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Absence of Spontaneous Magnetic Order at Nonzero Temperature in One- and Two-Dimensional
Heisenberg and XY Systems with Long-Range Interactions
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The Mermin-Wagner theorem is strengthened so as to rule out magnetic long-range order at T . 0
in one- or two-dimensional Heisenberg and XY systems with long-range interactions decreasing as R2a

with a sufficiently large exponent a. For oscillatory interactions, ferromagnetic long-range order at
T . 0 is ruled out if a $ 1�D � 1� or a . 5�2�D � 2�. For systems with monotonically decreasing
interactions, ferro- or antiferromagnetic long-range order at T . 0 is ruled out if a $ 2D.
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In a seminal paper exploiting a thermodynamic inequal-
ity due to Bogoliubov [1], Mermin and Wagner proved
the following important theorem [2]: “For one- or two-
dimensional Heisenberg systems with isotropic interac-
tions, and such that the interactions are short ranged,
namely, which satisfy the condition

X
R

R2jJRj , 1` , (1)

there can be no spontaneous ferro- or antiferromagnetic
long-range order at T . 0 [3].” In view of the fact that
most of our knowledge of critical phenomena and phase
transitions is based upon approximate theories, the few
known rigorous results [4] such as the Mermin-Wagner
theorem are of key importance, for they allow one to test
the validity of approximate theories.

For interactions with a finite range or with an expo-
nential decay, the condition (1) is trivially satisfied. For
interactions with a power-law decay jJRj ~ R2a, condi-
tion (1) is satisfied provided that a . D 1 2, where D
is the dimensionality. In metallic magnetic systems, the
exchange interactions are of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) type [5], which have a long-range oscil-
latory behavior for large R: JR ~ R2D cos�q0R 1 f�. It
is obvious that the RKKY interactions do not satisfy the
criterion of short rangedness (1), so that no conclusion on
the magnetism one- and two-dimensional RKKY systems
can be obtained from the Mermin-Wagner theorem. This
situation is highly unsatisfactory, in view of the fact that
most magnetic ultrathin films investigated experimentally
consist of metals and alloys.

In the present paper, I extend the result of Mermin and
Wagner to Heisenberg and XY systems with a long-range
interaction, i.e., which do not satisfy the condition (1),
with particular emphasis on systems with oscillatory inter-
actions. Results for systems with monotonically decaying
interactions are also presented. More specifically, I con-
sider one- and two-dimensional systems described by the
following Hamiltonian:
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We also define the Fourier transform of the spin
operator SR, S�k� �

P
R SRe2ik?R, as well as

E�k� �
P

R JR�1 2 eik?R� � E�2k�, and Ẽ�k� �P
R jJRj �1 2 eik?R� � Ẽ�2k�. For K � 0 and J 0

R �
JR, the above Hamiltonian corresponds to the isotropic
Heisenberg model. In the general case, it corresponds
to a system with uniaxial anisotropy of axis x, with a
single-spin anisotropy (for S $ 1) and/or a two-spin
exchange anisotropy. Depending on the value of the
anisotropy parameters K and J 0

R 2 JR, one therefore has
either an isotropic system, an XY-like system with yz
easy plane, or an Ising-like model with x easy axis (in
the latter case, one merely shows that the spontaneous
magnetization has to be along the x axis). For such
systems (with arbitrary values of parameters J 0

R and K), I
prove the following results:
Theorem 1.—A D-dimensional (D � 1 or 2) Heisenberg
or XY system for which one can find some numbers k0 . 0
[with k0 belonging to the first Brillouin zone (BZ)], a . 0,
b # 1, such that, for jkj , k0 and jk0j , k0,

jE�k�j # ajkjDjln�jkj21�jb, (3a)

jE�k0 2 k� 1 E�k0 1 k� 2 2E�k0�j

# ajkjD jln�jkj21�jb , (3b)

1
AD

Z
dDk00jE�k00 2 k� 1 E�k00 1 k� 2 2E�k00�j

# ajkjDjln�jkj21�jb, (3c)

cannot be ferromagnetic [6].
Corollary 1.—A D-dimensional (D � 1 or 2) Heisenberg
or XY system with long-range oscillatory interactions of the
form

JR ~
cos�q0R 1 f�

Ra
, (4)
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with q0 fi 0 belonging to the first BZ and a $ 1 �D � 1�,
or a . 3�2 �D � 2, sin�f 1 p�4� � 0�, or a . 5�2 �D �
2, sin�f 1 p�4� fi 0� cannot be ferromagnetic.
Theorem 2.—A D-dimensional (D � 1 or 2) Heisenberg
or XY system satisfying

1
AD

Z
dDk

1
Ẽ�k�

� 1` , (5)

where AD is the measure of the first BZ, cannot be ferro-
or antiferromagnetic.
Corollary 2.—A D-dimensional (D � 1 or 2) Heisen-
berg or XY system with interactions monotonically de-
caying as jJRj ~ R2a with a $ 2D cannot be ferro- or
antiferromagnetic.

