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Relativistic corrections in magnetic systems
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We present a weak-relativistic limit comparison between the Kohn-Sham-Dirac equation and its approximate
form containing the exchange coupling, which is used in almost all relativistic codes of density-functional
theory. For these two descriptions, an exact expression of the Dirac Green'’s function in terms of the nonrela-
tivistic Green’s function is first derived and then used to calculate the effective Hamiltonian, i.e., Pauli
Hamiltonian, and effective velocity operator in the weak-relativistic limit. We point out that, besides neglecting
orbital magnetism effects, the approximate Kohn-Sham-Dirac equation also gives relativistic corrections which
differ from those of the exact Kohn-Sham-Dirac equation. These differences have quite serious consequences:
in particular, the magnetocrystalline anisotropy of an uniaxial ferromagnet and the anisotropic magnetoresis-
tance of a cubic ferromagnet are found from the approximate Kohn-Sham-Dirac equation to be ofafrder 1/
whereas the correct results obtained from the exact Kohn-Sham-Dirac equation are of ctdévelgive a
qualitative estimate of the order of magnitude of these spurious terms.
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I. INTRODUCTION
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The relativistic effects play a fundamental role in mag- r—r'| on(r)
netic systems. They are responsible for multiple physical ©)
properties of great fundamental interest and technological

relevance"? magnetocrystalline anisotropy; magnetostric- _ Jr'y

P, P Aeff(r)=Aext(r)+ r

tion; magneto-optical phenomena such as Faraday effect, Ameoc?) |r—r'|

Kerr effect, or magnetic dichroism; anomalous Hall effect

and anisotropic magnetoresistar{@MR) in metallic mate- 1 6Exd n(r),J(r)] 4
rials; etc. To describe these properties, one has to use either a e 8J(r) ' ()

full relativistic Hamiltonian, i.e., Dirac equation, or an effec- ) N

tive Hamiltonian, i.e., Pauli equation, which includes mag-Wheree is the vacuum permeability. .

netic interactions and spin-orbit coupling. However, it is not MacDonald and Voskbhave shown that by neglecting

obvious to find all the different terms which have to be takerOrbital magnetism, a Gordon decomposifibraliows us to

into account in the effective Hamiltonian. For this reason, itaPProximate Eq(1) as

appears necessary to study the weak-relativistic limit of the B_

Dirac equation for magnetic system in order to extract the HP=c(a-p)+ BMC + Vet~ upB(0Berr). ©)

complete expression of the effective Hamiltonian. The last term corresponds to the exchange coupling involv-
For many-body systems, the relativistic density-functionaling an effective magnetic fieldB.;;=V X Agt=Bext+ Byc

theory allows us to replace the many-body Dirac equation byvhere B,,, is the external magnetic field an8,. the

the Kohn-Sham-Dirac equation, which has the f&rm exchange-correlation field given by

HA=ca- (p—eAgsf) + BMC+ Vi, (1) Bxc(r)zi SEy[n(r),m(r)]

ws  em() ©

where @ and 8 are the (4<4) Dirac matrices respectively \yhere m(f)EES.ssFlﬂ?(f)Bmﬂi(f) is the spin density and

related to the (X 2) Pauli matrixor and unit matrix 1, us=ef/2m. The presence of th@ matrix in the last term of

Eq. (5) and in the definition ofn(r) results directly from the
0 o 1 0 Gordon decompositidnwhere the expression of the four-
a= 0/’ B= 0 —-1/° @) component Dirac spinor is extracted by multiplying the
Dirac equation by g matrix either at the left side or at the
right side®
To describe relativistic effects in magnetic systems, one
can either start fronH” or from HB. Even if the second
. . Hamiltonian is an approximate description in comparison to
t;r%y fun%?{ﬂ%;’ aasnzjve”tﬁes thceur(:(l;?rozecrjli?tf/l%:; the former one, it has two advantages; on the first hand, it is
gjSep IT ! i simpler because the vector potential is not more present in
=3, <. i (r)cays(r) wherey;(r) is the four-component the kinetic energy and, on the other hand, it has a more
Dirac spinor, convenient form for magnetic systems because one can in-

