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Abstract

Stress measurements with sub-monolayer sensitivity are performed to investigate the correlation between mechanical
"lm stress and magneto-elastic anisotropy in epitaxial ferromagnetic monolayers. The magneto-elastic coupling B

1
of

Fe(1 0 0) "lms is measured directly. Magnitude and sign of B
1

deviate from the respective bulk value. A strain-dependent
correction of the magneto-elastic coupling coe$cient B

1
describes the apparent thickness dependence of B

1
for "lm

thicker than 10 nm. For thinner "lms, the possible contribution of surface corrections is discussed to explain the almost
constant B

1
. The implications of a modi"ed magneto-elastic coupling for the anisotropy of ultrathin "lms is elucid-

ated. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The magneto-elastic properties of ultrathin "lms or of bulk samples within a few As near the sample surface
have been reported to di!er substantially from the respective bulk properties. Sun and O'Handley found that
the magneto-elastic coupling can di!er by more than a factor of three near the surface region of amorphous
alloys [1]. Szymczak and Z0 uberek measured that the magnetostriction of Ni/Pb and Ni/C multilayers is
proportional to the inverse Ni layer thickness, and they ascribed their "ndings to a surface magnetostriction
contribution [2]. Others found that the application of a mechanical stress to a ferromagnetic bulk sample
changed the magnitude of the saturation magnetostriction [3,4]. Recently, Koch et al. described a linear
correlation between "lm stress and the magnitude of the e!ective magneto-elastic coupling coe$cient, that
leads to change of sign of the magneto-elastic coupling in strained Fe(1 0 0) "lms [5]. Finally, Kim and Silva
reported that the magnetostriction of permalloy, a material with negligible magnetostriction as a bulk
sample, raises to signi"cant values for permalloy "lms thinner than 10 nm [6]. All these examples indicated
that one should not be too surprised to "nd that magnitude and sign of the magneto-elastic coupling
coe$cients di!er substantially from their respective bulk values in the case of ultrathin and strained
ferromagnetic "lms.
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Table 1
Anisotropy constants K

i
, magneto-elastic coupling coe$cients B

i
, calculated from j

i
(see Table 2), and stray "eld energy density k

0
M2

S
/2.

Room temperature values from Ref. [19] in MJ/m3

BCC Fe FCC Ni HCP Co

K
1

0.048 !0.006 0.513
K

2
0.0001 !0.003 0.013

B
1

!3.43 9.38 !8.1
B
2

7.83 10 !29
B
3

28.2
B
4

29.4
k
0
M2

S
/2 1.85 0.15 1.32

It is the goal of this contributions to present experimental evidence for the intimate correlation between
"lm stress and magnetic anisotropy in nm epitaxial "lms. Our results indicate that strain is an important
factor for the modi"ed magneto-elastic coupling in ultrathin "lms. Already moderate strains in the sub-
percent range are found to induce a change of the sign of the magneto-elastic coupling coe$cient of Fe(1 0 0)
"lms. The implications for the magnetic anisotropy of strained epitaxial "lms are discussed.

2. Magneto-elastic coupling in epitaxial 5lms

The magneto-elastic coupling describes strain-dependent contributions to the magnetic energy density
f [7]. The magnitude of both "lm strain e

i
and magneto-elastic coupling coe$cients B

j
determine how "lm

strain alters the magnetic anisotropy. For example, the magneto-elastic coupling coe$cients in cubic systems
are two to three orders of magnitude larger than the magneto-crystalline anisotropy constants, see Table 1,
and even small strains in the sub-percent range are capable of modifying the magnetic anisotropy consider-
ably. However, it is a doubtful practice to apply bulk magneto-elastic coupling coe$cients to the discussion of
magnetic anisotropy of ultrathin "lms as several recent experimental works proved that in sharp contrast to
bulk behavior magnitude and sign of the magneto-elastic coupling coezcients are not constant, but seem to vary
with xlm thickness and xlm stress [1,5,8]. The correlation between "lm stress measurements with magnetos-
trictive bending experiments [9,10], that are explained in the next section, corroborated the decisive role of
"lm strain for the modi"ed magneto-elastic behavior of nm thin "lms. We present results on the strain-
dependent correction of the bulk value of B

1
in Section 5. It is found that strains larger than 0.6% induce

a change of sign of B
1

in nm Fe(1 0 0) "lms [8]. In the following, the contributions of the magneto-crystalline
anisotropy f

.#
and of the magneto-elastic anisotropy f

.%
are compiled for various epitaxial "lm orientations

to facilitate the discussion of magnetic anisotropy.
Starting point in a phenomenological description of the magnetic anisotropy f is the separation of the

contribution of the magneto-crystalline anisotropy f
.#

, the magneto-elastic anisotropy f
.%

and of the stray
"eld energy density f

$%.!'
:

f (a
i
, e

j
)"f

.#
(a

i
)#f

.%
(a

i
, e

j
)#f

$%.!'
(a

3
). (1)

The orientations of the magnetization direction is given by the direction cosines a
i
, and the "lm strain is given

by e
j
. The minimum of Eq. (1) gives the direction of the easy-axis of magnetization, di!erences between f for

various orientations of the magnetization are calculated to derive in-plane and out-of-plane anisotropies.
The following expressions for f