Proof of Theorem 1.—As for the Mermin-Wagner
theorem, the proof of Theorem 1 relies on using the Bo-
goliubov inequality to prove that the z component of the
137203-2
spontaneous magnetization limB!0j�Sz�j vanishes for any
finite temperature. The proof of Theorem 1 is, however,
significantly more delicate than the Mermin-Wagner one.

Our proof proceeds by reductio ad absurdum. Let us
assume that the system is ferromagnetic. This implies
that one can find a temperature T0 . 0 and a quantity
m0 . 0 such that, for any temperature T # T0, one has
j�Sz�j $ m0.

The Bogoliubov inequality [1] states that
�	A, Ay
� �����C, H�, Cy���� $ 2kBTj��C, A��j2, where A and
C are arbitrary operators, �A, B� is the commutator of A
and B, 	A, B
 is the anticommutator of A and B, and �A�
is the thermodynamic average of A. The two factors on
the left-hand side of the inequality are $ 0. We use Bo-
goliubov’s inequality for A � Sy�2k� and C � Sx�k�.
Straightforward algebra together with the inequality
��Sy

R�2� # S2 then yield the following inequality:
S2 $
1

AD

Z
dDk

kBT�Sz �2

B�Sz� 1 2
P

R JR�1 2 cos�k ? R�� �Sy
0S

y
R 1 Sz

0Sz
R�

. (6)
Note that the above result is independent of J 0
R and K, and

depends only on JR. Thus far, our proof follows exactly
the one of Mermin and Wagner. From this point, Mermin
and Wagner proceed by stating that, if the condition (1)
is satisfied, the (positive) denominator D�k� of the above
equation can be majorated near k � 0 by an expression of
the form jBjS 1 ak2 (with a . 0), from which they then
easily show that the spontaneous magnetization vanishes.

In order to obtain a stronger theorem, i.e., to rule out
ferromagnetism for a broader class of systems, one there-
fore needs to find a tighter majoration of D�k� than used
by Mermin and Wagner. One can check easily that a
majoration of the form D�k� # jBjS 1 gjkjDjln�jkj21�jb
near k � 0, with g . 0 and b # 1, would be sufficient
for our purpose.

To this aim, we rewrite the denominator D�k� of Eq. (6)
as

D�k� � B�Sz� 1 2�Sz�2E�k�

1
1

AD

Z
dDk0�E�k0 2 k�

1 E�k0 1 k� 2 2E�k0��F�k0� ,

(7)
with

F�k� �
X
R

e2ik?R�Sy
0 S

y
R 1 dSz

0dSz
R�

�
1
N

�jSy�k�j2 1 jdSz�k�j2�

� kBT�xyy�k� 1 xzz�k�� , (8)

where we have introduced the longitudinal fluctuation
dSz

R � Sz
R 2 �Sz� and the transverse and longitudinal

k-dependent susceptibilities xyy�k� and xzz�k�, respec-
tively. Since we are assuming that the system has a
long-range ferromagnetic order, one can argue that F�k�
has to be finite for k fi 0; otherwise the ferromagnetic
order would be unstable against fluctuations of the nonzero
wave vector. On the other hand, F�k� certainly diverges
for k � 0 due to the divergence of the static transverse
susceptibility of systems having a continuous rotational
invariance. Nevertheless, one has

1
AD

Z
dDk F�k� � ��Sy�2 1 �Sz�2� # S�S 1 1� . (9)

In view of the above remarks concerning F�k�, there exists
a number F0 . 0 such that 0 # F�k� # F0 for jkj . k0.
Making use of conditions (3b) and (3c), one can therefore
write, for jkj , k0,
A�k� �
1

