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A B S T R A C T

We address the problem of electron-nuclear entanglement in time-dependent molecular wavefunctions, key

quantities of quantum nonadiabatic molecular dynamics. The most natural way of tackling this question consists

in comparing the nonadiabatic dynamics obtained from time-dependent self-consistent field and the exact fac-

torization of the time-dependent electron-nuclear wavefunction. Both approaches are based on a single-product

Ansatz for the molecular wavefunction, with both a time-dependent electronic and nuclear wavefunction. In the

former, however, electron-nuclear coupling is treated within the mean-field approximation, whereas in the latter

the entanglement is completely accounted for. Based on a numerical model study, we analyze the nature of the

electron-nuclear entanglement in the exact factorization.

1. Introduction

The mean-field approach is widely used in the fields of theoretical

chemistry and chemical physics for electronic structure [1,2] and nu-

clear dynamics calculations [2–5]. The major drawback of this strategy

resides in its lack of correlation, or entanglement, among the degrees of

freedom treated within the mean-field approximation. The purpose of

this work is to propose a different perspective on this concept, the

electron-nuclear entanglement, in the context of the time-dependent

molecular wave-function, thus employing the time-dependent self-

consistent field (TDSCF) scheme [6–9]. Specifically, here we refer to

TDSCF as the approximation used to describe the electron-nuclear

coupling in the molecular wavefunction, rather than as a particular

numerical procedure.

TDSCF allows to perform calculations on large molecular systems,

effectively reducing the “exponential complexity” of the exact quan-

tum–mechanical problem. For an increasing number of degrees of

freedom, it might be expected that the mean-field approximation be-

comes more and more accurate. In addition, the choice of coordinates

used to describe the problem plays an important role [10–12], even

though the difficulty lies on the definition of a systematic way to select

the appropriate set of variables for which the mean-field description is

adequate. TDSCF, especially in its quantum–classical version [13–16],

i.e., the Ehrenfest approach, is often employed for excited-state mole-

cular dynamics, in particular for the early dynamics following

photoionization (see for example Ref. [17]). However, the underlying

treatment of quantum decoherence [18–22] and energy exchange me-

chanisms [23–27] is sometimes a source of debate. Ehrenfest dynamics

can also be used in combination with more advanced strategies for

nonadiabatic dynamics [28], for example as a mean to propagate a

time-dependent basis for the nuclear wavefunction [29,30].

Rather than analyzing the quality of the mean-field approximation,

which clearly depends on the problem at hand and as such cannot be

generally assessed, our purpose here is to investigate the nature of the

missing entanglement between electronic and nuclear degrees of

freedom. To this end, we compare TDSCF with the time-dependent

version of the exact factorization of the electron-nuclear wavefunction

[31,32]. The focus will be put on the Ansatz for the molecular wave-

function, and on the corresponding equations of motion derived for the

two components of the total wavefunction. In previous work, the exact

factorization has been compared to the Born–Oppenheimer approx-

imation [33–35] and to the Born-Huang expansion [36–39], but the

relation between TDSCF and exact factorization is still lacking. It seems

natural, however, to investigate their connection, since the formal

structure of the molecular wavefunction, represented as a single pro-

duct of an electronic and a nuclear wavefunction, lends itself for a di-

rect comparison.

We start our analysis by addressing the concept of electron-nuclear

entanglement from a quantum–mechanical perspective, in Section 2,

and then by discussing the effect of the quantum–classical
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approximation, in Section 3. Our observations are supported by calcu-

lations performed on a model test system representing a nonadiabatic

proton-coupled electron transfer. Conclusions are summarized in Sec-

tion 4.

2. Definition of electron-nuclear entanglement

Electron-nuclear entanglement can be defined as everything that

cannot be described by the TDSCF approximation [6,7,13,5] of the

molecular wavefunction:

=t t tr R R r( , , ) ( , ) ( , ).TDSCF (1)

Here, tR( , ) is the nuclear wavefunction, depending on the nuclear
coordinates R, whereas tr( , ) is the electronic wavefunction with r
describing the electronic coordinates. Both components of the full wa-

vefunction depend on time, making this Ansatz suited to describe

electronic excited-state dynamics. However, the coupling between

electronic and nuclear motion can be treated only approximately, in a

mean-field fashion, as intensively discussed in the literature (see Ref.