The effective potentiaV/.; and the effective vector potential
Aq¢; are functions of the external potentidl,,, of the ex-
ternal vector potential\.,;, of the exchange-correlation en-
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clude the magnetic interactions directly in the scalar potenA series of algebraic manipulations allows to express the
tial which is thus a sum of spin-independent and spin-Dirac Green’s functionG(z)=(z—H") ! in terms of the

dependent parts. Thereforei® is generally used®™" (2x2) nonrelativistic Green's functios(z)=(z—H")
Howeve_r, there is no Ch.e.Ck. on the consistency of Eﬁﬂl_)s- associated with the (22) nonrelativistic HamiltoniarH”
and (5) in the weak-relativistic limit. Apart from the orbital — (o m)2/2m+ V. This kind of transformation was initially

Tagr:ﬁt'sm Wh'ChI ISt' qle;:trly neglti'cted H\ri/ we .sfloulti Qb-th proposed by Gesztesy al'® Following their work, we write
ain the same relativistic corrections. We point out in thego & a5 4 product of matrices

present paper that the weak relativistic limitskbf andH®

differ. These differences have quite serious consequences: in 7 —c(o- ) -V 0 -1
particular, the magnetocrystalline anisotropy of a uniaxial G(z)= )+( ”
ferromagnet and the AMR of a cubic ferromagnet are found —c(o-m) 2m¢c? 0 z=V
from the approximate forn® to be of order 1¢?, whereas

: -v o0 \|!
the correct results obtained from the exact forfi are of = 1+Al(Z)< ” A Y2), (8)
order 1£*. We give a qualitative estimate of the order of 0 z-V
magnitude of these spurious terms. .

. : ) : where we have introduced
The paper is organized in the following way. In Sec. I,
we present the derivation of a useful expression of the Dirac
1, 1 H H 1 H 7, Z - C( 0. ﬂ.)

Green’s function in term of the nonrelativistic Green’s func- A(z)= (9)
tion. Then, using this Dirac Green’s function as an alterna- —c(o-m) 2mc?
tive method to decouple particles from antiparticles, we ex- h licit i . ield
tract in Sec. Ill the effective Hamiltonian and effective "€ xplicit inversion otA yields
velocity operator. These operations are done starting both
from HA andH® in order to compare the relativistic correc- & T
. 2 . . A O(Z) O(Z)
tions of order 1¢°. The calculations starting froril™ are L 2mc
given in detail in the text whereas the calculations fridfy AT@D= . : (10
which are similar in their principles but lead to different ——Gy(2) Go(2)
expressions, are summarized in the appendixes. Finally in 2mc 2mc?

Sec. IV, we discuss the results and present a qualitative _ . .
evaluation of the difference between the two descriptions. Where Gy(z)=[z— (o m)%2m] . Using Eg.(10) in Eq.

(8), we get
II. DIRAC GREEN’S FUNCTION 1
~ O T
The derivation of the Dirac Green’s function has been 1-Gy(2)V smcco(2)(z=V)
done both forH” and HE. Below, we present in detail the G(2)=
calculation forH” while the calculation foH® is summa- AT z .
rized in Appendix A. In order to simplify the notations, we ~omcco(2V 1+ chzGo(Z)(Z_V)
introducem=p—eAg;s, and write simplyV instead ofV;
andA instead ofA.¢;. Since we are interested mainly in the - o T
electrons states in the weak relativistic limit, we shift the Go(2) _2mcG°(Z)
zero of energy by—m¢c?; for positrons, we would have to % _ (11)
shift the zero of energy by-mc®. We express the Hamil- o T z ~
tonianH” in terms of (2<2) matrices as 2mC°°(Z) 2m0200(z)
HA= v c(o-m) @) The first factor in the right-hand side of the above equation is

clo-m V-2mc/)’ calculated by direct matrix inversion, and is equal to

= - O oT - O
G(2)Gq (Z)—G(Z)R(Z—V)D(Z)m[G(Z)Go (2)—1] —G(Z)R(Z—V)D(Z)

: (12)
D(2) = 21&(2)G: (2)—1] D(z2)
2mc 0
where we have used the relatiGyVG=G— G, and introduced the (2 2) matrix
D()=| 1+ >(Z_V))_l 13)
7)= z :
2m¢c?
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with Q(2) =1+ (o m) G(2) (o @) /2m. We insert Eq(12) in Eq. (11) and finally obtain

- -~ O T o T ~, _om
G(Z)—G(Z)R(Z—V)D(Z)RG(Z) G(Z)m: (2)D(2)Q(2)
G(z)= o T 1 . (14
D(Z)mG(Z) RD(Z)Q(Z)

