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Relativistic corrections in magnetic systems
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We present a weak-relativistic limit comparison between the Kohn-Sham-Dirac equation and its approximate
form containing the exchange coupling, which is used in almost all relativistic codes of density-functional
theory. For these two descriptions, an exact expression of the Dirac Green’s function in terms of the nonrela-
tivistic Green’s function is first derived and then used to calculate the effective Hamiltonian, i.e., Pauli
Hamiltonian, and effective velocity operator in the weak-relativistic limit. We point out that, besides neglecting
orbital magnetism effects, the approximate Kohn-Sham-Dirac equation also gives relativistic corrections which
differ from those of the exact Kohn-Sham-Dirac equation. These differences have quite serious consequences:
in particular, the magnetocrystalline anisotropy of an uniaxial ferromagnet and the anisotropic magnetoresis-
tance of a cubic ferromagnet are found from the approximate Kohn-Sham-Dirac equation to be of order 1/c2,
whereas the correct results obtained from the exact Kohn-Sham-Dirac equation are of order 1/c4. We give a
qualitative estimate of the order of magnitude of these spurious terms.
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I. INTRODUCTION

The relativistic effects play a fundamental role in ma
netic systems. They are responsible for multiple phys
properties of great fundamental interest and technolog
relevance:1,2 magnetocrystalline anisotropy; magnetostr
tion; magneto-optical phenomena such as Faraday ef
Kerr effect, or magnetic dichroism; anomalous Hall effe
and anisotropic magnetoresistance~AMR! in metallic mate-
rials; etc. To describe these properties, one has to use eit
full relativistic Hamiltonian, i.e., Dirac equation, or an effe
tive Hamiltonian, i.e., Pauli equation, which includes ma
netic interactions and spin-orbit coupling. However, it is n
obvious to find all the different terms which have to be tak
into account in the effective Hamiltonian. For this reason
appears necessary to study the weak-relativistic limit of
Dirac equation for magnetic system in order to extract
complete expression of the effective Hamiltonian.

For many-body systems, the relativistic density-functio
theory allows us to replace the many-body Dirac equation
the Kohn-Sham-Dirac equation, which has the form3–5

HA5ca•~p2eAe f f!1bmc21Ve f f , ~1!

wherea and b are the (434) Dirac matrices respectivel
related to the (232) Pauli matrixs and unit matrix 1,

a[S 0 s

s 0 D , b[S 1 0

0 21D . ~2!

The effective potentialVe f f and the effective vector potentia
Ae f f are functions of the external potentialVext , of the ex-
ternal vector potentialAext , of the exchange-correlation en
ergy functionalExc , as well as the electron densityn(r )
[(« i<«F

c i
†(r )c i(r ) and the current density J(r )

[(« i<«F
c i

†(r )cac i(r ) where c i(r ) is the four-componen
Dirac spinor,
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Ve f f~r ![Vext~r !1
e2

4pe0
E n~r 8!

ur2r 8u
dr 81

dExc@n~r !,J~r !#

dn~r !
,

~3!

Ae f f~r ![Aext~r !1
e

4pe0c2E J~r 8!

ur2r 8u
dr 8

1
1

e

dExc@n~r !,J~r !#

dJ~r !
, ~4!

wheree0 is the vacuum permeability.
MacDonald and Vosko6 have shown that by neglectin

orbital magnetism, a Gordon decomposition7,8 allows us to
approximate Eq.~1! as

HB5c~a•p!1bmc21Ve f f2mBb~s•Be f f!. ~5!

The last term corresponds to the exchange coupling inv
ing an effective magnetic fieldBe f f[“3Ae f f5Bext1Bxc
where Bext is the external magnetic field andBxc the
exchange-correlation field given by

Bxc~r ![
1

mB

dExc@n~r !,m~r !#

dm~r !
, ~6!

wherem(r )[(« i<«F
c i

†(r )bsc i(r ) is the spin density and

mB[e\/2m. The presence of theb matrix in the last term of
Eq. ~5! and in the definition ofm(r ) results directly from the
Gordon decomposition7 where the expression of the fou
component Dirac spinor is extracted by multiplying th
Dirac equation by ab matrix either at the left side or at th
right side.9