.#
and f

.%
are used for cubic and hexagonal "lms [11]:

f #6"*#
.#

"K
1
(a2

1
a2
2
#a2

2
a2
3
#a2

1
a2
3
)#2, (2)
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Table 2
Relation between the B

i
and the measured magnetostriction constants j and the elastic constants c

ij
for cubic and hexagonal systems

Cubic [7] Hexagonal [20]

B
1

!3
2
(c

11
!c

12
)j

1 0 0
!(c

11
!c

12
)(j

A
!j

B
)

B
2

!3c
44

j
1 1 1

!c
13

(j
A
#j

B
)!c

33
j
C

B
3

!c
12

j
A
!c

11
j
B
!c

13
j
C

B
4

c
44

(j
A
#j

B
#j

C
!4j

D
)

f )%9
.#

"K
1

sin2 /#K
2

sin4 /#2, (3)

f #6"*#
.%

"B
1
(e
1
a2
1
#e

2
a2
2
#e

3
a2
3
)#B

2
(e
4
a
2
a
3
#e

5
a
1
a
3
#e

6
a
1
a
2
)#2, (4)

f )%9
.%

"B
1
(e
1
a2
1
#2e

6
a
1
a
2
#e

2
a2
2
)#B

2
(1!a2

3
)e
3
#B

3
(1!a2

3
)(e

1
#e

2
)#B

4
(e
4
a
2
a
3
#e

5
a
1
a
3
)#2. (5)

The magnetization direction is given by the a
i
and the "lm strains are denoted e

i
, where the contracted

Voigt-notation has been applied to contract the two-su$x symmetric strain tensor e
ij

to e
k

[12,13]. Both
direction cosines a

i
and strains e

i
are given in a cubic crystal system, which does not coincide with the "lm

coordinate system in general. This requires appropriate tensor transformations for orientations other than
cubic (1 0 0) or hexagonal (0 0 0 1). The necessary transformation is given as an example for the cubic (1 1 0)
plane in Appendix A. The angle / is measured between the c-axis and the magnetization direction. The dots
indicate that higher-order terms in a

i
are neglected. In the following we neglect even K

2
, which is a reasonable

assumption in the discussion of Fe, where K
2

is more than a factor of hundred smaller than K
1
, see Table 2.

Higher-order terms in e
i
are introduced later as a strain-dependent correction of B

1
[14]. The so-called

surface terms that contribute in proportion to the inverse "lm thickness can be incorporated in the K
i
[15,16]

and B
i
[2,17,18]. An example of a surface term K

S
is presented below in the discussion of the in-plane

anisotropy of Fe(1 1 0) monolayers. Values for K
i
and B

i
are given in Table 1. The demagnetizing "eld is zero

for an in-plane magnetization of ultrathin "lms. The stray "eld energy density resulting from an out-of-plane
magnetization is determined by the demagnetizing "eld and is given by the saturation magnetization M

S
as

f
$%.!'

"1
2
k
0
M2

S
.

Values of f
$%.!'

are quoted in Table 1.
Before we concentrate in the following on the in-plane anisotropy of Fe "lms with (1 0 0) and (1 1 0) surface

orientations we compile the expressions for the magneto-crystalline and the magneto-elastic in-plane and
out-of-plane anisotropies in Table 3. Table 3 quotes the in-plane and out-of-plane magnetic anisotropy as
di!erences in energy density between two in-plane magnetization directions and between in-plane and out-
of-plane magnetization, respectively. In the derivation of the expressions we considered isotropic "lm strain,
e@
1
"e@

2
"e@

0
, the strain perpendicular to the "lm plane is given by e@

3
, the primes indicate the "lm coordinate

system. Table 3 shows that the magneto-elastic coupling a!ects the out-of-plane magnetic anisotropy for all
"lm orientations. Therefore, an independent experimental determination of the B

i
in the thickness and strain

state of interest is of fundamental importance in the discussion of magneto-elastic strain e!ects. A procedure
to measure B

i
directly is presented in the next section. Whereas the in-plane strains are generally known from

the epitaxial growth mode and the resulting mis"t strain, or from a structural analysis by di!raction
techniques [21], or from a stress analysis [13], the out-of-plane strain is often assumed to be given by
continuum elasticity as a Poisson-type reaction of the in-plane strain. The following relations give the
out-of-plane "lm strain e@

3
as a function of the isotropic in-plane strain e@

0
for various "lm orientations [13]:

cubic (1 0 0): e@
3
"!

c
12

c
11

2e@
0
, (7)
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Table 3
Magneto-crystalline anisotropy f

.#
and magneto-elastic anisotropy f

.%
, calculated for an isotropic in-plane "lm strain e@

0
and

a perpendicular "lm strain e@
3

for various epitaxial orientations. e@
3

is alternatively expressed in terms of e@
0
, see Eqs. (7)}(10)

f
.#

f
.%

Cubic (1 0 0), in-plane, f ([1 0 0])!f ([1 1 0]) !1
4
K

1
0

Cubic (1 0 0), out-of-plane, f ([1 0 0])!f ([0 0 1]) 0 B
1
(e@
0
!e@

3
)

B
1A

c
11
#2c

12
c
11

e@
0B

Cubic (1 1 0), in-plane, f ([0 0 1])!f ([11 1 0]) !1
4
K

1
1
2
(B

1
!B

2
)(e@

0
!e@

3
)