The corresponding expression associated Withis given in  semirelativistic expression. In order to get it, we perform an
Appendix A by Eq.(A3). The originality of our result is that expansion of the operat® in powers of 1¢ which allows
we have succeeded in expressing thex@) Dirac Green’s us to write the Dirac Green’s function as a series,
function entirely in terms of (X2) matrices, in particular
the nonrelativistic Green’s functioB, whereas in the result -
presented by Gesztest al*® or more recently by Brouder G(z)= ZO G"(2), (15
et al,'® a product of (4<4) matrices is still present in the "
final expression. Such formulation of the Dirac Green'’s funcyhere G("(z) is the term of order T". The successive
tion provides an alternative method to separate particles forfeyms are
antiparticles in the weak-relativistic limit by a simple block
diagonalization. More comments and illustration of this ~
method are presented in Sec. ll. (0) _(G(Z) 0)
- o GM(2)= , (16)
In the limit of low electron energies, it is useful to have a 0 0

0 ~ oa (z=V) “
G(Z)m T om@ Q(2)
Gk+1)(z)= ; 17)
(z=V) ~ 0
—Q(2) e H:G(Z)
~ O (z—V) K -
—G(Z)m(Z—V) —Q(2) om@ W:G(Z) 0
Gk+2)(z)= K , (18
0 B P am L o
2mdc 2mc?

for k=0. We remark that odd terms in the expansion of thecalculate the conductivity tensor. The latter is expressed as a
Green’s function in powers of ¢/are odd matrices whereas product of two Green’s functions and two velocity operators,
even terms are even matrices. Corresponding expressions f¢hich arece in the relativistic theory. For the effects which
the Dirac Green’s function expansion associated wifhare ~ are linear in spin-orbit couplingj.e., of order 1¢%), such as
given in Appendix A. the anomalqus Hall effect, and the Kerr and Faraday
One advantage of the expressi@®) is that we can di- magat)ato-ophcal effects, one needs to galgulatg all tgrms up
rectly identify and calculate the terms which gives rise toto G™. For the effects that are quadratic in spin-orbit cou-

. . 4 -
particular effect according to the order of this effect with.1/ pling (i.e., of order 1¢%), such as the AMR or the magnetic

Consider for example the magnetic anisotropies. In the Cas%lrefrlngence, one needs all terms upG8. Note that the

; o i ' usual(i.e., nonrelativisti¢ conductivity is obtained from the
of a system with uniaxial anisotropy, the anisotropy energy, . .o up t0G @
is quadratic in the spin-orbit coupling,, (i.e., of order '

1/c*). As the anisotropy energy is linear with respect to the 1. WEAK-RELATIVISTIC LIMIT

Green’s function, we have to consider the te@f"). For . o

cubic anisotropy, the anisotropy energy is of oralér (i.e., A. Effective Hamiltonian

of order 1t8), then we have to consider the te®®. For We turn now our attention to the effective Hamiltonian in

galvanomagnetic and magneto-optical effects, one needs the weak-relativistic limit. Different methods have been pro-

094434-3



A. CREPIEUX AND P. BRUNO PHYSICAL REVIEW B64 094434

posed to obtain it(i) the direct elimination of the lower 9.(2) 0
components of the wave functidf; (i) the Foldy- MlG(Z)M=(

Wouthuysen transformation which requires a succession of 0 9-(2)
canonical transformatiofs and (iii) the expansion of the By means of this transformation, we have achieved a decou-
Dirac resolvent around its nonrelativistic limift?’A detailed  pling between the particles and the antiparticules: the (2
comparison between these methods is beyond the purpose gf2) matrix g, describes the particles whereas thex@)

this paper(we refer to, e.g., Ref. 23 and references therein matrix g_ describes the antiparticles. We get
As we have the explicit expression of the Dirac Green’s

. (21

. . . 2 2
function in term of (2<2) matrices, we follow the last = (o-m)° ~ (o)
method but instead of using projection operators as it is done 9+(2)=G(2)+ 8m2c2 G(2)+G(2) 8m32c2
in Ref. 18, we extract the effective Hamiltonian from a block
diagonalization and a Dyson-type expansion of the Dirac o o T