To describe relativistic effects in magnetic systems, o
can either start fromHA or from HB. Even if the second
Hamiltonian is an approximate description in comparison
the former one, it has two advantages: on the first hand,
simpler because the vector potential is not more presen
the kinetic energy and, on the other hand, it has a m
convenient form for magnetic systems because one can
©2001 The American Physical Society34-1
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A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 094434
clude the magnetic interactions directly in the scalar pot
tial which is thus a sum of spin-independent and sp
dependent parts. ThereforeHB is generally used.10–17

However, there is no check on the consistency of Eqs.~1!
and ~5! in the weak-relativistic limit. Apart from the orbita
magnetism which is clearly neglected inHB, we should ob-
tain the same relativistic corrections. We point out in t
present paper that the weak relativistic limits ofHA andHB

differ. These differences have quite serious consequence
particular, the magnetocrystalline anisotropy of a uniax
ferromagnet and the AMR of a cubic ferromagnet are fou
from the approximate formHB to be of order 1/c2, whereas
the correct results obtained from the exact formHA are of
order 1/c4. We give a qualitative estimate of the order
magnitude of these spurious terms.

The paper is organized in the following way. In Sec.
we present the derivation of a useful expression of the D
Green’s function in term of the nonrelativistic Green’s fun
tion. Then, using this Dirac Green’s function as an alter
tive method to decouple particles from antiparticles, we
tract in Sec. III the effective Hamiltonian and effectiv
velocity operator. These operations are done starting b
from HA andHB in order to compare the relativistic corre
tions of order 1/c2. The calculations starting fromHA are
given in detail in the text whereas the calculations fromHB,
which are similar in their principles but lead to differe
expressions, are summarized in the appendixes. Finall
Sec. IV, we discuss the results and present a qualita
evaluation of the difference between the two descriptions

II. DIRAC GREEN’S FUNCTION

The derivation of the Dirac Green’s function has be
done both forHA and HB. Below, we present in detail th
calculation forHA while the calculation forHB is summa-
rized in Appendix A. In order to simplify the notations, w
introducep[p2eAe f f , and write simplyV instead ofVe f f
andA instead ofAe f f . Since we are interested mainly in th
electrons states in the weak relativistic limit, we shift t
zero of energy by2mc2; for positrons, we would have to
shift the zero of energy by1mc2. We express the Hamil
tonianHA in terms of (232) matrices as

HA5S V c~s•p!

c~s•p! V22mc2D . ~7!
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A series of algebraic manipulations allows to express
Dirac Green’s functionG(z)[(z2HA)21 in terms of the
(232) nonrelativistic Green’s functionG̃(z)[(z2H̃A)21

associated with the (232) nonrelativistic HamiltonianH̃A

[(s•p)2/2m1V. This kind of transformation was initially
proposed by Gesztesyet al.18 Following their work, we write
first G as a product of matrices

G~z!5F S z 2c~s•p!

2c~s•p! 2mc2 D 1S 2V 0

0 z2VD G21

5F11A 21~z!S 2V 0

0 z2VD G21

A 21~z!, ~8!

where we have introduced

A~z!5S z 2c~s•p!

2c~s•p! 2mc2 D . ~9!

The explicit inversion ofA yields

A 21~z!5S G̃0~z!
s•p

2mc
G̃0~z!

s•p

2mc
G̃0~z!

z

2mc2
G̃0~z!

D , ~10!

where G̃0(z)[@z2(s•p)2/2m#21. Using Eq. ~10! in Eq.
~8!, we get

G~z!5S 12G̃0~z!V
s•p

2mc
G̃0~z!~z2V!

2
s•p

2mc
G̃0~z!V 11

z

2mc2
G̃0~z!~z2V!

D 21

3S G̃0~z!
s•p

2mc
G̃0~z!

s•p

2mc
G̃0~z!

z

2mc2
G̃0~z!

D . ~11!

The first factor in the right-hand side of the above equation
calculated by direct matrix inversion, and is equal to
S G̃~z!G̃0
21~z!2G̃~z!

s•p

2mc
~z2V!D~z!

s•p

2mc
@G̃~z!G̃0

21~z!21# 2G̃~z!
s•p

2mc
~z2V!D~z!