(B
1
!B

2
)A

c
11
#2c

12
c
11
#c

12
#2c

44
Be@0

Cubic (1 1 0), out-of-plane, f ([11 1 0])!f ([1 1 0]) 0 B
2
(e@
0
!e@

3
)

2B
2A

c
11
#2c

12
c
11
#c

12
#2c

44
Be@0

Cubic (1 1 1), in-plane, all directions 0 0
Cubic (1 1 1), out-of-plane, f [! 1

J2
, 1

J2
, 0]!f [1 1 1] ! 1

12
K

1
B
2
(e@
0
!e@

3
)

2B
2A

c
11
#2c

12
!2c

44
c
11
#2c

12
#4c

44
Be@0

HCP (0 0 0 1), in-plane, all directions 0 0
HCP (0 0 0 1), out-of-plane K

1
(B

1
#2B

3
)e@
0
#B

2
e@
3

AB1
#2B

3
!

2c
13

c
33

B
2Be@0

cubic (1 1 0): e@
3
"!

c
11
#3c

12
!2c

44
c
11

#c
12
#2c

44

e@
0
, (8)

cubic (1 1 1): e@
3
"!

c
11
#2c

12
!2c

44
c
11
#2c

12
#4c

44

2e@
0
, (9)

HCP (0 0 0 1): e@
3
"!

c
13

c
33

2e@
0
. (10)

The elastic constants c
ij

are given in Table 4.
Table 3 gives the di!erence in the energy density for two di!erent orientations f (1)!f (2) of the

magnetization, a positive value indicates that the orientation (2) is energetically more favorable as it leads to
a lower energy density. The stray "eld energy density f

$%.!'
has to be taken into account to decide whether the

easy magnetization direction is out of plane.
The directional dependence of the magnetic anisotropy within the (1 1 0) plane of ultrathin Fe "lms on

W(1 1 0) is of great interest as the so-called surface anisotropy contributions have been evoked to explain the
easy in-plane magnetization direction along [11 1 0] [15,16], which deviates from the bulk Fe easy magneti-
zation direction [1 0 0]. However, due to the large lattice mis"t of more than 10% between Fe and W, "lm
strain and its role in modifying the bulk magneto-elastic coupling [8,24] should not be ruled out as an
alternative driving force for the reorientation of the easy magnetization axis from [1 0 0] to [11 1 0]. The role
of a modi"ed magneto-elastic coupling in Fe "lms for the magnetic anisotropy in (1 1 0) planes is discussed
below.
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Table 4
Elastic constants c

ij
in GPa, values from Ref. [22,23]

BCC Fe FCC Ni HCP Co

c
11

229 249 307
c
12

134 152 165
c
44

115 118 75.5
c
13

103
c
33

358

The in-plane magneto-crystalline anisotropy f
.#

and the magneto-elastic anisotropy f
.%

are calculated for
the cubic (1 0 0) and the cubic (1 1 0) planes. The results are plotted as polar plots in Fig. 1 for isotropic in-
plane strains of e@

0
"0.01. A strain of 1% is chosen as it leads to magneto-elastic anisotropy contributions

that are comparable in magnitude with the magneto-crystalline anisotropy. Our in situ stress measurements
suggest that 1% strain characterizes the average "lm strain in a 5 nm thin Fe(1 0 0) "lm on W(1 0 0).

The directional dependence of the magneto-crystalline and of the magneto-elastic anisotropy is given by

f (1 0 0)
.#

"K
1
(cos2(a@

1
)!cos4(a@

1
)), (11)

f (1 0 0)
.%

"B
1
e@
0
. (12)

The magneto-crystalline anisotropy shows a fourfold symmetry, plotted in Fig. 1a. The lobes of the polar plot
are extended along the [1 1 0] directions, indicative of a hard magnetization direction, the minima of the
anisotropy are found in the [1 0 0] directions, as evidenced by the zero values of the anisotropy plot. The
di!erence between the length of the radius vector at the lobe position versus the zero position gives the in-
plane anisotropy of K

1
/4, as quoted in Table 3. The magneto-elastic anisotropy contribution is isotropic and

is represented by a dashed circle in Fig. 1b, the sum of both contributions is drawn as solid line in Fig. 1b.
Note, that although the isotropic contribution in#ates the anisotropy plot, the di!erence in length of the
radius vector along two directions remains unchanged, indicating that an isotropic "lm strain does not
change the in-plane anisotropy of an (1 0 0) "lm.

The situation is di!erent for the (1 1 0) orientation. Here, the tensor transformations that are explained in
Appendix A result in the following expressions for the angular dependence of the anisotropy contributions:

f (1 1 0)
.#

"K
1
(cos2(a@

1
)!3

4
cos4(a@

1
)), (13)

f (1 1 0)
.%

"1
2
(B

2
!B

1
)(e@

0
!e@

3
) cos2(a@

1
). (14)

Fig. 1c and Fig. 1d indicate that both magneto-crystalline anisotropy and magneto-elastic anisotropy
favor an easy in-plane magnetization direction [0 0 1]. In sharp contrast to the (1 0 0) orientation, the
magneto-elastic anisotropy leads to a large uniaxial anisotropy contribution, shown as a dashed curve in
Fig. 1d, that is roughly a factor of "ve larger than the magneto-crystalline anisotropy. Consequently, the
resulting sum of both anisotropy contributions is dominated by f

.%
, as indicated by the solid curve in Fig. 1d.