[13] for example). In its exact form, the electron-nuclear coupling

should, in principle, account for the effects on the nuclear evolution

resulting from changes in electronic-state occupations (and coher-

ences), and for the role of nuclear dynamics in inducing those changes.

The TDSCF approximation is likely to miss some of these critical effects.

Therefore, how can the electron-nuclear entanglement in the product form

of the full wavefunction be restored? Comparing Eq. (1) with the exact

form of the electron-nuclear wavefunction [31,32,40],

=t t tr R R r( , , ) ( , ) ( , ),R (2)

suggests that the parametric dependence of the electronic wavefunction

tr( , )R on nuclear positions is everything that is needed to fully ac-

count for electron-nuclear entanglement. In fact, this “correlated-pro-

duct” form has been shown to yield exactly the full wavefunction at all

times, provided that tr( , )R is normalized to one tR, (partial nor-

malization condition, PNC), and that the evolution equations for

tr( , )R and tR( , ) are determined from the full time-dependent

Schrödinger equation (for tr R( , , )). The symbol used in Eq. (2) for the
nuclear wavefunction is the same as in Eq. (1), even though the two

functions can be very different from one another, as shown below. In

both cases, the nuclear density 2 can be determined by integrating 2

(or TDSCF
2) over electronic variables.

We will analyze the two forms of the time-dependent molecular

wavefunction based on a model for nonadiabatic proton-coupled elec-

tron transfer [41]. The details of the system Hamiltonian and the si-

mulations are given in Appendix A. The model is one-dimensional; thus,

we will drop the bold symbols henceforth for r and R.
The exact wavefunction r R t( , , ) is obtained by solving the full

time-dependent Schrödinger equation,

=i r R t H r R t( , , ) ( , , ).t (3)

Here, = + +H r R T R T r V r R( , ) ( ) ( ) ( , )n e , where Tn is the nuclear kinetic
energy, Te is the electronic kinetic energy, and V the interaction po-

tential. In the following, we will also use the symbol = +H T VBO e to

indicate the electronic Born–Oppenheimer (BO) Hamiltonian.

r R t( , , )TDSCF is constructed by solving the coupled equations

= +i r t T V r t( , ) [ ] ( , )t e (4)

= +i R t T V R t( , ) [ ] ( , ).t n (5)

The symbols · and · stand for an average operation over the

instantaneous nuclear or electronic wavefunction, respectively.

Therefore, Eq. (4) describes the evolution of the electronic wavefunc-

tion in the mean field created by the nuclei, whereas the nuclei move

according to Eq. (5) in the mean field of the electrons. In addition, note

that, in order to obtain this form of the TDSCF equations (the procedure

is described in Appendix B), we have multiplied r t( , ) by a purely
time-dependent phase, namely

=r t e r t( , ) ( , ),
i dt E t( )

t
BO0 (6)

with =E t t i t( ) ( )| | ( )BO t r [13,21]. The symbol · r is used to

Fig. 1. Results of the propagation using the exact time-dependent Schrödinger equation. Upper panels: the three lowest adiabatic PESs for a proton-coupled electron

transfer model (ground state S0, green curve, first excited state S1, palatinate curve, second excited state S2, cyan curve). The nuclear density is shown as a black line
at times =t 10.81 fs (left) and =t 31.22 fs (right). Lower panels: modulus of the molecular wavefunction, r R t( , , ) , at times =t 10.81 fs (left) and =t 31.22 fs (right).
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indicate an integration over the electronic variable.

Comparing the dynamics resulting from the TDSCF to the exact-

propagation one will allow us to point out the qualitative features that

are missing as a consequence of the mean-field character of the elec-

tron-nuclear coupling. To identify the source of the qualitative dis-

agreement, we will focus on the equations that generate the time evo-

lution in the approximate, TDSCF case, and in the exact, factored form.