D~z!
s•p

2mc
@G̃~z!G̃0

21~z!21# D~z!
D , ~12!

where we have used the relationG̃0VG̃5G̃2G̃0 and introduced the (232) matrix

D~z!5S 11Q~z!
~z2V!

2mc2 D 21

, ~13!
4-2



RELATIVISTIC CORRECTIONS IN MAGNETIC SYSTEMS PHYSICAL REVIEW B64 094434
with Q(z)511(s•p)G̃(z)(s•p)/2m. We insert Eq.~12! in Eq. ~11! and finally obtain

G~z!5S G̃~z!2G̃~z!
s•p

2mc
~z2V!D~z!

s•p

2mc
G̃~z! G̃~z!

s•p

2mc
Q21~z!D~z!Q~z!

D~z!
s•p

2mc
G̃~z!

1

2mc2
D~z!Q~z!

D . ~14!
t

t
r
e
c

or
k
is

a

an
The corresponding expression associated withHB is given in
Appendix A by Eq.~A3!. The originality of our result is tha
we have succeeded in expressing the (434) Dirac Green’s
function entirely in terms of (232) matrices, in particular
the nonrelativistic Green’s functionG̃, whereas in the resul
presented by Gesztesyet al.18 or more recently by Broude
et al.,19 a product of (434) matrices is still present in th
final expression. Such formulation of the Dirac Green’s fun
tion provides an alternative method to separate particles f
antiparticles in the weak-relativistic limit by a simple bloc
diagonalization. More comments and illustration of th
method are presented in Sec. III.

In the limit of low electron energies, it is useful to have
th
s
s

to
/
a

rg

h

s
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semirelativistic expression. In order to get it, we perform
expansion of the operatorD in powers of 1/c which allows
us to write the Dirac Green’s function as a series,

G~z!5 (
n50

`

G(n)~z!, ~15!

where G(n)(z) is the term of order 1/cn. The successive
terms are

G(0)~z!5S G̃~z! 0

0 0
D , ~16!
G(2k11)~z!5S 0 G̃~z!
s•p

2mcF2
~z2V!

2mc2
Q~z!G k

F2Q~z!
~z2V!

2mc2 G k
s•p

2mc
G̃~z! 0

D , ~17!

G(2k12)~z!5S 2G̃~z!
s•p

2mc
~z2V!F2Q~z!

~z2V!

2mc2 G k
s•p

2mc
G̃~z! 0

0
1

2mc2 F2Q~z!
~z2V!

2mc2 G k

Q~z!
D , ~18!
as a
rs,
h
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for k>0. We remark that odd terms in the expansion of
Green’s function in powers of 1/c are odd matrices wherea
even terms are even matrices. Corresponding expression
the Dirac Green’s function expansion associated withHB are
given in Appendix A.

One advantage of the expression~15! is that we can di-
rectly identify and calculate the terms which gives rise
particular effect according to the order of this effect with 1c.
Consider for example the magnetic anisotropies. In the c
of a system with uniaxial anisotropy, the anisotropy ene
is quadratic in the spin-orbit couplinglso ~i.e., of order
1/c4). As the anisotropy energy is linear with respect to t
Green’s function, we have to consider the termG(4). For
cubic anisotropy, the anisotropy energy is of orderlso

4 ~i.e.,
of order 1/c8), then we have to consider the termG(8). For
galvanomagnetic and magneto-optical effects, one need
e

for

se
y

e

to

calculate the conductivity tensor. The latter is expressed
product of two Green’s functions and two velocity operato
which areca in the relativistic theory. For the effects whic
are linear in spin-orbit coupling,~i.e., of order 1/c2), such as
the anomalous Hall effect, and the Kerr and Farad
magneto-optical effects, one needs to calculate all terms
to G(4). For the effects that are quadratic in spin-orbit co
pling ~i.e., of order 1/c4), such as the AMR or the magneti
birefringence, one needs all terms up toG(6). Note that the
usual~i.e., nonrelativistic! conductivity is obtained from the
terms up toG(2).