AD

Z
dDk0jE�k0 2 k� 1 E�k0 1 k� 2 2E�k0�jF�k0�

#
1

AD

Z
jk0j,k0

dDk0 ajkjDjln�jkj21�jbF�k0� 1
1

AD

Z
jk0j.k0

dDk0jE�k0 2 k� 1 E�k0 1 k� 2 2E�k0�jF0

#
1

AD

Z
dDk0 ajkjD jln�jkj21�jbF�k0� 1

1
AD

Z
dDk0jE�k0 2 k� 1 E�k0 1 k� 2 2E�k0�jF0

# �S�S 1 1� 1 F0�ajkjD jln�jkj21�jb . (10)
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Combining this result with condition (3a), we obtain

0 # D�k� # jBjS 1 gjkjD jln�jkj21�jb , (11)

for jkj , k0, with g � S2 1 S�S 1 1� 1 F0 . 0. Com-
bining the above result with inequality (6), one obtains

S2 $
1

AD

Z
jk0j,k0

dDk0 kBT �Sz�2

jBjS 1 gjkjDjln�jkj21�jb
,

(12)

from which one shows immediately that limB!0j�Sz �j � 0
for T . 0, which is in contradiction with our hypothesis
that the system is ferromagnetic. This completes the proof
of Theorem 1 by reductio ad absurdum. �

Proof of Corollary 1.—Consider interaction of the
form of Eq. (4). To investigate the behavior of E�k� in
the vicinity of k � 0, we can substitute the discrete sum
over R by an integral. One can show easily that, for any
value of a, E�k� is analytical for all wave vectors except
for jkj � q0. Therefore, for k ! 0,

E�k� ~ jkj2 �; a� , (13)

and, for k ! 0 and jkj , jjk0j 2 q0j,

jE�k0 2 k� 1 E�k0 1 k� 2 2E�k0�j ~ jkj2 �; a� .

(14)

The integral over k00 in (3c) is dominated by the nonanaly-
ticity of E�k� in the vicinity of jk00j � q0. Let us therefore
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study ´�k�, the singular part of E�k� for k � jkj 2 q0 !

0. We get

´�k� ~

8>>>><
>>>>:

�A 1 B sgn�k�� jkja21 �a , 1�
A lnjkj21 1 B sgn�k� �a � 1�
B sgn�k� jkja21 �1 , a , 2�
B sgn�k� jkj lnjkj21 �a � 2�
B sgn�k� jkj �a . 2� ,

(15)

for D � 1, with A ~ cosf and B ~ sinf, and

´�k� ~

8>>>><
>>>>:

�A 1 B sgn�k�� jkja23�2 �a , 3�2�
A lnjkj21 1 B sgn�k� �a � 3�2�
B sgn�k� jkja23�2 �3�2 , a , 5�2�
B sgn�k� jkj lnjkj21 �a � 5�2�
B sgn�k� jkj �a . 5�2� ,

(16)

for D � 2, with A ~ cos�f 1 p�4� and B ~

sin�f 1 p�4�. Let C�k� be the left-hand side ex-
pression in Eq. (3c). We then get, for k ! 0,

C�k� ~

8>>>>>>>>><
>>>>>>>>>:

1` �a # 0�
jkja �0 , a , 1�
jkj lnjkj21 �a � 1, cosf fi 0�
jkj �a � 1, cosf � 0�
jkj2 �a . 1, sinf � 0�
jkj �1 , a , 2, sinf fi 0�
jkj2 lnjkj21 �a � 2, sinf fi 0�
jkj2 �a . 2, sinf fi 0� ,

(17)

for D � 1, and
C�k� ~

8>>>>>>>>><
>>>>>>>>>:

1` �a # 1�2�
jkja21�2 �1�2 , a , 3�2�
jkj lnjkj21 ���a � 3�2, cos�f 1 p�4� fi 0���
jkj ���a � 3�2, cos�f 1 p�4� � 0���
jkj2 ���a . 3�2, sin�f 1 p�4� � 0���
jkja21�2 ���3�2 , a , 5�2, sin�f 1 p�4� fi 0���
jkj lnjkj21 ���a � 5�2, sin�f 1 p�4� fi 0���
jkj2 ���a . 5�2, sin�f 1 p�4� fi 0��� ,

(18)
for D � 2. From Eqs. (13) and (14), it follows that
conditions (3a) and (3b) are satisfied for all val-
ues of a. From Eqs. (17) and (18), one gets that
condition (3c) is fulfilled for a $ 1 �D � 1�, and
for a . 3�2 �D � 2, sin�f 1 p�4� � 0� or a .
5�2 �D � 2, sin�f 1 p�4� fi 0�, which completes the
proof of Corollary 1. �

Proof of Theorem 2.—Theorem 2 is an immediate gen-
eralization of the Mermin-Wagner theorem. For the sake
of simplicity, we detail the proof only for the case of fer-
romagnetism; the extension to the case of antiferromag-
netism is immediate by introducing a staggered field and
staggered magnetization as done by Mermin and Wagner.