However, this treatment fails to reproduce the easy magnetization direction along [11 1 0] that is experi-
mentally observed for Fe "lms on W(1 1 0) in the thickness range 1}50 atomic layers (+10 nm) [15].

Elmers and Gradmann introduced in-plane surface anisotropy constants K
S,PP

and K
S,P

to take the e!ect
of the broken symmetry at the "lm interface into account and proposed the following expressions for the
magneto-crystalline anisotropy [16]:

f (1 1 0)
.#,S

"AK1
!

K
S,P
d

cos2(a@
1
)B#A!

3

4
K

1
!

K
S,PP
d

cos4(a@
1
)B (15)
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Fig. 1. Polar plots of the magneto-crystalline anisotropy f
.#

and magneto-elastic anisotropy f
.%

of cublic (1 0 0) and (1 1 0) "lms. An
isotropic in-plane strain of e@

0
"0.01 is used in f

.%
. The length of the radius vector resembles the in-plane anisotropy. (b), (d), (f ): dashed

curve f
.%

, solid curve f
.%

#f
.#

; (h): dashed curve f
.%

, dotted curve f
.#

, solid curve f
.%
#f

.#
.

with K
S,PP

"!0.16 mJ/m2, K
S,P

"0.55 mJ/m2 and the "lm thickness given by d. This surface term correc-
tion leads to an easy magnetization direction along [11 1 0], as shown in Fig. 1e, plotted for d"1 nm. With
this surface term correction, the magneto-crystalline anisotropy is roughly a factor of six larger than the
magneto-elastic anisotropy, that is shown as a dashed curve in Fig. 1f. The resulting sum of f

.#
#f

.%
is

plotted as solid curve in Fig. 1f and indicates an easy in-plane magnetization direction along [11 1 0].
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However, our experimental determination of B
1

in Fe(1 0 0) "lms, that is discussed below, gives
B
1
"1 MJ/m3 for a 1 nm thin "lm, which is of opposite sign and di!erent magnitude as compared to the

bulk value B"6-,
1

"!3.43 MJ/m3. Therefore, it is certainly a severe simpli"cation to discuss the anisotropy in
strained nm "lms under the assumption of bulk magneto-elastic coupling coe$cients. Unfortunately, B

2
has

not been measured yet in ultrathin epitaxial "lms, and therefore we cannot present an in-depth discussion of
the in#uence of the modi"ed magneto-elastic coupling on the in-plane anisotropy of nm Fe(1 1 0) "lms. To
demonstrate that modi"ed magneto-elastic coupling coe$cients are capable of inducing an in-plane reorien-
tation of the easy axis of magnetization we present in Fig. 1g and Fig. 1h the magneto-elastic anisotropy
f
.%

and the sum of f
.%

#f
.#

, respectively. We used the experimental value of B
1
"1 MJ/m3 and set

B
2
"!2 MJ/m3. As we do not know of any experimental value for B

2
for a 1 nm thin Fe "lm under +1%

strain we assumed the same relative change of B
2

versus its bulk value as we measured for B
1
. The resulting

magneto-elastic anisotropy in Fig. 1g shows an easy magnetization direction along [11 1 0]. We plot in Fig. 1h
the magneto-elastic anisotropy from Fig. 1g as a dashed curve, and show the bulk magneto-crystalline
anisotropy from Fig. 1c as a dotted curve. The resulting sum of both anisotropy contributions is plotted as
a solid curve and indicates an easy magnetization direction along [11 1 0]. The magnitude of the anisotropy
di!ers from the surface term model, but no attempts were made to mimic these values. Our goal is to
demonstrate that the modi"ed magneto-elastic coupling o!ers a convenient approach to account for the
anisotropy of ultrathin epitaxial "lms without having to invoke surface anisotropy terms a priori.

Clemens et al. [25] pointed out that even an apparent 1/d dependence of the crystalline anisotropy of
a strained Fe(1 1 0) "lm does not necessarily require a surface term model K

1
#K

S
/d for its explanation.

Instead, these authors used a model to describe the in-plane strain as a function of "lm thickness to mimic
a 1/d dependence of the magnetic anisotropy as a "lm thickness dependent magneto-elastic energy contribu-
tion [25].

In conclusion, neither a modi"ed in-plane anisotropy in epitaxial "lms nor an apparent 1/d dependence of
the magnetic-anisotropy is an unequivocal justi"cation for the so-called surface anisotropy terms. However,
it is physically appealing to take the symmetry breaking at surface and interfaces via surface terms into
account [18,26}30]. But the decisive role of strain for the modi"ed magnetic anisotropy, as evidenced in
experimental investigations and "rst-principles calculations [31] has to be considered also. An experiment
that correlates "lm strain with magneto-elastic coupling is described next.

3. Magnetostrictive bending of 5lm}substrate composites

Magnetostriction of bulk Fe samples is known as a small relative elongation of order 10~5 that can be
induced by magnetizing the sample. In ultrathin "lms however, the ferromagnetic "lm is rigidly bonded to
a substrate, and in the limiting case of an inde"nitely rigid substrate, no magnetostrictive strain will be
observed: although the magnetization process does induce magneto-elastic stresses in the ferromagnetic "lm,
the inde"nitely rigid "lm}substrate composite does not yield to these stresses. On thin substrates with
a thickness of order 100 lm, the magneto-elastic stresses of ferromagnetic "lms lead to a minute de#ection of
the "lm}substrate composite. Thus, monitoring the change of radius of curvature of a "lm}substrate
composite during magnetization processes is a standard tool to examine the magneto-elastic properties of
thin "lms [32}39].