III. WEAK-RELATIVISTIC LIMIT

A. Effective Hamiltonian

We turn now our attention to the effective Hamiltonian
the weak-relativistic limit. Different methods have been pr
4-3
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A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 094434
posed to obtain it:~i! the direct elimination of the lowe
components of the wave function;20 ~ii ! the Foldy-
Wouthuysen transformation which requires a succession
canonical transformations21 and ~iii ! the expansion of the
Dirac resolvent around its nonrelativistic limit.18,22A detailed
comparison between these methods is beyond the purpo
this paper~we refer to, e.g., Ref. 23 and references there!.
As we have the explicit expression of the Dirac Gree
function in term of (232) matrices, we follow the las
method but instead of using projection operators as it is d
in Ref. 18, we extract the effective Hamiltonian from a blo
diagonalization and a Dyson-type expansion of the Di
Green’s function.

A block diagonalization of the Dirac Green’s function a
lows to cancels the terms which couple the upper and lo
components and then to extract the effective Hamiltoni
Let us start with the nonrelativistic limit (c→`) which is
obtained in a transparent manner. Indeed, in this limit, o
the upper left matrix element ofG5G(0) is different from
zero @see Eq.~16! for HA or Eq. ~A6! for HB#. Then the
separation between particles and antiparticles is natur
made: the Green’s function which describes the particle
directly given by G̃ and the effective Hamiltonian isH̃A

~respectivelyH̃B). In the general case~arbitrary value ofc),
the decoupling of particles and antiparticles can be exa
made only for free electrons. For particles in a potential, l
in our case, an expansion in powers of 1/c has to be per-
formed which means a restriction to the weak-relativis
limit. Indeed, the block diagonalization of the Green’s fun
tion is only possible if we cut the expansion~15! @respec-
tively, Eq. ~A3!#. Such limitation is a common characterist
for all methods.3 Below, we present the calculation startin
from HA whereas the calculation starting fromHB is done in
Appendix B. Since we restrict our calculations to the low
order relativistic corrections to the Hamiltonian, we have
cut the expansion~15! of the Green’s function after the sec
ond order in 1/c:

G~z!

'S G̃~z!2G̃~z!
s•p

2mc
~z2V!

s•p

2mc
G̃~z! G̃~z!

s•p

2mc

s•p

2mc
G̃~z!

1

2mc2
Q~z!

D .

~19!

The block diagonalization ofG corresponds to the change
basisM 21GM where the (434) unitary matrixM is given
by

M5S 11
~s•p!2

4m2c2 D 21/2S 1 2
s•p

2mc

s•p

2mc
1

D , ~20!

and leads to the block diagonal Green’s function
09443
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M 21G~z!M5S g1~z! 0

0 g2~z!
D . ~21!

By means of this transformation, we have achieved a dec
pling between the particles and the antiparticules: the
32) matrix g1 describes the particles whereas the (232)
matrix g2 describes the antiparticles. We get

g1~z!5G̃~z!1
~s•p!2

8m2c2
G̃~z!1G̃~z!

~s•p!2

8m2c2

2G̃~z!
s•p

2mc
~z2V!

s•p

2mc
G̃~z!, ~22!

and

g2~z!5
1

2mc2
. ~23!

From now, we restrict our study to the particles. Using t
relationsG̃z511G̃H̃A511H̃AG̃, we can transform the las
term in Eq. ~22! and writeg1 as a first-order perturbation
expansionG̃1G̃Hrc

A G̃ where

Hrc
A 52

~s•p!4

8m3c2
1

1

4m2c2
~s•p!V~s•p!2

~s•p!2

8m2c2
V

2V
~s•p!2

8m2c2
. ~24!

This expression corresponds to the relativistic corrections
order 1/c2 to the nonrelativistic HamiltonianH̃A. Thus the
effective Hamiltonian, i.e., Pauli Hamiltonian, isHe f f

A 5H̃A

1Hrc
A . This result is exactly similar to that given in th

literature in the case of a single-particle Dirac equation~see,
e.g., Refs. 18 and 24!. In order to get a more familiar expres
sion ofHrc

A , we have to perform some transformations whi
are detailed in Appendix B. In the case of a uniform effecti
magnetic field and neglecting orbital magnetism,Hrc

A reduces
to @see Eq.~B6! in Appendix B#

Hrc
A 52

p4

8m3c2
1

\2

8m2c2
DV1

\

4m2c2
s•~“V3p!