Fig. 1 (upper panels) shows three adiabatic potential energy sur-

faces (PESs), i.e., the eigenvalues of HBO as functions of R. The two

lowest surfaces, R( )BO
S( )0 and R( )BO

S( )1 , present an avoided crossing at

about =R 2.0ac bohr. Therefore, when the nuclear wavepacket, pre-

pared at the initial time on BO
S( )1 centered at =R 40 bohr, passes

through the avoided crossing, population transfer from S1 to S0 is ob-
served. The resulting nuclear dynamics is shown at times =t 10.81 fs

(upper left panel of Fig. 1) and =t 31.22 fs (upper right panel of Fig. 1),

when the nuclear density is close to the avoided crossing and after the

transfer is completed, respectively. For the very same times, Fig. 1

(lower panels) shows the modulus of the full molecular wavefunction,

r R t( , , ) . Notice how the two-dimensional distribution of r R t( , , )
mirrors the different structures of the nuclear density. At time t1, the
nuclear probability density is unimodal, approximately localized be-

tween =R 1 bohr and =R 4 bohr, while r R t( , , ) is mainly

peaked between 0 and =r 15 bohr, along the electronic coordinate. At
later times, t2 in Fig. 1, population has transferred from S1 to S0, the
nuclear density is now bimodal, and a more complex structure of

r R t( , , ) emerges along the electronic component: for R between 4

and 8 bohr, the probability distribution along the electronic coordinate

has a single-peak shape, while for R between 1 and 4 bohr, two main

peaks can be observed. Such (abrupt) change of character for r R t( , , )
suggests that the two portions of the nuclear density, and thus of the

nuclear wavepacket, are associated to different electronic characters.

We will now show that this feature cannot be captured by the TDSCF

form of the full wavefunction.

Within the TDSCF approximation, the molecular wavefunction is

constructed as the product of an electronic and a nuclear wavefunction,

respectively evolved according to Eqs. (4) and (5). For the same times

presented in Fig. 1, t1 and t2, we report in Fig. 2 the results of the TDSCF
propagation. At time t1 (left panels of Fig. 2), only the distribution

r R t( , , )TDSCF along the electronic coordinate shows a small difference

in the negative r-region when compared to the exact result of Fig. 1.

However, at a later time t2, a qualitative difference with the exact result
is observed in the nuclear density (upper panel), which translates into a

very different shape of r R t( , , )TDSCF as compared to r R t( , , ) . The
TDSCF nuclear density, despite being well localized in the positive R-

region between 2 and 8 bohr, has an unimodal distribution. Therefore,

the abrupt change of character along the r-direction, previously ob-

served in r R t( , , ) , is suppressed within the mean-field approxima-
tion. At this stage, a question naturally arises: How can the source of this

disagreement be identified? As the lack of the appearance of a bimodal

nuclear distribution can only be rooted in the difference between

r R t( , , )TDSCF and r R t( , , ) , we shall look in detail at the equations
of motion for the nuclear wavefunctions in the TDSCF approximation

and in the exact factored form of the full wavefunction.

When the exact product form of the molecular wavefunction in Eq.

(2) is inserted into the time-dependent Schrödinger Eq. (3), the evolu-

tion equations

= + +i r t T V U R t r t( , ) [ [ ] ( , )] ( , )t R e en R (7)

= +i R t T R t R t( , ) [ ( , )] ( , )t n (8)

are derived by imposing the PNC. The electron-nuclear coupling op-

erator is =U i M i M i[ ] ( ) /(2 ) /( )( )en R R R
2 .

These equations have been reported here in a particular gauge. The

product form of the full wavefunction in Eq. (2) is invariant under a

R t( , )-dependent phase transformation, which represents the only

freedom in determining the electronic and nuclear wavefunctions. If a

condition is given to fix this gauge freedom, the solutions of Eqs. (7)

and (8) are unique. Here, the choice of gauge (as detailed in Appendix

A) is made to ensure that the nuclear Hamiltonian of Eq. (8) only

contains a time-dependent scalar potential, or time-dependent potential

energy surface (TDPES), as a generator of the nuclear dynamics.1

The TDPES in Eq. (8) has an expression strikingly similar to the

potential energy term V in Eq. (5). The expression of the TDPES is

obtained by multiplying Eq. (7) by r t( , )R and integrating over the

electronic variable, that is

= + +R t t T V t t t

t i t

( , ) ( )| | ( ) ( )| ( )

( )| | ( ) ,

R e R r M R R R R r

R t R r

2
2

(9)

while in Eq. (5) the corresponding potential is

= = +V V t T V t( )| | ( ) .e r (10)

Note that in Eq. (10) the average of Te on r t( , ) yields a constant
function of R, thus it does not have any effect on the dynamics.

