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Abstract

An electron pair emitted from a crystalline surface system is represented by a relativistic two-electron scattering state, which
contains the pair correlation mediated by a screened Coulomb interaction. This state is obtained from the solutions of two one-
electron Dirac equations with potentials, which incorporate the electron–electron interaction as a dynamical screening of the
usual effective one-electron potentials. Numerical applications to the electron pair emission due to low-energy electron impact
on a He atom and on a clean W(001) surface demonstrate that pair correlation effects can be quite strong and significantly
improve the agreement of calculated results with experimental data.q 1999 Elsevier Science Ltd. All rights reserved.
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The simultaneous two-electron emission induced by elec-
tron impact on atomic and solid targets, so-called (e,2e)
spectroscopy, has a long history of success for high-energy
primary electrons (cf. e.g. [1–3] and references therein). For
low-energy primary electrons (with less than a few 100 eV)
impinging on a crystalline surface and momentum-resolved
pair observation in the reflection mode, substantial experi-
mental and theoretical progress was made only fairly
recently [4–10]. Good overall agreement between experi-
mental data and their calculated counterparts was achieved
and details of the (e,2e) mechanism were thence revealed.

In the existing theoretical treatments (cf. [6,8,9]), the two
ejected electrons are described by an anti-symmetrized
product of single-particle states. Whilst a “pair correlation”
due to exchange (Pauli principle) is thus incorporated, the
Coulomb interaction between the two ejected electrons has
not been taken into account. On the other hand, the Coulomb
pair correlation is known to be vital for photon-induced two-
electron emission [11,12]. We therefore explore in the
present work its potential importance in the low-energy
(e,2e) process by formulating a theoretical method and
applying it numerically to the prototype surface W(001).

To incorporate the Coulomb interaction between the two

ejected electrons, at least, an effective “quasitwo-particle”
theory is needed. The initial asymptotic state of the system is
an anti-symmetrized direct product of two single quasi-
particle states, which represent the projectile electron and
an individual valence electron, i.e.u1; 2l � u1l ^ u2l: The
statesu1l andu2l are solutions of a Dirac equation involving
optical potentialsV1 andV2, respectively, which incorporate
the interaction with the nuclei and all the other ground state
electrons. We recall (cf. e.g. [9]) that for a semi-infinite
crystalline system with lattice periodicity parallel to the
surface relativistic one-electron statesuil are characterized
by energies,Ei ; surface-parallel two-dimensional wave
vectorskki and spin labelssi : The numberi in uil is thus
an abbreviation for the set of quantum numbers�Ei ; k

k
i ;si�:

For the relativistic LEED (low energy electron diffraction)
stateu1l, the set�E1; k

k
1;s1� is dictated by the experimental

conditions and is equivalent to the three-dimensional wave
vectork1 and the spin alignment at the electron gun. Even if
the primary beam is unpolarized, statesu1l with s1 � ^

have to be employed and finally summed over. The same
holds in any case for the valence statesu2l.

For the electron–electron interactionU considered as a
perturbation, standard scattering theory gives the transition
amplitude for the initial stateu1,2l to go over into the two-
electron excited stateu3,4l as

W�1; 2; 3; 4� � k3; 4uUu1; 2l: �1�
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Strictly speaking,u3,4l is an eigenstate of a two-electron
Dirac equation involving the total potential

Vtot � V3 1 V4 1 U; �2�

whereV3 andV4 are one-particle optical potentials, and with
asymptotic boundary conditions such that an electron with
momentumk3 and spin alignments3 arrives at one detector
and an electron with momentumk4 and spin alignments4 at
the other detector. Obviously, an exact solution of this non-
separable many-body equation is not possible. On the other
hand, if we neglect in Eq. (2) the interaction termU, the
stateu3,4l reduces to an anti-symmetrized direct product of
two independent time-reversed LEED states,u3l and u4l, as
was done in previous work [8,9]. Since these (uncoupled)
LEED statesu3l and u4l are calculated using one-particle
optical potentialsV3 and V4, respectively, each of them
contains—within the framework of a local spin density
approximation to exchange and correlation terms—the
exchange and correlation with all the other “passive elec-
trons”.

The interactionU between the two active electrons must
be included in a dynamic way that reflects the dependence of
the mutual coupling on the electrons’ positions relative to
each other. For example, the interaction between the two
electrons is strongest when they escape close to each
other, whereas this interaction diminishes when the elec-
trons are far apart.

To implement this dynamical coupling, we first identify
the electron pair interactionU as a Coulomb potential,
which is screened by the ground state electrons of the
semi-infinite crystal. Since the calculation of a realistic
dielectric functione(r ,r 0) for such a highly inhomogeneous
electron gas is beyond the scope of this work, we adopt
the Thomas–Fermi formU�r3; r4� � exp�2r34=l�=r34;

where r 3 and r 4 are the positions of the two active
electrons and r34 � r3 2 r4: To obtain a physically
reasonable estimate of the screening length,l , we start
from the Thomas–Fermi expression (atT � 0) l �
�4pe2N�EF���21=2�

; whereN(EF) is the total density of states
at the Fermi energyEF. Rather than approximatingN(EF) by
a non-interacting homogeneous electron gas value, as is
frequently done, we take it from a self-consistent electronic
structure calculation for the actual crystal. Employing the
simple Thomas–Fermi form appears reasonable in this
work, firstly because it is our aim to get first and perhaps
only semi-quantitative results on pair correlation effects,
and secondly, because it led to rather good agreement
between theory and experiment in a recent (e,2e) study on
W(001) [9].