1
mB

2m2c2
p2~s•Be f f!. ~25!

We obtain the usual relativistic corrections~relativistic mass
correction, Darwin term, and spin-orbit coupling! plus an
additional contribution due to the presence of the excha
coupling. For a nonuniform effective magnetic field, which
the case in realistic problems, further relativistic correctio
are obtained@see Eq.~B4!#.

Similar calculations, presented in Appendix C, have be
done starting fromHB by performing a block diagonalization
of the Dirac Green’s function calculated in Appendix A. W
limit the comparison of the relativistic correctionsHrc

A and
Hrc

B obtained in the two descriptions to the case of a unifo
4-4
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RELATIVISTIC CORRECTIONS IN MAGNETIC SYSTEMS PHYSICAL REVIEW B64 094434
effective magnetic field. Comparing Eqs.~25! and ~C7!, we
observe two differences: one in the spin-orbit coupling
cause the nonrelativistic velocityṽ is equal top/m in the
first description whereas it is equal top/m in the second
description; and an other one in the relativistic correctio
Hrxc to the exchange coupling, given by the last term in E
~25! and~C7!, respectively. Actually, from Eq.~25! we have

Hrxc
A [

mB

2m2c2
p2~s•Be f f!, ~26!

whereas from Eq.~C7! we have

Hrxc
B [

mB

2m2c2
~s•p!~p•Be f f!. ~27!

What is problematic is thatHrxc
A and Hrxc

B couple the spin
and momentum in a quite different manner. Comments
consequences of this difference are presented in Sec. IV

B. Effective velocity operator

To complete this study, we want to comment briefly
the velocity operator which is by definition

v5
1

i\
@r ,H#5

1

i\
~rH2Hr !5

]H

] p
, ~28!

wherer is the position operator. When we insert the expr
sion of the HamiltoniansHA or HB, we get the simple form

v5c a5S 0 cs

cs 0 D . ~29!

The effective velocity operator can be obtained from Eq.~29!
by the change of basisM 21vM but in order to get the cor
rections of order 1/c2 to the velocity, it would be necessar
to expandM up to the order 1/c4 which is cumbersome. I
can also be obtained fromHe f f

A using

ve f f
A 5

1

i\
@r ,He f f

A #5
1

i\
@r ,H̃A#1

1

i\
@r ,Hrc

A #[ ṽA1vrc
A ,

~30!

whereṽA is the nonrelativistic velocity andvrc
A the relativistic

corrections of order 1/c2 to the velocity. From the expressio
of H̃A, we getṽA5p/m and from Eq.~B4! where diamag-
netic terms are neglected, we get

vrc
A 52

p2p

2m3c2
1

\

4m2c2
~s3“V!1

mB

2m2c2
@p~s•Be f f!

1~s•Be f f!p#1
e

4m3c2
@p2A1Ap21p~p•A1A•p!

1~p•A1A•p!p#. ~31!

In the case of a uniform effective magnetic field and in a
sence of orbital magnetism, it reduces to
09443
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vrc
A 52

p2p

2m3c2
1

\

4m2c2
~s3“V!1

mB

m2c2
p~s•Be f f!.

~32!

The first term is the contribution which comes from the re
tivistic mass correction. The second term, the so-ca
anomalous velocity, results from the spin-orbit coupling a
can play an important role, for example, it leads to the si
jump mechanism in the anomalous Hall effect. The last te
is due to the presence of the exchange coupling and ha
specific name. Its symmetry is also different in comparis
to the relativistic corrections to the velocity operator o
tained starting fromHB @see Eq.~D2! in Appendix D#.

