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Abstract. Extending our previous work we classify the non-
linear magneto-optical response at low index surfaces of fcc
antiferromagnets, such asNiO. Antiferromagnetic bilayers
are discussed here as models for the termination of bulk
antiferromagnets.
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Nonlinear optics has been shown to be very useful for the
investigation of ferromagnetism at surfaces due to its en-
hanced sensitivity to two-dimensionalferromagnetism[1].
The magnetic effects are usually much stronger than in lin-
ear optics (rotations up to90◦, pronounced spin polarized
quantum well state oscillations [2–4], magnetic contrasts
close to100%) [4–7]. Recently, second harmonic generation
(SHG) has been successfully applied to probeantiferromag-
netism(visualization of bulk AF domains [8–10]). The po-
tential of SHG to study the surface antiferromagnetism has
been announced in [11] extensively discussed in our previous
paper [12].

The practical importance of studies in this field follows
from the applications of antiferromagnetic (AF) oxide layers
in devices such as those based on TMR (tunneling magnetore-
sistance), where a trilayer structure is commonly used. The
central layer of TMR devices consists of an oxide sandwiched
between a soft and a hard magnetic layer. For these techno-
logical applications it is necessary to develop a technique to
study buried oxide interfaces. Such a technique can be SHG.
One of the promising materials for the above-mentioned de-
vices is NiO. However, to the best of our knowledge, the
understanding of its detailed spin structure is sparse – even
the spin orientation on the ferromagnetically ordered (111)
surfaces is not known.

Our recent paper [12] presented an extensive study of the
nonlinear electrical susceptibility tensorχ(2ω)el (the source for
SHG within the electrical dipole approximation), mostly for
monolayer structures. It was proven there that the spin struc-
ture of an antiferromagnetic monolayer can be detected by

means of SHG. The possibility of antiferromagnetic surface
domain imaging was also presented for the first time. As was
mentioned in this previous work, bilayer spin structures are
enough to account for the symmetry of a surface of a cubic
antiferromagnet. Here we present an extension of that work
to the (110) and (111) bilayer structures, thus completing our
group theoretical analysis of low Miller-index antiferromag-
netic surfaces.

1 Results

We follow exactly the group theoretical method described
in [12]. At this point it is necessary to define the notions of
“phase” and “configuration”, used henceforth to classify our
results. “Phase” describes the magnetic phase of the material,
i.e. paramagnetic, ferromagnetic, or AF. Secondly, the word
“configuration” is reserved for the description of the magnetic
ordering of the surface. It describes the various possibilities
for the spin ordering, which are different in the sense of topol-
ogy. We describe AF configurations, denoted by lowercase
letters (a) to (l), as well as several ferromagnetic configu-
rations, denoted as “ferro1”, “ferro2”, etc. The number of
possible configurations varies depending on the surface orien-
tation. All the analysis concerns collinear antiferromagnets,
with one easy axis.

The tables show the allowed tensor elements for each
configuration. The tables also contain the information on the
parity of the nonvanishing tensor elements: the odd ones are
printed in boldface. In some situations an even tensor elem-
ent (shown in lightface) is equal to an odd element (shown in
boldface), this means that this pair of tensor elements is equal
in the domain which is depicted on the corresponding figure,
but they are of opposite sign in the other domain. The par-
ity of the elements has been checked in the operations 2z, 4z,
and in the operation connecting mirror-domains to each other
(for the definition of the mirror-domain structure see [12]).
The domain operation(s) on which the parity depends is (are),
if applicable, also displayed in the tables. If two or more do-
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main operations have the same effect, we display all of them
together. To make the tables shorter and more easily readable
some domain operations (and the corresponding parity infor-
mation for the tensor elements) are not displayed, namely
those that can be created by a superposition of the displayed
domain operations. We also do not address the parity of ten-
sor elements in the 6z nor 3z operations for (111) surfaces
nor any other operation that “splits” tensor elements, although
these operations also lead to a domain structure [13]. As has
been discussed in [12] it is possible to define a parity of the
tensor elements for the 3z and 6z operations, however the ten-
sor elements then undergo more complicated changes. The
situations where the parity of the tensor elements is too com-
plicated to be displayed in the tables are indicated by a dash in
the column “domain operation”. For the paramagnetic phase,
where no domains exist, we display the dash as well. For
some configurations, none of the operations leads to a domain
structure – in those configurations we display the information
“one domain”. The reader is referred to [12] for the particu-
lars of the parity check.