We will now compare the first term on the right-hand side of Eq. (9)

to the formally identical term in Eq. (10). It is worth recalling [33] here

that the second term on the right-hand side of Eq. (9) is negligible if

compared to the other two, as it is M( )1O , and will not alter in any way

the analysis we will report shortly. The last term in Eq. (9), on the other

hand, can have a strong R-dependence and, thus, can have an important

effect on the dynamics. This point has been already extensively dis-

cussed in previous work [37,36,38]. Hence, comparing side by side

+t T V t( )| | ( )e r to +t T V t( )| | ( )R e R r will allow us to in-

vestigate the influence of the R-dependence encoded in the exact

electronic wavefunction.

Fig. 3 shows the (first two terms of the) exact TDPES and the TDSCF

potential, i.e., V , at times t1 (left panel) and t2 (right panel) and
clearly shows the crucial importance of the parametric R dependence in

the electronic wavefunction. Formally, the two mathematical expres-

sions are the same: the average of the electronic BO Hamiltonian

= +H T VBO e over the time-dependent electronic wavefunction. How-

ever, the two curves largely differ from each other. At time t1, the
TDPES and V are very similar in the region where the nuclear den-

sity is considerably different from zero, between =R 4 bohr and

=R 1 bohr, explaining the similarity between r R t( , , ) and

r R t( , , )TDSCF at this time. At a later time t2, while V is very similar,

in shape, to what it was at t1, the TDPES presents at the same time (i)
abrupt changes of character, switching from one adiabatic PES to an-

other, and (ii) a shape that is very different from its TDSCF counterpart.

It is this strong R-dependence of the TDPES that allows for the buildup

of a bimodal distribution in the nuclear density (compare with Fig. 1),

and, more importantly, that allows for the proper change in the elec-

tronic character of the full molecular wavefunction. It is now clear,

from the comparison of Figs. 1 and 3 (right panels), that the portion of

the wavefunction localized between =R 4 bohr and =R 8 bohr is as-
sociated with the electronic state S0, as the shape of the TDPES in this
region perfectly follows R( )BO

S( )0 , whereas the portion between =R 1
bohr and =R 4 bohr corresponds to S1. For smaller values of R a similar
analysis is not possible because the nuclear density is too small (see

Fig. 1), but the change of electronic character could easily be deduced

based on the shape of the TDPES.

In summary, the comparison between the two product-form ex-

pressions of the molecular wavefunction has permitted to shed new

lights on the importance of the parametric dependence in the electronic

wavefunction. A mean-field expression of the molecular wavefunction,

by definition, cannot capture abrupt changes of character on either

1 In general, a time-dependent vector potential also appears in Eq. (8), but the

choice of gauge introduced here guarantees that the vector potential is identi-

cally zero. This choice can always be made in one-dimensional situations, but

cannot be generalized in higher dimensions [42,43].
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component of the product. This feature, however, can be reproduced if

a parametric dependence of the electronic wavefunction on R is in-

troduced, that is, if entanglement is correctly accounted for. Note that,

in a totally equivalent way, electron-nuclear entanglement can also be

expressed via the parametric dependence on r of the nuclear wave-
function, i.e., =t t tr R R r( , , ) ( , ) ( , )r (this possibility was in-

vestigated in Refs. [44–46]). We also highlight that an analysis of the

importance of the parametric nuclear dependence in the context of the

(time-independent) BO wavefunction was discussed in Ref. [47].

3. Different flavors of electron-nuclear entanglement

In Section 2 we have analyzed the concept of electron-nuclear en-

tanglement from a quantum–mechanical perspective, by comparing the

exact molecular wavefunction to its TDSCF approximation. In this

section, we report a similar comparison based on the quantum–classical

treatment of the coupled electronic and nuclear dynamics. The

motivation for this analysis is the following. The quantum–classical

limit of the TDSCF equations yields the well-known Ehrenfest algorithm

(see Ref. [13,15] for derivations). Deriving the equations of motion for

Ehrenfest dynamics implies taking the classical limit of the nuclear

wavefunction in TDSCF, which has the effect of introducing (what is

often noted as) a parametric dependence in the electronic wavefunc-

tion. Therefore, we address in this section the question: Has the classical

limit of the nuclear wavefunction the effect of inducing a local entanglement

in the electronic wavefunction? If yes, we would expect better agreement

of Ehrenfest results with exact calculations.