IV. DISCUSSION

This study gives some clarification concerning the
sumptions made when one replaces the HamiltonianHA by
the HamiltonianHB. Even if the consequences of such a
proximation are not fully known, as Ku¨bler justly notices,25

it was generally believed that the transformation fromHA to
HB neglects only orbital magnetism effects. However, t
calculations of the weak-relativistic limits ofHA and HB

made in Sec. III reveal an additional difference which cor
sponds to a different symmetry of the relativistic correctio
to the exchange coupling: whereasHrxc

A @see Eq.~26!# is
isotropic with respect to the direction of the momentu
Hrxc

B @see Eq.~27!# is anisotropic because its amplitude d
pends, through the scalar product (p•Be f f), on the angle be-
tween the directions of the momentum and the effect
magnetic field. Thus the use ofHB can lead to anisotropic
effects, such as the magnetocrystalline anisotropy or
AMR, which differ from those obtained from the exa
Kohn-Sham-Dirac HamiltonianHA.

Let us first consider the magnetocrystalline anisotropy
a uniaxial system~e.g., a material with an hexagonal lattic
or an ultrathin film!. If we start fromHA, the magnetic an-
isotropy arises only as a second-order perturbation due to
spin-orbit coupling, so that it is of order 1/c4. In contrast, if
we useHB, it is easy to see that the relativistic correction
the exchange interaction,Hrxc

B , gives rise to an additiona
contribution to the magnetocrystalline anisotropy, already
the first order of perturbation, i.e., of order 1/c2, which is
unphysical.

Although the details are somewhat more complicated
similar result is obtained when considering the AMR of
cubic system: starting fromHA, the AMR arises as a second
order perturbation due to the spin-orbit coupling, i.e., it is
order 1/c4, whereas starting fromHB, an additional AMR
term of order 1/c2 arises as a first-order perturbation due
Hrxc

B .
In the limit of c→`, these spurious terms of order 1/c2

dominate over the correct terms of order 1/c4, which is of
course unacceptable. As allab initio calculations of magne-
tocrystalline anisotropy11–14 starting for the Dirac equation
rely on the approximation~5!, their validity can be ques-
tioneda priori. Let us make a simple estimate of the orde
of magnitude for the physical value ofc. Starting fromHA,
4-5
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A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 094434
the magnetocrystalline anisotropy per atom is26

KA'
lso

2

W
;

1

c4
, ~33!

wherelso is the spin-orbit constant andW the bandwidth.
Starting fromHB, on the other hand, it is quite easy to ca
culate the magnetocrystalline anisotropy due toHrxc

B ,

KB'
«FDex

2mc2
, ~34!

where«F is the Fermi level andDex the exchange splitting
For a transition-metal ferromagnet, by taking typical valu
lso'0.1 eV andW'5 eV, one obtainsKA'231023 eV.
Taking «F'10 eV, Dex'2 eV, andmc2'500 keV, we
obtainKB'231025 eV. Therefore, in spite of the fact tha
KB@KA in the limit c→`, we find thatKB!KA for the the
physical valuec'33108 m s21. This result is visualized in
Fig. 1. Then, the quantitative results of first-principles calc
lations of the magnetocrystalline anisotropy based on the
proximate Kohn-Sham-Dirac HamiltonianHB should not be
perturbed in a significant manner by the spurious contri
tion of order 1/c2. In spite of this fortunate circumstance,
would be desirable to develop a more satisfactory theore
approach which is free from unphysical spurious contrib
tions.

FIG. 1. This figure shows the typical variation of the magne
crystalline anisotropy of a uniaxial ferromagnet as a function oc.
The physical value ofc is indicated by the vertical line. The soli
curve is the correct valueKA obtained fromHA, whereas the dashe
line represents the spurious contributionKB obtained fromHB.
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For a nonuniform effective magnetic field, additional rel
tivistic corrections are obtained@see Eqs.~B4# and ~C6!!.
The qualitative importance of these corrections remains to
investigated.

To conclude, we want to underline two aspects which r
resent the important results of this work. On the one ha
we have derived a convenient form of the Dirac Gree
function which is valid for any value ofc and has the advan
tage to be express in terms of (232) matrices, in particular
the nonrelativistic Green’s function. This is a quite gene
form which can be used to treat different problems. We ha
applied it as an alternative way to separate particles fr
antiparticles in order to extract the effective Hamiltonian a
effective velocity in the weak-relativistic limit. On the othe
hand, we have performed a detailed comparison in the we
relativistic limit between the Kohn-Sham-Dirac equation a
its approximate form containing the exchange coupling. T
study has revealed a difference of symmetry in the relativ
tic corrections to the exchange coupling which leads to a
ficial anisotropic effects. A qualitative estimation has sho
that, in the case of transition metals, this difference is
significant.