As we are interested in the magneto-elastic properties of monolayer thin epitaxial "lms, grown on single
crystal substrates, we employ a very sensitive optical-de#ection technique to measure the minute de#ection of
a 100 lm thin W(1 0 0) single crystal substrate due to the magnetization of epitaxial Fe "lms as thin as three
atomic layers [10,40]. The resulting radius of curvature of the "lm}substrate composite is of order 200 km,
and phase-sensitive detection schemes are employed to achieve this high sensitivity [41]. A sketch of the
optical de#ection technique is presented in Fig. 2a. A second set of the de#ection technique is used to measure
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Fig. 2. (a) Schematic diagram of the optical de#ection technique. A laser beam is de#ected from the substrate, located inside of the UHV
chamber, onto a position-sensitive detector to monitor the curvature of the substrate. 1: single crystal substrate, 2: UHV-window, 3:
position-sensitive detector, 4: laser, 5: adjustable laser mount. (b) Cross section through lower part of the UHV chamber with magnet
system. 1: sample in a position for transversal MOKE, 2: stainless-steel capsuled, water-cooled electromagnet (vertical "elds of up to
0.1 T), 3: sample in the position for longitudinal and polar MOKE and magneto-elastic bending experiments, 4: external electromagnet
with 5: internal pole pieces, rotatable around vertical axis ("elds of up to 0.4 T). After Ref. [10].

"lm stress during "lm growth, as described in Section 4. Electromagnets within the ultra-high vacuum (UHV)
chamber, and an external magnet with its pole pieces inside the vacuum chamber are employed to magnetize
the "lm in "elds of up to 0.4 T. The magneto-optical Kerr e!ect (MOKE) is used to monitor the "lm
magnetization in situ. A schematic of the electromagnets at the lower part of our UHV chamber is shown in
Fig. 2b.

We employ W(1 0 0) substrates with the [1 0 0] directions oriented along the sample length and width,
respectively. From the expression of the magneto-elastic energy density f

.%
"B

1
e
1
a2
1
#2 it follows that

a magnetization along the direction 1, along the sample length, induces a magneto-elastic stress q.%
1

of

q.%
1
"

Rf
.%
Re

1

"B
1
. (16)

A negative value of B
1
, as found in bulk Fe, induces compressive stress, that tries to strain the "lm to increase

its length. If the magnetization is switched to the direction 2, along the sample width, the magneto-elastic
stress is induced along the sample width, and the stress along the sample length changes. We monitor the
curvature of the sample along the sample length, and the resulting change of the radius of curvature R

1
gives

B
1

[13]:

B
1
"

>
S
t2
S

6(1#l
S
)t
F
AA

1

R
1
B

-%/'5)
!A

1

R
1
B

8*$5)

B. (17)

>
S
"402 GPa and l

S
"0.28 are the Young modulus and the Poisson ratio of the W substrate, respectively.

For general substrate orientations of elastic anisotropic materials, the directional dependence of the elastic
properties has to be considered [13]. The sample thickness is given by t

S
, the "lm thickness is t

F
. The

superscripts length and width denote the magnetization direction. We derive the magneto-elastic coupling
coe$cient B

1
from a measurement of the di!erence in sample curvature for magnetization along the sample

length versus magnetization along the sample width. A derivation of an equivalent expressions in terms of the
magnetostriction constants j and elastic constants c

ij
based on energy minimization procedures has been

presented [42,43]. The application of the optical de#ection technique to measure "lm stress during "lm
growth is presented next.
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4. Stress and strain in epitaxial 5lms

The evaluation of the substrate curvature during "lm growth is a well-known technique to measure stress
with sub-monolayer sensitivity [44}50]. The in situ combination of stress measurements during "lm growth
with provisions for "lm magnetization to study magneto-elastic properties has been demonstrated by Weber
et al. to be a powerful tool to correlate mechanical "lm stress with the magnetic properties of ultrathin Fe
"lms [9]. We used the optical de#ection technique to measure the anisotropic "lm stress of epitaxial Fe
monolayers on W(1 1 0) [13,50]. Stress measurements for the growth of Fe on W(1 0 0) are presented in
Section 5 where we discuss the important role of "lm stress for the modi"ed magneto-elastic coupling in these
"lms. In the following we present a brief discussion of stress-driven structural changes in Fe monolayers on
W(1 1 0), that has been presented in greater detail elsewhere [13,51].