The proof follows the one of Theorem 1 until Eq. (6).
Then, by using j�Sy

0 S
y
R 1 Sz

0Sz
R�j # S�S 1 1�,

D�k� # jBjS 1 2S�S 1 1�Ẽ�k� . (19)
From condition (5) it follows immediately that
limB!0j�Sz�j � 0 for T . 0, which is in contradic-
tion with our hypothesis that the system is ferromagnetic.
This completes the proof of Theorem 2 by reductio ad
absurdum. �

Proof of Corollary 2.—Let us consider the behavior
of Ẽ�k� in the vicinity of k � 0 for jJRj ~ R2a. In this
regime, the discrete sum over R can be replaced by an
integral, and one shows easily that, for jkj ! 0,

Ẽ�k� ~

8<
:
jkja2D �D , a , D 1 2�
jkj2 ln�jkj21� �a � D 1 2�
jkj2 �a . D 1 2� .

(20)

It then follows immediately that condition (5) is satisfied
if a $ 2D, which completes the proof of Corollary 2. �

As for the Mermin-Wagner theorem, the above
theorems and corollaries can be extended also to
137203-3
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one-dimensional systems of arbitrary finite cross sec-
tion and to two-dimensional systems of arbitrary finite
thickness.

The importance of Theorem 1 and Corollary 1 is that
the class of systems for which ferromagnetism is rigor-
ously ruled out is significantly increased. In particular,
we obtain interesting results for systems with RKKY
interactions �a � D�. For one-dimensional RKKY
systems, ferromagnetism is rigorously ruled out. For two-
dimensional RKKY systems, the results are less satisfac-
tory, since ferromagnetism can be strictly ruled out only
for the particular case with sin�f 1 p�4� � 0. For the
general case �sin�f 1 p�4� fi 0�, it does not seem pos-
sible to rule out ferromagnetism for a � D � 2 without
analyzing in detail the behavior of F�k� near jkj � q0.
If one could prove that F�k� has no singularity more sin-
gular than a square-root singularity at jkj � q0, then the
absence of ferromagnetism would follow from Eq. (18).
This situation is somehow puzzling. Indeed, within the
(nonrigorous) linearized spin-wave theory, as well as the
random phase approximation Green’s function method,
having E�k� ~ k2 is sufficient to rule out ferromagnetism
in two dimensions, which implies that these theories rule
ferromagnetism in systems with oscillatory interactions,
for any value of a. In view of these considerations, I
therefore propose the following result:
Conjecture 1.—A D-dimensional (D � 1 or 2) Heisen-
berg or XY system, for which there exists some finite k
region with E�k� , 0, or satisfying

1
AD

Z
dDk

1
E�k�

� 1` , (21)

cannot be ferromagnetic.
From Eq. (13), it then follows immediately:

Corollary 3.— If Conjecture 1 is true, then a D-
dimensional (D � 1 or 2) Heisenberg or XY system with
long-range oscillatory interactions of the form (4) cannot
be ferromagnetic, for any value of a.

Let us now discuss the results of Theorem 2 and Corol-
lary 2. They essentially constitute an extension to XY
systems of a result obtained earlier by Joyce [7]. For
the one-dimensional (classical) Heisenberg and XY sys-
tems with positive (ferromagnetic) long-range interaction,
Fröhlich et al. proved the existence of ferromagnetism
137203-4
if 1 , a , 2 [8]. This is to be contrasted with one-
dimensional Ising with long-range interaction, for which
ferromagnetism is ruled out if a . 2 [9], whereas ferro-
magnetism exists for 1 , a # 2 [10]. The Heisenberg
and XY systems therefore differ only from the Ising sys-
tem on the borderline a � 2: there ferromagnetism is ex-
cluded for the Heisenberg and XY cases, but exists for the
Ising case, illustrating the stronger tendency towards or-
dering displayed by the Ising model.
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