cm2 and laser wavelength 150
nm. The color denotes the value of log10[C(m, t)], where C(m, t) is the sum of modulus

square of the projections of the wave function ψ(t) onto field-free bound eigenstates χ(m)
k

for particular m.

magnetic quantum numbers m = −1+ ξ (ξ is positive and non-zero integer) in accord with
the angular momentum conservation. The occupations are high for the first several states close
to m = −1. In the co-rotating case shown in Fig. 5(b), the electron should be excited to state
with m =−1−ξ . However, the occupations vanish very strongly even for m ≤−3. Comparing
Figs. 5(a) and 5(b), it is shown that the 2p− electron can easily absorb ξ photons of the right
circularly polarized laser pulse and be excited to m=−1+ξ states, but it is much more difficult
to absorb ξ photons of the left circularly polarized laser pulse and jump to m =−1−ξ states.
In other words, the resonant excitation starting from m = −1 occurs much more easily in the
positive direction (|m| goes down to 0 and then increases towards +∞) than in the negative
direction (|m| directly increases towards +∞). This asymmetry of the transition probabilities
between two different directions is just the reason for the helicity sensitivity of the resonant
enhancement. Note that there are counter-intuitively non-zero occupations of states with m =
−2 shown in Fig. 5(a) and m = 0 shown in Fig. 5(b). It seems conflicting with the angular
momentum conservation and is due to the strongly modified wave functions by intense laser
fields, where the calculated occupations in Fig. 5 are obtained by projecting the wave function
ψ(t) onto field-free eigenstates. However, this deviation does not change our discussion and
conclusion.

To analyze the resonant enhancement, the energies of the first 10 lowest-lying eigenstates for
m = 0, ±1, ±2, ±3, ±4, ±5 are obtained by solving the eigenvalue equations and summarized
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in Table I. Transitions among different states should follow the conservation of both energy and
angular momentum. The conservation of energy requires that the transition to the highly-lying
excited state happens when the absorbed photon energy ξ ω is equal to the energy gap between
the initial and final states. The conservation of angular momentum requires that the change of
m is equal to the number of absorbed photons ξ . As a result, if the electron is excited from the
m = −1 state to the m = −1± ξ state, the number of absorbed photons should be ξ and the
absorbed energy should be ξ ω .

Table 1. Energies of the first 10 lowest-lying eigenstates for m = 0, ±1, ±2, ±3, ±4, ±5.

m = 0 m =±1 m =±2 m =±3 m =±4 m =±5

1 −2.9519 −0.7930 −0.0741 −0.0397 −0.0244 −0.0165
2 −0.2166 −0.1128 −0.0390 −0.0242 −0.0164 −0.0114
3 −0.0802 −0.0517 −0.0239 −0.0162 −0.0110 −0.0060
4 −0.0411 −0.0296 −0.0160 −0.0104 −0.0047 0.0013
5 −0.0249 −0.0191 −0.0099 −0.0033 0.0036 0.0106
6 −0.0165 −0.0127 −0.0022 0.0058 0.0138 0.0217
7 −0.0102 −0.0055 0.0076 0.0169 0.0258 0.0346
8 −0.0021 0.0038 0.0193 0.0298 0.0396 0.0492
9 0.0081 0.0152 0.0328 0.0445 0.0552 0.0656
10 0.0204 0.0285 0.0482 0.0609 0.0724 0.0837

Restricted by these two conservation laws, possible excitation channels and correspond-
ing resonant laser wavelengths can be deduced. These wavelengths are shown in Fig. 6 with
triangles and rectangles. The horizontally arranged triangles denote possible resonant wave-
lengths for the channels m = −1 → −1+ ξ (driven by right circularly polarized laser fields)
and the horizontally arranged rectangles denote possible resonant wavelengths for the channels
m = −1 → −1− ξ (driven by left circularly polarized laser fields). The possible one-photon
excitation channels m =−1 → 0 and m =−1 →−2 are not shown because the corresponding
resonant wavelengths are much shorter.

These resonant excitations will finally result in the helicity sensitive ionization enhancement.
For example, the two-photon transitions m =−1 → 1 lead to the first peak at about 120 nm as
indicated by the first red arrow in Fig. 6. The second peak should be induced by the three-
photon transitions m = −1 → 2. The position of the peak is blue-shifted compared with the
positions of corresponding resonant wavelengths, because the energy gaps between the initial
and final states are enlarged due to the Stark shifts of highly-lying excited states with m = 2
for such high laser intensity. Similarly, the third peak is induced by the four-photon transitions
m = −1 → 4, where the blue shift is much larger due to the larger Stark shifts of states with
m = 3. Figure 5(a) shows that the occupations are high for states with m = 1,2,3 and the first
three ionization peaks in Fig. 6 are most prominent. These two observations agree well. For
ionization processes driven by left circularly polarized pulses, no ionization peaks are found
in the ionization probability curve, because the transition probabilities to excited states with
m ≤−3 are very small as already shown in Fig. 5(b).

4. Conclusion

In summary, strong-field ionization from 2p± states in circularly polarized laser fields are in-
vestigated by solving 2D-TDSE in polar coordinates with the Lagrange mesh technique. The
variation of the ionization probability as a function of the laser wavelength from the deep mul-
tiphoton regime to tunneling regime is discussed. In the deep multiphoton ionization regime,
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Fig. 6. Analysis of the origin of the ionization peaks. The blue curves present the ioniza-
tion probabilities for the 2p− orbital and for the laser intensity I = 1.1× 1015 W/cm2 of
right (solid) and left (dashed) circularly polarized laser fields. The horizontally arranged
red triangles denote the possible resonant wavelengths for the channels m =−1 →−1+ξ
(driven by right circularly polarized laser fields) and the horizontally arranged black rectan-
gles denote the possible resonant wavelengths for the channels m =−1 →−1−ξ (driven
by left circularly polarized laser fields). Red arrows indicate the relationship between the
ionization peaks and the excitation channels.

helicity sensitive ionization enhancement is observed. By analyzing the time-dependent evolu-
tion of the occupations of the excited bound states with different magnetic quantum numbers
m, it is shown that this ionization enhancement is attributed to the multiphoton resonant transi-
tions to excited states and the helicity sensitivity is due to the different transition probabilities
for different excitation channels driven by left or right circularly polarized laser fields. This
phenomenon shows the important role of excited states in the process of strong-field ionization
from orbitals with internal angular momentum.
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