APPENDIX A: DIRAC GREEN’S FUNCTION IN
PRESENCE OF AN EXCHANGE COUPLING

In this appendix, we summarize the derivation of t
Dirac Green’s function starting fromHB given by Eq.~5!. It
follows the same steps as starting fromHA but involves dif-
ferent matrices and leads to a different expression of the fi
Dirac Green’s function. To simplify the notations, we intr
duceQ52mB(s•Be f f), then

HB5S V1Q c~s•p!

c~s•p! V22mc22Q
D . ~A1!

The Dirac Green’s functionG(z)[(z2HB)21 can then be
written as

G~z!5F11A 21~z!S 2V2Q 0

0 z2V1Q
D G21

A 21~z!.

~A2!

A 21 is given by Eq.~10! where we replacep by p and
defineG̃0(z)[(z2p2/2m)21. We perform the direct inver-
sion of the matrices which appear in Eq.~A2!. It leads to the
final expression:

-

G~z!5S G̃~z!2G̃~z!
s•p

2mc
~z2V1Q!D~z!

s•p

2mc
G̃~z! G̃~z!

s•p

2mc
Q21~z!D~z!Q~z!

D~z!
s•p

2mc
G̃~z!

1

2mc2
D~z!Q~z!

D , ~A3!

whereG̃ is the (232) nonrelativistic Green’s function associated with the (232) nonrelativistic HamiltonianH̃B5p2/2m
1V1Q, and the operatorsD andQ are given by
4-6
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D~z!5S 11Q~z!
~z2V1Q!

2mc2 D 21

, ~A4!

Q~z!511
~s•p!G̃~z!~s•p!

2m
. ~A5!

A semirelativistic expansionG(z)5(n50
` G(n)(z) can also be given. The successive terms are

G(0)~z!5S G̃~z! 0

0 0
D , ~A6!

G(2k11)~z!5S 0 G̃~z!
s•p

2mcF2
~z2V1Q!

2mc2
Q~z!G k

S 2Q~z!
~z2V1Q!

2mc2 D k
s•p

2mc
G̃~z! 0

D , ~A7!

G(2k12)~z!5S 2G̃~z!
s•p

2mc
~z2V1Q!F2Q~z!

~z2V1Q!

2mc2 G k
s•p

2mc
G̃~z! 0

0
1

2mc2 F2Q~z!
~z2V1Q!

2mc2 G k

Q~z!
D , ~A8!
r-

-

-
by
for k>0.

APPENDIX B: EFFECTIVE HAMILTONIAN IN
PRESENCE OF A POTENTIAL VECTOR

Transformations ofH̃A and Hrc
A allow to get a more fa-

miliar expression of the effective HamiltonianHe f f
A . Ne-

glecting diamagnetic terms, we have

H̃A5
~s•p!2

2m
1V

5
p2

2m
1V2mB~s•Be f f!2

e

2m
~p•A1A•p!, ~B1!

where we have used the identities

~s•p!~s•p!5p•p1 i s•~p3p!,

p3A1A3p52 i\Be f f . ~B2!

For a uniform effective field,H̃A reduces to

H̃A5
p2

2m
1V2mB@~s1L !•Be f f#, ~B3!

whereL5r3p is the orbital momentum. In absence of o
bital magnetism, this last expression is identical toH̃B. We
turn now our attention to the relativistic correctionsHrc

A .
After transformation of Eq.~24! and neglecting the diamag
netic terms, we can rewriteHrc

A as
09443
Hrc
A 52

p4

8m3c2
1

\2

8m2c2
DV1

\

4m2c2
s•~“V3p!