The strain in pseudomorphic epitaxial "lms is given by the lattice mismatch between "lm and substrate, in
the case of Fe and W one calculates an isotropic in-plane strain of g"a

W
/a

F%
!1"0.104 from the lattice

constants a
W
"3.165 As and a

F%
"2.866 As [52]. To derive an estimate of the resulting "lm stress we apply

continuum crystal elasticity and obtain the following stress}strain relations from the elastic energy density
f (1 1 0)
%-!45*#

[13]:
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Inserting the values of the isotropic in-plane strain of e@
1
"e@

2
"g"0.1 and taking the bulk elastic constants

from Table 4 reveals that } although the strain is isotropic } the stress is highly anisotropic: the in-plane stress
along [11 1 0], q@

1
"38.9 GPa, is 41% larger than the in-plane stress along [0 0 1], q@

2
"27.5 GPa. The elastic

energy density of the pseudomorphically strained Fe(1 1 0) "lm is 3.36 GJ/m3, which gives a tremendous
strain energy per Fe atom of 0.32 eV/atom. Therefore, the reduction of the elastic strain energy is expected to
be a dominant driving force for structural transitions. Our stress measurements show that mis"t distortions
are introduced already in the second layer of Fe, lowering the "lm stress signi"cantly. As discussed next, the
measured stress in the pseudomorphic region is 65 GPa along [0 0 1] and 44 GPa along [11 1 0], respectively.
These results indicate a considerable discrepancy between measured "lm stress and calculated stress.
However, the calculated stress anisotropy is also found in the experiments. One should not expect that bulk
elasticity applies to the "rst Fe monolayer, as a bulk-like electronic structure should be a necessary
requirement for bulk elastic properties, but photo-electron spectroscopy suggests that at least "ve layers are
needed before a bulk-like electronic structure evolves [53,54]. The impact of electronic surface and interface
states on the surface stress and on the elastic properties of the surface layer remains to be investigated.

The calculated in-plane anisotropy of the "lm stress requires that the radius of curvature of the sample is
measured along the in-plane [11 1 0] (R

1
) and [0 0 1] (R

2
) directions to calculate the "lm stresses q

1
and q

2
:
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Fig. 3. Biaxial stress analysis for the room-temperature growth of Fe on W(1 1 0). (a) Curvature i data for two di!erently oriented
crystals. The growth of Fe induces curvatures of opposite sign in the sub-monolayer range, leading to an antielastic substrate curvature
shown in (b). (c) The curvature data from (a) are weighed by the Poisson ratio of W and added to arrive at the plots of q

i
]t

F%
versus t

F%
.

A positive slope indicates tensile "lm stress, the kink at 1.2 ML indicates the formation of mis"t distortions in the second Fe layer. After
Ref. [50].

The curvature analysis is greatly simpli"ed in the case of elastic isotropic substrates as W. The #exural
rigidity of the substrate is isotropic and the compact Eq. (20) describes the biaxial stress analysis properly
[13].

We measured the substrate curvature during "lm growth on two di!erently cut crystals, as shown in Fig. 3.
The rectangular crystals were oriented with their length along [11 1 0] [upper curve in Fig. 3a] and along
[0 0 1] [lower curve in Fig. 3a]. The position signal of the position-sensitive detector shown in Fig. 2a is
monitored during the deposition of 10 ML Fe at room temperature. Quite surprisingly, the deposition of Fe
induces crystal curvatures of opposite sign along the two directions in the sub-monolayer range. The crystal
is bent like the anticlastic surface shown in Fig. 3b. Although di!raction experiments indicate pseudomorphic
growth with an isotropic strain in the "rst Fe layer, the Fe-induced surface forces are of opposite sign. This
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Fig. 4. (a) LEED image of 3 ML Fe on W(1 1 0). Additional di!raction spots are arranged in diamond-shaped areas around the (1 1 0)
di!raction spots, indicative of a regular distortion line network. (b) STM image of 3 ML Fe on W(1 1 0). Elongated islands of the third
layer are shown in grey, with patches of the fourth layer in lighter grey. Distortion lines are detected as regularly arranged lighter grey
lines on top of the Fe islands. From Ref. [51].

result is a clear example for the failure of strain arguments to explain sub-monolayer stress. Instead, the
change of surface stress of the clean W surface in comparison to the Fe}W composite is suggested to be
responsible for the anisotropic curvature in the sub-monolayer range [50]. With increasing coverage, both
curvature data show a positive slope, as expected from the tensile strain in the Fe "lm. A kink in the curvature
data around 1.2 ML indicates the formation of mis"t distortions in the "lm. This leads to slightly decreasing
curvature along [11 1 0] up to 4 ML Fe coverage, whereas the formation of mis"t distortions leads to
a reduced slope of the curvature along [0 0 1]. The curvature data are weighed with the Poisson ratio of the
substrate according to Eq. (20) to derive the biaxial stress analysis in Fig. 3c. The slope of the curves in (c) give
the "lm stress components q

1
in the upper curve, and q

2
in the lower curve. The slope in the pseudomorphic

range indicates an isotropic "lm stress of 65 GPa along [11 1 0] versus 44 GPa along [0 0 1]. The inset shows
an enlargement of q]t

F%
on the left scale versus the "lm thickness in the monolayer range. The anisotropic

curvature described above leads to compressive "lm stress along [0 0 1], although the Fe "lm is pseudomor-
phically strained by more than 10%.

Low-energy electron di!raction (LEED) [55] and scanning tunneling microscopy (STM) [56] reveal the
atomic structure of the mis"t distortions as additional lines of Fe that are "rst inserted along the [0 0 1]
direction in the second layer before a two-dimensional distortion network evolves at higher coverages.
LEED and STM images that indicate the two-dimensional distortion line network in a 3 ML thin Fe "lm are
presented in Fig. 4. Additional di!raction spots surrounding the (1 1 0) di!raction spots indicate a high
symmetry of the distortion network in the LEED image (a). The distortion line network gives rise to a slight
corrugation of the vertical contrast shown in the STM image (b) as lighter grey lines on top of the islands of
the third and fourth layer.