To analyze the effect of the classical limit on the nuclear degrees of

freedom, we first start by employing the nuclear potential

=V V R t( , ) to propagate classical trajectories, and we compare
the resulting distribution of trajectories thus obtained with the dis-

tribution of trajectories propagated with the TDPES R t( , ). Fig. 4 shows
the histograms constructed from the classical-trajectory distribution at

times t1 (left panel) and t2 (right panel). As a benchmark, we also present

Fig. 2. Results of the propagation using the TDSCF approximation. The panels show similar quantities as in Fig. 1.

Fig. 3. Comparison between =R t V R t( , ) ( , )SCF of Eq. (10) (orange dots) and the first two terms, named R t( , )GI , on the right-hand side of Eq. (9) (blue dots), at

times =t 10.81 fs (left panel) and =t 31.22 fs (right panel). R t( , )GI is the gauge-invariant part of the TDPES as it is not affected by the change of gauge. For reference,

the three lowest adiabatic PESs are shown in light colors (with a color code similar to the one of Fig. 1).

F. Agostini, et al.



the quantum mechanical, TDSCF and exact, nuclear densities. As ex-

pected from previous work [36,48,38,49,39,50], classical trajectories

evolved according to a force that is derived from the exact TDPES

perfectly reproduce the quantum mechanical distribution. Analogously,

classical trajectories generated via the TDSCF nuclear potential V
follow the quantum–mechanical distribution, even though this is not

the correct one. According to these proof-of-concept calculations, no

major changes are observed in the numerical results in going from the

quantum to the quantum–classical approach.

Note that the studied test case does not involve phenomena such as

multiple passages of the wavepacket through the avoided crossing,

which would cause interferences or revival of coherence. However, we

have studied in a previous work [39] a case of nonadiabatic quantum

interferences, where we also have propagated purely classical trajec-

tories on the exact TDPES. We have concluded that, despite the complex

quantum effects taking place during the nonadiabatic interference

process, the classical distribution mimics well (at least for short times)

the nuclear quantum distribution. This analysis confirmed that the

TDPES encodes critical information about the coupled electron-nuclear

dynamics, such that classical trajectories propagated on the support of

the TDPES capture more accurately the quantum behavior of nuclei in

the presence of nonadiabatic effects than they would do on the support

of (time-independent) BO PESs.

Armed with this knowledge, we move towards our final test on

Ehrenfest dynamics. Following a standard procedure for the derivation

of Ehrenfest equations starting from TDSCF, we replace the nuclear

density R t( , ) 2 with a -function centered at all times at the position

of the classical trajectory R t( )cl , i.e., R R t( ( ))cl . As a result,

=V dRV r R R R t V r R t( , ) ( ( )) ( , ( ))cl cl
(11)

and the electronic evolution Eq. (4) becomes

= +i r t T V r R t r t( , ) [ ( , ( ))] ( , ).t R t e cl R t( ) ( )cl cl (12)

As a consequence of the dependence of the potential on the position

of the classical trajectory, R t( )cl , triggered by the classical limit per-

formed in Eq. (11), the electronic wavefunction seems to acquire a

“point-wise” parametric dependence on the classical position of the

nucleus. Such dependence is clearly different from the parametric de-

pendence in r t( , )R of Eq. (2), because it introduces only a local en-

tanglement, at the position R t( )cl , between the electronic and the nuclear

wavefunction. Even if a set of trajectories, R t( )cl
I( ) , is considered to

mimic the delocalization of the nuclear density, each trajectory I will be

locally entangled to the corresponding electronic wavefunction

r t( , )R t( )cl
I( ) . The situation is different if the classical limit is similarly

introduced in the electronic equation of motion of the exact factoriza-

tion (Eq. (7)). A detailed derivation of the quantum–classical equations

derived from Eqs. (7) and (8) is beyond the scope of this work, and has

been discussed extensively elsewhere [18,19,51,40,52,21,20,53–56].

However, it is worth comparing here the effect on Eq. (7) of an op-

eration analogous to what is proposed in Eq. (11). In Eq. (7), the

electron-nuclear coupling operator U [ ]en depends explicitly on the

nuclear wavefunction R t( , ) (and on its gradient), and there is no

integral over nuclear coordinates to be performed. Therefore, if a set of

trajectories is used to mimic the evolution of the nuclear wavefunction,

the electronic equation acquires a dependence on the position of all

trajectories. That is, entanglement is non-local in the quantum–classical

approximation of Eqs. (7) and (8), as is in their exact form.