1
mB

4m2c2
@p2~s•Be f f!1~s•Be f f!p

2#

1
e

8m2c2 S p2

m
~p•A1A•p!1~p•A1A•p!

p2

m

1~A•p2p•A!V1V~p•A2A•p! D , ~B4!

where we have used the following identities:

~s•p!V~s•p!5pV•p1 i s•~pV3p!,

2p V•p5p2V1Vp21\2DV, ~B5!

and replaced the momentum operatorp as well as the opera
tor p2, where they act only on the potential, respectively
the gradient“52p/ i\ and by the LaplacianD52p2/\2.
In the case of a uniform effective magnetic field,Hrc

A reduces
to

Hrc
A 52

p4

8m3c2
1

\2

8m2c2
DV1

\

4m2c2
s•~“V3p!

1
mB

2m2c2
p2@~s1L !•Be f f#. ~B6!
4-7
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The hermiticity of Eq.~B4! is manifest and the hermiticity of Eq.~B6! is assured by the fact thatp2 andBe f f commute in the
case of a uniform effective magnetic field.

APPENDIX C: EFFECTIVE HAMILTONIAN IN PRESENCE OF AN EXCHANGE COUPLING

In this appendix, we summarize the derivation of the effective Hamiltonian starting from the Dirac Green’s function~A3!.
We cut the expansion after the second order with 1/c, then

G~z! 'S G̃~z!2G̃~z!
s•p

2mc
~z2V1Q!

s•p

2mc
G̃~z! G̃~z!

s•p

2mc

s•p

2mc
G̃~z!

1

2mc2
Q~z!

D . ~C1!
to

d.

ef-
f

The block diagonalizationM 21GM is obtained with

M5S 11
p2

4m2c2D 21/2S 1 2
s•p

2mc

s•p

2mc
1

D , ~C2!

and leads to

g1~z!5G̃~z!1
p2

8m2c2
G̃~z!1G̃~z!

p2

8m2c2

2G̃~z!
s•p

2mc
~z2V1Q!

s•p

2mc
G̃~z!, ~C3!

which can be written asG̃1G̃Hrc
B G̃ where

Hrc
B 52

p4

8m3c2
1

1

4m2c2
~s•p!~V2Q!~s•p!

2
p2

8m2c2
~V1Q!2~V1Q!

p2

8m2c2
. ~C4!

In order to get a more usual expression ofHrc
B , we made

some transformations of Eq.~C4! using identities~B5! where
we have replacedp by p and the relation

~s•p!~s•Be f f!~s•p!52p~s•Be f f!•p1\~“3Be f f!•p

1~s•p!~Be f f•p!1~p•Be f f!~s•p!.

~C5!

Finally, we get
09443
Hrc
B 52

p4

8m3c2
1

\2

8m2c2
D@V2mB~s•Be f f!#

1
\

4m2c2
s•~“V3p!1

\mB

4m2c2
~“3Be f f!•p

1
mB

4m2c2
@~s•p!~Be f f•p!1~p•Be f f!~s•p!#.

~C6!

In the case of a uniform effective magnetic field, it reduces

Hrc
B 52

p4

8m3c2
1

\2

8m2c2
DV1

\

4m2c2
s•~“V3p!

1
mB

2m2c2
~s•p!~Be f f•p!. ~C7!

The hermiticity of Eqs.~C4! and ~C6! is manifest and the
hermiticity of Eq.~C7! is assured by the fact thatp andBe f f
commute in the case of a uniform effective magnetic fiel

APPENDIX D: EFFECTIVE VELOCITY OPERATOR IN
PRESENCE OF AN EXCHANGE COUPLING

In this appendix, we summarize the derivation of the
fective velocity starting fromHB. From the expression o
H̃B5p2/2m1V1Q, we getṽB5p/m and from the expres-
sion ~C6! of Hrc

B , we get

vrc
B 52

p2p

2m3c2
1

\

4m2c2
~s3“V!1

\mB

4m2c2
~“3Be f f!

1
mB

4m2c2
@s~Be f f•p!1~p•Be f f!s1~s•p!Be f f

1Be f f~s•p!#. ~D1!
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This expression differs from the result obtained by Kraftet
al.15 on two points: they get a wrong coefficient~a factor 2
missing! for the contribution of the relativistic mass corre
tion and they obtain a contribution from the Darwin ter
which should not appear because the commutator@r ,DV# is
equal to zero. In the case of a uniform effective magne
field, Eq. ~D1! reduces to
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