In summary, stress measurements are a powerful tool to detect structural transitions with high sensitivity.
The resulting changes in "lm stress can be measured directly. In the case of Fe growth on W(1 1 0), the
formation of mis"t distortions in the second layer reduces the "lm stress from more than 40 GPa in the "rst
layer to almost zero in the second and third layer. Tremendous stress variations are expected on a nanoscale
where the pseudomorphically strained "rst layer coexists with stress-relaxed patches of the second layer and
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strain-driven variations of the magnetic anisotropy can be expected [47,57]. Unfortunately, the strong
in-plane anisotropy of Fe monolayers on W(1 1 0) leads to tremendously high in-plane magnetic "elds of
order 3.5 T [16] to rotate the magnetization in-plane, as required for a direct measurement of the
magneto-elastic coupling. Therefore, we switch in the last section to Fe on W(1 0 0), where the in-plane
magnetization rotation can be performed with small magnetic "elds.

5. Strain-induced modi5cation of the magneto-elastic coupling

The in situ combination of stress measurements due to epitaxial mis"t with stress measurements during
magnetization processes is used to investigate the in#uence of "lm stress on the magneto-elastic coupling
directly. We present results for the room-temperature growth of nm Fe "lms on W(1 0 0) that indicate that
even moderate strains in the sub-percent range induce a signi"cant change of the magneto-elastic coupling
coe$cient B

1
. Our results suggest that even small strains, that are commonly observed in epitaxial "lms due

to the lattice mismatch between "lm and substrate, invalidate the use of bulk magneto-elastic coupling
coe$cients.

Film stress is measured during the growth of Fe on W(1 0 0) with the optical de#ection technique presented
in Fig. 2a. The curvature analysis is simpli"ed for the growth of an (1 0 0) "lm, as for this orientation,
R

1
"R

2
"R in Eq. (20), resulting in the so-called Stoney-equation for a curvature analysis of isotropic stress

on elastic isotropic substrates [13]:
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The biaxial rigidity of the W substrate crystal is given by >
S
/(1!l

S
)"558 GPa, the substrate thickness is

t
S
"100 lm, the "lm thickness is given by t

F
.

The relation between isotropic "lm strain e@
0

and "lm stress q@
F
, as calculated from continuum crystal

elasticity is given by [13]
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Applying Fe bulk elastic constant gives>
F
/(1!l

F
)"208 GPa. The mis"t strain of 10% leads to a "lm stress

of order 21 GPa. In the following we use this stress}strain relation to convert the measured "lm stress to "lm
strain. More exactly, one measures the curvature of the "lm}substrate composite as a function of time during
"lm growth. The Fe evaporator has been checked to deliver constant growth rates, and the curvature plots
are plotted versus "lm thickness t

F
in this work. The curvature 1/R is proportional to q]t

F
, therefore, the

slope of the measured curvature plots indicate the stress in the growing layer. If a change of the slope of the
curvature plot is observed, one has to worry whether the resulting change of the "lm stress is found
exclusively in the growing layers, leaving the stress in the already grown layers unchanged. This interpreta-
tion is justi"ed for the kink in the stress measurements of Fe on W(1 1 0), where other techniques [58]
corroborated a pseudomorphically strained "rst layer, even after the formation of mis"t distortions in thicker
"lms. In how far this interpretation is justi"ed in nm "lms remains to be investigated, preferably by surface
di!raction techniques to correlate the surface strain with the measured "lm stress. This is, however,
a formidable task, as nm thick "lms do not show the sharp di!raction patterns known from epitaxial
monolayers, and an unequivocal strain information is not expected to be obtained easily. To circumvent the
issue of a possible stress relaxation in already deposited layers when a change of slope of the curvature plots is
observed, we only considered the change of the substrate curvature between the beginning and the end of the
"lm growth to obtain the average "lm strain. A continuous slope analysis has been discussed by us elsewhere

450 D. Sander et al. / Journal of Magnetism and Magnetic Materials 200 (1999) 439}455



Fig. 5. Measured magneto-elastic coupling B
%&&

, right axis, and calculated j
1 0 0

, left axis. The broken line indicates the Fe bulk values.
The solid curve describes a strain-dependent correction of B

%&&
, see Fig. 6, calculated from the stress data of (b). (b) Film stress, left axis,

and calculated "lm strain, right axis versus Fe "lm thickness. From Ref. [8].

[13,24]. However, the main message of this section, that "lm strain causes B
1

to change in magnitude and
sign from its bulk value remains una!ected by the stress averaging technique.

Fig. 5a shows the measured values of the magneto-elastic stress B
1

on the right axis versus the Fe "lm
thickness. On the left axis we present the calculated magnetostriction constant j

1 0 0
. In sharp contrast to

bulk behavior, the magneto-elastic coupling in Fe "lms is not constant, but deviates signi"cantly from its
bulk value, that is shown as dashed line in Fig. 5a. The apparent thickness variation of B

%&&
leads to reduced

magneto-elastic coupling even in the thickest "lm of 70 nm. B
%&&

shows a zero-crossing around 20 nm and
a change of sign for "lms thinner than 20 nm. That means that Fe "lms thinner than 20 nm induce tensile
stress upon magnetization and try to contract upon magnetization, opposite to what is measured in thicker
"lms.