With this approximation forU, we return to the potential
Vtot (Eq. (2)). We express the one-electron potentialsV3 and
V4 as lattice sums over potentialsw3 and w4 residing in
muffin tin spheres around the lattice sites. Inside each sphere,
we then have the total potentialWtot � w3 1 w4 1 U: With
the above Thomas–Fermi expression forU, this can easily

be reformulated as

Wtot � w3 1
Z3

r3
1 w4 1

Z4

r4
�3�

where

Zj � a21
j exp 2

aj

2l
rj

� �
; j � 3; 4; �4�

with aj � 2r34=rj : The interpretation of Eq. (3) is straightfor-
ward. Owing to the electronic correlation, the single-particle
potentialswj ; j � 3; 4 are augmented by the termZj =rj : This
means that the inter-electronic correlation is subsumed into
a dynamic non-local screening of the electron core interac-
tion.

The strength of this screening is determined by the func-
tionsZj ; as given by Eq. (4). In fact, the augmented electron
core potentials �wj � wj 1 Zj =rj may even turn repulsive
when the two electrons are “on top of each other”
�r34! 0�:. If the two electrons are far away from each
other �ri @ rj ; i ± j [ �3; 4�� the screening strengthsZ3

andZ4 become negligible and we end up with two indepen-
dent particles� �wj ! wj�: Furthermore, if one of the electrons
approaches closely the ionic sites its motion becomes domi-
nated by the corresponding ionic potentialwj : This is readily
deduced from the relation limrj!0 �wj ! wj :

Our dynamic screening expression in Eq. (3) is, for the
above-definedU, merely a rearrangement of the interaction
terms in Eq. (2). Its direct numerical implementation is
extremely difficult. In the present exploratory study, we
therefore approximate the dynamical screening strengths
Zj by �Zj � �a21

j exp�2� �aj =2l�rj� with �a3 � 2v34=v3 and �a4 �
2v34=v4; wherev3 and v4 are velocities of the two emitted
electrons andv34 � v3 2 v4: The approximation �Zj < Zj

amounts to assumingr3 / v3 andr4 / v4; this means that
the potential Eq. (2) is exactly diagonalized when the parti-
cles proceed along trajectories where the positions are
proportional to the velocities. Whilst inside the solid this
is of course not the case, we feel that the above approxima-
tion is of a semi-quantitative value if we choose the two
velocities vi � k 0i0=m—with i � 3; 4—where k 0i0 is the
wave vector of the 00 LEED beam inside the crystal,
which is obtained from the wave vectork i0 outside the crys-
tal (and in particular at the detector) by refraction at the
surface potential barrier.

To assess the quality of the above approach we evaluate at
first the amplitude Eq. (1) for an atomic helium target in its
ground state. This should give a direct insight into the
single-site behavior of the dynamic screening. In this case
the statesu3� �Z3�v3; v4��l andu4� �Z4�v3; v4��l are derived from
the corresponding Schro¨dinger equation for one particle
moving in the electrostatic field of He1 with an effective
screening of this field given by�Zj�v3; v4�; j � 3; 4: The elec-
tron–electron interaction is assumed unscreened, i.e.l!
∞: The cross-section with appropriate flux normalization is
readily obtained from the transition amplitude, Eq. (1) [6].
Fig. 1 shows the cross-section at 2 eV above the single
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ionization threshold of He as a function of the interelectro-
nic axis with respect to the incident beam direction. As
shown in the inset, both electrons escape with the same
energy (1 eV) and opposite to each other, i.e.k̂3·k̂4 � 21:
The absolute experimental data are well reproduced by the
present theory. To highlight the effect of correlation we also
show in Fig. 1 the results neglecting the dynamic screening,
i.e. we discardU in Eq. (2). This leads to results clearly at
variance with the experimental finding. Furthermore, the
importance of the coupling to the ionic core can be demon-
strated by switching offU andV3, i.e. one electron moves in
the field of the residual ion whereas the second one is
considered as free. This inadequate (cf. Fig. 1) procedure
amounts to the well-known first Born approximation. The
geometry depicted in Fig. 1 is in so far remarkable as in this
situation the electronic correlation is minimal (at fixed total
excess energy of 2 eV). Thus for situations where the elec-
trons are detected close to each other in velocity space we
can expect an even more striking effect of the pair correla-
tion.