1.1 The (110) bilayer

The previously described AF configurations of the (001)
monolayer are most commonly split into two different config-
urations when a bilayer structure is considered. For the (110)
bilayer this is not the case – only two of twelve AF config-
urations are split in this way, and thus one obtains 14 AF
configurations of the (110) bilayer. Describing the results of
our analysis we use the nomenclature of our previous article,
i.e. the antiferromagnetic configurations are labeled by low-
ercase letters. Only the four configurations that result from

Fig. 1. Spin configurations
of an fcc (110) monolayer.
Except for configurations
“ferro3”, (g), (h), and (i ), the
arrows always indicate in-
plane directions of the spins.
In configurations “ferro3”,
(g), (h), and (i ), � (⊗) de-
note spins pointing along
the positive (negative) z-
direction, respectively

ba
Fig. 2. Spin structure of an antiferromagnetic (110) bilayer constructed from
a shift of the monolayer, where two different shifts are applied.Filled
(empty) circlesrepresent the topmost (second) layer. The rightmost panel
shows the conventional unit cell for the resulting bilayer structure. Here,
configuration (a) of the (110) surface serves as an example

splitting of the two configurations of the monolayer struc-
ture are labeled by lowercase letters with subscripts that carry
the information about how they have been constructed from
the (110) monolayer. For configurations with subscript “a”
the lower layer is constructed by translation of the topmost
layer by vector (0.5a, 0.5b), wherea andb are interatomic
distanceswithin the (110) plane along thex and y axes, re-
spectively. For configurations with subscript “b” the vector of
translation is (−0.5a,0.5b). This corresponds to the way we
constructed the (001) bilayers in [12].

The configurations of the (110) monolayer structure are
depicted in Fig. 1, and the way the bilayer is constructed is de-
picted in Fig. 2. The tensor elements are presented in Table 1.
In general, we can observe five types of response. However,
the ability to distinguish AF configurations is not much im-
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Table 1. Nonvanishing elements ofχ(2ω)el for all spin configurations of the (110) surface of a fcc lattice. We denoteχ
(2ω)
ijk by ijk . Odd elements are in bold

if a parity operation exists. The configurations are depicted in Fig. 1

Config. Point group Symmetry operations Domain operation Nonvanishing tensor elements

para mm2 1, 2z,2x,2y - xxz = xzx, yyz = yzy, zxx, zyy, zzz
ferro1 m 1,2x 2z,2y xzx = xxz, xxy = xyx, yxx, yyy, yzz,

yyz = yzy, zxx, zyy, zzz,zyz = zzy
ferro2 1 1 2z All the elements are allowed:

xxx, xyy, xzz, xyz = xzy, xzx = xxz,xxy = xyx,
yxx, yyy, yzz, yyz = yzy, yzx = yxz,yxy = yyx,
zxx, zyy, zzz,zyz = zzy, zzx = zxz, zxy = zyx

2x xxx, xyy, xzz, xyz = xzy, xzx = xxz, xxy = xyx,
yxx, yyy, yzz, yyz = yzy,yzx = yxz, yxy = yyx,
zxx, zyy, zzz, zyz = zzy,zzx = zxz, zxy = zyx

ferro3 2 1,2z 2x,2y xyz = xzy, xxz = xzx, yyz = yzy,yzx = yxz,
zxx, zyy, zzz,zxy = zyx

ferro4 m 1,2y 2z,2x xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zyy, zzz,zzx = zxz

AF:
(a), (g), ( j ) m 1,2y 2z,2x xxx, xyy, xzz, xxz = xzx, yyz = yzy,

yyx = yxy, zxx, zyy, zzz,zzx = zxz
(b), (h), (k) m 1,2x 2z,2y xzx = xxz, xxy = xyx, yxx, yyy, yzz,

yyz = yzy, zxx, zyy, zzz,zyz = zzy
(c), (d), (l) 2 1,2z 2x,2y xyz = xzy, xxz = xzx, yyz = yzy,yzx = yxz,

zxx, zyy, zzz,zxy = zyx
(e), ( fa), ( fb) 1 1 2z All the elements are allowed:

xxx, xyy, xzz, xyz = xzy, xzx = xxz,xxy = xyx,
yxx, yyy, yzz, yyz = yzy, yzx = yxz,yxy = yyx,
zxx, zyy, zzz,zyz = zzy, zzx = zxz, zxy = zyx

2x xxx, xyy, xzz, xyz = xzy, xzx = xxz, xxy = xyx,
yxx, yyy, yzz, yyz = yzy,yzx = yxz, yxy = yyx,
zxx, zyy, zzz, zyz = zzy,zzx = zxz, zxy = zyx

(ia), (ib) mm2 1, 2z,2x,2y one domain xxz = xzx, yyz = yzy, zxx, zyy, zzz

proved compared to the (110) monolayer. Even the possibility
to detect the magnetic phase of the surface is not evident.