For each "lm thickness in (a) we calculate the "lm stress and the "lm strain from the curvature
measurements performed during "lm growth. The result is presented in Fig. 5b. The stress is plotted on
the left axis, the calculated strain on the right axis. The data points in (b) indicate a rather steep decrease of
the "lm strain with increasing "lm thickness. In narrow thickness range of only 5 nm, the "lm stress is
reduced from more than 8 GPa (e"4%) to 2 GPa (1%). With increasing Fe thickness, stress and strain
approach constant residual values of 0.6 GPa (0.3%). Data for the pseudomorphically strained "rst mono-
layers are not included, as the lowest "lm thickness for the determination of B was 3 atomic layers which is
right at the end of the pseudomorphic growth regime, and mis"t distortions are being formed and reduce the
e!ective strain.
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Fig. 6. E!ective magneto-elastic coupling B
%&&

versus "lm strain. The solid curve gives strain-dependent correction of
B
%&&
"!1.2 MJ/m3#200 MJ/m3e. After Ref. [8].

To check whether a strain-dependent correction of B
%&&

[5,14]

B
%&&
"B

1
#De (23)

is capable of describing the apparent thickness dependence of B
%&&

shown in Fig. 5, we plot in Fig. 6 B
%&&

from
Fig. 5a versus e from Fig. 5b. The solid curve is a "t to the data points in the strain range 0}0.6%. This
translates to "lms thicker than 20 nm. The slope of the curve gives D"200$30 MJ/m3, the y-intercept
gives B

1
"!1.2$0.2 MJ/m3. This strain-dependent correction of B

%&&
describes the experimental data

reasonably well in the thickness range 5}68 nm, as indicated by the solid line in Fig. 5a. This simple model
breaks down for thinner "lms, where it predicts huge values of the magneto-elastic coupling coe$cients that
are not observed experimentally. One might speculate that for a "lm thickness below 5 nm additional surface
corrections might contribute via B

S
/t
F%

[14], leading to an almost constant B
%&&
"1 MJ/m3 in that thickness

range.
The continuous slope analysis of the curvature data obtained during "lm growth, as described above, leads

to di!erent values for the strain-dependent correction of B
%&&

, B
%&&
"!3 MJ/m3#1000 MJ/m3e [13,24].

These values of B
1
"!3 MJ/m3 and D"1000 MJ/m3 agree with the values obtained by Koch et al. on

100 nm thick Fe(1 0 0) "lms on MgO(1 0 0), that were prepared to be under various stresses of up to
0.8 GPa [5].

The most important message of our investigation is, that in agreement with the work by Koch et al., the
magneto-elastic coupling coe$cient B

1
is found to deviate in magnitude and sign from its bulk value in

strained epitaxial "lms. Film strain seems to be an important factor for the modi"ed magneto-elastic
coupling behavior. Even moderate strains in the sub-percent range are found to induce signi"cant changes
of B

1
.

6. Conclusion and outlook

Stress measurements with sub-monolayer sensitivity are valuable tools to measure "lm stress during
growth and to investigate the magneto-elastic coupling in ultrathin "lms directly. The in situ combination of
both applications reveals the important role of "lm strain for the modi"ed magneto-elastic coupling in
strained epitaxial "lms. It is found that in sharp contrast to the bulk behavior, the magneto-elastic coupling
constant B

1
of Fe is by no means constant, but changes in magnitude and sign with decreasing "lm thickness.
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Fig. 7. (a) Sketch of the cubic (1 1 0) plane. The cubic crystal coordinate system is given by the un-primed, the "lm coordinate system is
given by the primed directions. (b) Transformation scheme. Read column by column to obtain crystal coordinates in terms of "lm
coordinates.

A strain-dependent correction of B
1
is found to describe the apparent thickness dependence of B

1
reasonably

well for a "lm thicker than 10 nm. The experimental data suggest that even moderate strains in the sub-
percent range are capable of modifying the e!ective magneto-elastic coupling considerably. The implications
of a modi"ed magneto-elastic coupling in nm thin "lms are profound. Bulk magneto-elastic constants cannot
be expected to apply in the discussion of the magnetic anisotropy of ultrathin xlms in general.

Film stress measurements in the sub-monolayer range indicate the diminished importance of strain
arguments. Compressive stress, which is of opposite sign as compared to the expectations of strain
arguments, is measured for sub-monolayer coverages of Fe on W(1 1 0) along [0 0 1], whereas tensile stress is
measured along [11 1 0]. The electronic picture of this anisotropic Fe-induced surface stress remains to be
elucidated in theoretical calculations.

More experimental work on the direct determination of the magneto-elastic coupling in epitaxial "lms is
clearly called for to check the role of strain-dependent corrections versus the possible contribution of surface
corrections. First principles calculation justify the description of the magneto-elastic coupling as the strain
derivative of the magnetic anisotropy energy. But no theoretical justi"cation of a strain-dependent correction
of the magneto-elastic coupling has been given yet.

Appendix A

The application of anisotropy expressions that are formulated in terms of the un-primed direction cosines
and strains of the crystal system requires to express the un-primed variables through the primed variables of
the "lm coordinate system, as indicated in the transformation scheme in Fig. 7. This is done with the
following transformation matrix a:

a
ij
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0 0 1

1J2
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The direction cosines a
i
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The transformation of the strains e
ij

is most easily done by matrix multiplication, using the transpose of a, aT:
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