Having established the usefulness of the above method
for single-site reactions we turn now to its application to
(e,2e) spectroscopy from the clean crystal surface W(001),
which was recently studied in detail experimentally and by
calculations without the Coulomb pair correlation [9].
Employing a relativistic layer-KKR method [13] we
numerically calculate the correlated time-reversed LEED
states k3� �Z1�v3; v4��u and k4� �Z2�v3; v4��u; each of which
depends on the velocitiesv3 andv4 of the two electrons—
chosen above as velocities of the 00 LEED beams inside the
crystal—and their mutual relative velocity. For the screen-
ing lengthl of the electron–electron interaction (cf. earlier)
we obtained, with the aid of a self-consistent LMTO calcu-
lation for W, the valuel � 0:48 �A: The cross-section is then
calculated as in [9]. It essentially involves absolute squares
of transition amplitudes (cf. Eq. (1)) summed over all spin
labelss i (with i � 1;…; 4), since we wish to make contact
with experiments without any spin resolution.

For the experimental conditions used in [9]—with
primary electron energies between 16 and 24 eV and an
angle of 808 between the directions of the two outgoing
electrons—we find only rather small pair correlation effects,
and the fairly good agreement between experiment and
theory, which was reached in [9], remains practically
unchanged. For different conditions, however, quite drastic
effects emerge.

Firstly, we retained the coplanar geometry with the large
angle between the two detected electrons, but lowered the
primary energy to 10.6 eV, which implies a maximal total
energy of the pair of 6 eV. The intensity distribution calcu-
lated without Coulomb pair correlation, i.e. forZ3 � 0� Z4

in Eq. (3), is shown in Fig. 2a. For total pair energies
between 5 and 6 eV, the intensity is small forE3 � E4 and
has maxima around�E3;E4� � �4:8; 1:0� and (1.0,4.8). In
contrast, the spectra obtained with pair correlation (Fig.
2b) are maximal closer to and aroundE3 � E4: This is
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Fig. 1. The cross-section for the emission of two equal-energy elec-
trons following the collision of an electron with an atomic He(1Se)
target. The excess energy of the pair is 2 eV. The angular correlation
pattern is depicted as a function of the angle of the interelectronic
axis with respect to the beam direction (see inset). The calculations
with (continuous line) and without (dashed curve) dynamical
screening are shown along with the results of the first Born approx-
imation (dotted line) (see text for more details). The experimental
data are taken from Ref. [14] where comparison with other theore-
tical methods can be found.

Fig. 2. Spin-averaged intensity for the two-electron emission from a
W(001) surface following the impact of a 10.6 eV electron along the
surface normal (chosen as thez-axis), i.e. polar angle of incidence
u1 � 0: The direction [100] defines thex axis. The emitted electrons
are detected in thex–zplane, i.e. their azimuthal angles aref3 � 0
andf4 � 1808; and the polar angles are set tou3 � u4 � 408: The
contour plots in the (E3,E4)-plane show calculated results without
Coulomb pair correlation (panel a) and with pair correlation accord-
ing to Eq. (3) (panel b), in comparison with experimental data (panel
c) [15]. For outgoing pair energies indicated by the solid counter-
diagonal lines, the corresponding valence electron energy is the
Fermi energy. Along the diagonal lines, the two outgoing electrons
have equal energies.



understandable from the fact that the Coulomb interaction
can transfer energy from the one escaping electron to
the other. Close to the threshold, around�E3;E4� �
�1; 1�; where refraction implies a very small angle
betweenv3 and v4, the electron–electron interaction is
seen to prevent pair emission. Comparison with experi-
mental data [15] (cf. Fig. 2c) shows that the inclusion
of pair correlation significantly improves the agreement
for total pair energies between 4 and 6 eV. As for the
intensity around�E3;E4� � �1; 1�; we recall from [9] that
this feature in experimental data is likely to arise from
two accidentally time-correlated secondary electrons.
Altogether, our calculations predict a strong influence
of the pair correlation, which is substantiated by experi-
mental findings.

The dependence of correlation effects on the angle
between the two outgoing electrons is demonstrated in
Fig. 3, where the detection direction of one electron is
fixed and that of the other sweeps over the entire

hemisphere. Comparison of the calculated results in
the upper half of Fig. 3 with those in the lower half
shows that the inter-electronic coupling results in a
drastic modification of the angular distribution pattern.
Without correlation, the emission probability is seen (cf.
upper half of Fig. 3) to be maximal when the two
electrons escape into the same direction and with the
same velocity. This unphysical result is remedied by the
pair interaction (cf. lower half of Fig. 3), which carves
a considerable “pair correlation hole” around the position
where electrons are close to each other in velocity space. For
regions where the two electrons emerge with diverging
directions, the effect of the pair correlation becomes less
and less visible.

In conclusion, we have presented a theoretical formalism
for including the Coulomb pair correlation in the calculation
of two-electronscattering states from single atoms and from
crystalline surface systems. This has been achieved through
position-dependent dynamical screening of the usual effec-
tive one-electron potentials. For the actual evaluation of
transition amplitudes, the position dependence has been
approximated by a velocity dependence. Numerical results
for an atomic target and for a crystal surface demonstrate
that pair correlation effects can be important in two-electron
emission upon low-energy electron impact. The application
of the present formalism to electron pair emission due to the
absorption of a VUV photon [11], a reaction forbidden
in the absence of the pair correlation [12], is currently in
progress.
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