To investigate the effect of the local entanglement in Ehrenfest

dynamics, we have evolved classical trajectories according to the po-

tential V Rcl t( )
, where the potential is determined by solving Eq. (12),

that is, according to the Ehrenfest algorithm. Fig. 5 shows at time t2 the
distribution of classical trajectories, in comparison to the TDSCF nu-

clear density and the exact nuclear density. As before, local entangle-

ment does not appear to have a major effect on the nuclear probability

distribution. The major issue of this distribution, i.e., the unimodal

character, is not cured by the inclusion of entanglement in its local

form.

Fig. 4. Distribution of classical trajectories evolved according to a force determined from the TDSCF nuclear potential, i.e., V R t( , ) (orange dots), and according to
a force determined from R t( , ) (blue squares), at times =t 10.81 fs (left panel) and =t 31.21 fs (right panel). For reference, the corresponding quantum probability

distributions are shown as continuous lines (orange for TDSCF and blue for the exact one).

Fig. 5. Comparison at time =t 31.22 fs of the classical distribution of trajectories

propagated according to the Ehrenfest algorithm (red dots), the quantum–me-

chanical nuclear distribution predicted by TDSCF (orange line), and the exact

nuclear distribution (blue line).
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4. Conclusions

We have analyzed the concept of electron-nuclear entanglement in a

nonadiabatic process of proton-coupled electron transfer. To this end,

we have employed the TDSCF approach, which uses an uncorrelated

product Ansatz for the molecular wavefunction composed of an elec-

tronic and a nuclear wavefunction, both time-dependent. By construc-

tion, TDSCF lacks entanglement between electronic and nuclear vari-

ables. This form of the molecular wavefunction is extremely similar to

the exact-factorization expression. However, in the exact factorization

the product is not uncorrelated, as the electronic wavefunction depends

parametrically on nuclear coordinates. Such dependence is sufficient to

restore entanglement in the product form of the molecular

wavefunction.

In the present work, we have studied the effect of this parametric

dependence on nuclear dynamics, as it can be related to the shape of the

potential that drives nuclear evolution. The analysis is presented both at

the quantum–mechanical level and within the quantum–classical ap-

proximation (when nuclear dynamics is mimicked employing classical

trajectories).

In the derivation of the quantum–classical Ehrenfest approach (from

TDSCF), we have pointed out what appears as a local parametric de-

pendence of the electronic wavefunction on the position of the classical

trajectory. However, such dependence is not enough to restore, not

even partially, the entanglement lost in the initial TDSCF Ansatz and

fully accounted for in the exact-factorization formalism.

Appendix A. Computational details

The model system [41] used for the analysis presented in the main text consists of three ions, two of which are fixed at a distance =L 20.0 bohr,
and one electron. The mass of the moving ion is =M 1836, the proton mass in atomic units; it interacts with the fixed ions via a Coulomb potential
and with the electron via a soft-Coulomb potential. The electron interacts with all ions via a soft-Coulomb potential. The potential energy V r R( , ) in
the Hamiltonian describing the system is thus

=

+

+ +

+

+

( )
V

R r r r R R

erf

| |

erf erf
1 1 .

R r
R

r

R

L

r

R

L L L

| |

2 2 2 2

c

L

r

L

l
2 2

(A.1)

The parameters of the potential have been chosen as =R 4.5c bohr, =R 4.0l bohr, and =R 3.0r bohr. Quantum–mechanical equations are

integrated using the split-operator technique [57] with a time-step of =dt 0.024 fs (0.1 au). The initial condition for TDSCF and the exact propa-
gation is = =r R t r G R R( , , 0) ( ) ( )R

S( )
00

1 with r( )R
S( )
0
1 the S1 eigenstate of the Hamiltonian HBO evaluated at the nuclear position =R 40 bohr,

and =G R R R R( ) ( ) exp[ ( ) /(2 )]0 2 1/4 0 2 2 with = 0.3 bohr. Classical trajectories are also propagated with a time-step of =dt 0.024 fs (0.1
au) in all cases, namely when the trajectories are evolved on V R t( , ) or on the TDPES, and within the Ehrenfest propagation. For all quan-
tum–classical simulations, 200 trajectories have been employed, sampled from the Wigner distribution corresponding to the quantum–mechanical

nuclear probability density.