As for the (001) surface [12], there is no difference in
SHG signal between the monolayer and bilayer for the para-
magnetic and ferromagnetic phases. For most AF configura-
tions, however [configurations (a), (b), (c), (e), ( fa), ( fb), (g),
(h), ( j ), (k), and (l )] such a difference is present due to a lower
symmetry of the bilayer.

1.2 The (111) bilayer

In order to be consistent with our previous work [12] we keep
the same configuration names as in this earlier paper. That is
why, for example, configuration (b) is not present here. The
spin configurations of the (111) bilayer are constructed from
the configurations of the (111) surface of our previous work in
such a way that the spin structure in the second atomic layer
is the same as in the topmost layer, but shifted accordingly
to form a hcp structure. Taking into account the spin struc-
ture of the second layer causes all the AF configurations to
split, and thus one obtains 10 AF configurations of the (111)
bilayer. The configurations are labeled by lowercase letters
(indicating their “parent” configuration) with subscript “a” if
the mentioned shifting is along the positivex axis, and “b” if
the shifting is along the negative Sxy axis.

The configurations of the (111) monolayer are depicted in
Fig. 3 and the construction of the bilayer is depicted in Fig. 4.

Fig. 3. Spin configurations of an fcc (111) monolayer. Except for config-
urations “ferro5”, (k), (l), and (m), the arrows always indicate in-plane
directions of the spins. In configurations “ferro5” and (k), � (⊗) denote
spins pointing along the positive (negative) z-direction, respectively
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Table 2. Nonvanishing elements ofχ(2ω)el for all spin configurations of the (111) surface of a fcc lattice. More monolayers are taken into account. We denote
χ
(2ω)
ijk by ijk . The configurations are depicted in Fig. 3

Config. Point grp. Symmetry ops. Domain op. Nonvanishing tensor elements

para 3m 1,±3z,2y,2S(xy),2S(−xy) - zxx = zyy, xxz = xzx = yyz = yzy, zzz,
xxx = -xyy = -yxy = -yyx

ferro1 1 1 2y All the elements are allowed:
xxx, xyy, xzz,xyz = xzy, xzx = xxz, xxy = xyx,
yxx, yyy, yzz, yyz = yzy, yzx = yxz, yxy = yyx,
zxx, zyy, zzz,zyz = zzy, zzx = zxz,zxy = zyx

ferro3 m 1, 2y - xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zyy, zzz, zzx = zxz

ferro5 3 1,±3z 2y xxx = -xyy = -yxy = -yyx, xyz = xzy = -yxz = -yzx,
xzx = xxz = yyz = yzy,xxy = xyx = yxx = -yyy,
zxx = zyy, zzz

AF:
(aa), (ab), (ia), m 1, 2y - xxx, xyy, xzz, xxz = xzx, yyz = yzy,

(ib), (ka), (kb) yyx = yxy, zxx, zyy, zzz, zzx = zxz
(ca), (cb), 1 1 2y All the elements are allowed:

( fa), ( fb) xxx, xyy, xzz,xyz = xzy, xzx = xxz, xxy = xyx,
yxx, yyy, yzz, yyz = yzy, yzx = yxz, yxy = yyx,
zxx, zyy, zzz,zyz = zzy, zzx = zxz,zxy = zyx

ba

Fig. 4. Spin structure of an antiferromagnetic (111) bilayer con-
structed from a shift of the monolayer, where two different
shifts are applied.Filled (empty) circlesrepresent the topmost
(second) layer. Here, configuration (f ) of the (111) monolayer
serves as an example. The rightmost panel displays the conven-
tional unit cell for the resulting bilayer structure of configuration
( fa)

The corresponding tensor elements are displayed in Table 2.
The results are identical to those of our previous work [12],
where the second layer of the (111) surface was treated as
nonmagnetic. This means that the spin structure of the second
layer does not play any role for SHG; however, the presence
of the atoms in the second layer does.

2 Conclusion

From our results it follows that SHG can probe a maximum
of two atomic layers of the surface of cubic two sublattice
antiferromagnets, and only one of the paramagnetic or fer-
romagnetic surface. For the (111) surface, thespin structure
of the second layer does not have any influence on SHG, i.e.
it does not matter from the group-theoretical point of view
whether the surface investigated is a termination of a bulk
antiferromagnet or a monolayer grown on a nonmagnetic sub-
strate. However, these two situations can be very different
from the band-theoretical point of view.
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