In order to determine the TDPES of Eqs. (7) and (8), the time-dependent Schrödinger equation for r R t( , , ) has been solved. Having access to the
full wavefunction, the nuclear density is easily derived from the integral over the electronic variable of r R t( , , ) 2. The phase S R t( , ) of the nuclear
wavefunction, from the expression = i Sexp[( / ) ], is determined [38] according to

=S R t dR R t R t
R t

( , ) Im ( , )| | ( , )
| ( , )|

,
R R r

2 (A.2)

which guarantees that the time-dependent vector potential of the theory is identically zero at all times. The electronic wavefunction to be used in Eq.

(9) is determined as =r t r R t R t( , ) ( , , )/ ( , )R . Note that there might be regions where the nuclear density is very small or zero. To circumvent this

numerical issue, we compute R-dependent quantities only in the regions where >R t( , ) 10 8. We dot not expect that this operation strongly affects

the overall behavior of the ensemble of trajectories, since classical trajectories are to be found in regions of large probability. Furthermore, diverging

trajectories can be neglected in the calculations of average quantities, as the trajectories are propagated independently.

It is worth mentioning here that a quantum–classical algorithm has been derived based on the exact-factorization equations and allows for the on-

the-fly calculations of the TDPES without the need to solve the full time-dependent Schrödinger equation. It has been applied to the study of model

systems [52,21,55,19,18] and of the photoactivated dynamics in isolated molecules [51,56,40,20]. The algorithm, dubbed coupled-trajectory mixed

quantum–classical (CT-MQC), is designed to solve the electronic equation of the exact factorization to determine the TDPES, which in turn is used to

propagate classical trajectories. The electronic evolution operator depends explicitly on the nuclear wavefunction. Therefore, at each step of dy-

namics, the distribution of classical trajectories is employed to construct an approximate form of the nuclear wavefunction. This operation requires

that the trajectories are propagated simultaneously. We expect that at short times the classical distribution remains close to what would be the

quantum nuclear distribution, but this cannot guaranteed at longer times.

Appendix B. Derivation of the TDSCF equations

In order to derive expressions (4) and (5) starting from the TDSCF Ansatz for the molecular wavefunction, we have used the following form:

= =r R t R t r t e R t r t( , , ) ( , ) ( , ) ( , ) ( , ),
i dt E t

TDSCF
( )

t
BO0 (B.1)

with

=E t t i t( ) ( )| | ( ) .BO t r (B.2)

Clearly, multiplying the full wavefunction of Eq. (1) by a purely time-dependent phase factor does not affect observable properties, but it allows

to derive a symmetric form of the evolution equations for R t( , ) and r t( , ).
We insert Eq. (B.1) into the time-dependent Schrödinger Eq. (3). We then project onto r t( , ),
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= + +

+

i R t T V R t T R t

E t t i t R t

( , ) [ ^ ^ ] ( , ) ^ ( , )

[ ( ) ( )| | ( ) ] ( , ),
t n e

BO t r (B.3)

and onto R t( , )

= + +

+

i r t T V r t T r t

E t t i t r t

( , ) [ ^ ^ ] ( , ) ^ ( , )

[ ( ) ( )| | ( ) ] ( , ),

t e n

BO t R (B.4)

where we have imposed the normalization of the two wavefunctions. In order to simplify the equations just derived, we note that the total energy of

the electron-nuclear system, E, is

=E t t i t t( ) ~ ( )| | ( ) ~ ( ) ,t r R, (B.5)

which follows from the Schrödinger equation. Thus

= +E t i t t i t E t( )| | ( ) ~ ( )| | ~ ( ) ( ).t R t r BO (B.6)

It follows from our choice of E t( )BO that the first term in Eq. (B.6) equals the total energy of the system E.

The nuclear evolution Eq. (B.3) reduces to Eq. (5) once the constant (as a function of R) term Te is neglected, having no effect on the dynamics.

Similarly, thanks to the relation

=i r t E t r t e i r t[ ( , ) ( ) ( , )] ( , ),t BO
i dt E t

t
( )

t
BO0 (B.7)

the electronic evolution Eq. (B.4) reduces to Eq. (4), if we neglect the constant (as function of r) term T En .
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