Green’s function. —6(2) 5527 V) 5 6(2), (22)
A block diagonalization of the Dirac Green’s function al-
lows to cancels the terms which couple the upper and lowe®Nd
components and then to extract the effective Hamiltonian.
Let us start with the nonrelativistic limitc(—o) which is
obtained in a transparent manner. Indeed, in this limit, only
the upper left matrix element d&=G( is different from . . .
zero [see Eq.(16) for HA or Eq. (A6) for HB]. Then the From no’\fv, we re~st~rlct our ftuijy to the particles. Using the
separation between particles and antiparticles is naturalijelationsGz=1+GH”"=1+H"G, we can transform the last
made: the Green’s function which describes the particles i€rm in Eq.(22) and writeg, as a first-order perturbation

directly given byG and the effective Hamiltonian isiA  expansionG+GH{G where

(respectivelyH®). In the general cas@rbitrary value of), 4

the decoupling of particles and antiparticles can be exactly A _ (o m) +

made only for free electrons. For particles in a potential, like © 8m3c?  4mc?
in our case, an expansion in powers of has to be per- )
formed which means a restriction to the weak-relativistic . (o-m) (24)
limit. Indeed, the block diagonalization of the Green'’s func- 8mc?

tion is only possible if we cut the expansigh5) [respec- _ ) L _
tively, Eq. (A3)]. Such limitation is a common characteristic This expression corresponds to the relat|V|sLt|c corrections of
for all methods’ Below, we present the calculation starting order 1¢2 to the nonrelativistic Hamiltoniami”. Thus the
from H” whereas the calculation starting frar is done in  effective Hamiltonian, i.e., Pauli Hamiltonian, K= HA
Appendix B. Since we restrict our calculations to the lowest+ ch_ This result is exactly similar to that given in the
order relativistic corrections to the Hamiltonian, we have tojiterature in the case of a single-particle Dirac equatisee,

cut the expansiolil5) of the Green’s function after the sec- e g., Refs. 18 and 24In order to get a more familiar expres-

1
9—(2)—m- (23

(o m)?
(o-wm)V(o m) — Sc?

ond order in 1¢: sion ofH?:. , we have to perform some transformations which
are detailed in Appendix B. In the case of a uniform effective
G(2) magnetic field and neglecting orbital magneti$1hﬁc reduces
to [see Eq.(B6) in Appendix B]
G2)-6020 222 L T 8(z) G —Z
2mc 2mc 2mc A p* #2 %
o7 1 “ 8m3c? 8m3c? am2c? ( )
5 G(2) Q)
MB
(19 P p*(o-Begp)- (25

The block diagonalization d& corresponds to the change of We obtain the usual relativistic correctiofrelativistic mass
basisM “*GM where the (4 4) unitary matrixM is given  correction, Darwin term, and spin-orbit couplinglus an
by additional contribution due to the presence of the exchange
coupling. For a nonuniform effective magnetic field, which is
o T the case in realistic problems, further relativistic corrections
()2 12 " 2me are obtainedsee Eq.(B4)].
1+ ) . (20 Similar calculations, presented in Appendix C, have been
4m?c? o done starting fronH® by performing a block diagonalization
2mc of the Dirac Green'’s function calculated in Appendix A. We
limit the comparison of the relativistic correctioit, and
and leads to the block diagonal Green’s function HE obtained in the two descriptions to the case of a uniform

M:
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effective magnetic field. Comparing Eq25) and (C7), we p2p

observe two differences: one in the spin-orbit coupling be- vA=— T a5l 5P(0 Bery).
cause the nonrelativistic velocity is equal tos/m in the 2mc? - 4mec (32
first description whereas it is equal @m in the second

description; and an other one in the relativistic COITectionsryg fist term is the contribution which comes from the rela-
Hix. to the exchange coupling, given by the last term in EQSy;istic mass correction. The second term, the so-called

(25) and(C7), respectively. Actually, from Eq25) we have  5,malous velocity, results from the spin-orbit coupling and
can play an important role, for example, it leads to the side-

HA = B p?(o- Bqys) (26) jump mechanism in the anomalous Hall effect. The last term
¢ om2c? efth is due to the presence of the exchange coupling and has no
specific name. Its symmetry is also different in comparison
whereas from Eq(C7) we have to the relativistic corrections to the velocity operator ob-

tained starting fronH® [see Eq(D2) in Appendix D).

MB
Hpe=———(0-P)(P-Bery). 27)
2me-c IV. DISCUSSION

What is problematic is thatt/;, and H. couple the spin This study gives some clarification concerning the as-
and momentum in a quite different manner. Comments andumptions made when one replaces the Hamiltorl&rby
consequences of this difference are presented in Sec. IV. the HamiltonianH®. Even if the consequences of such ap-
proximation are not fully known, as Kier justly notices?
B. Effective velocity operator it was generally believed that the transformation freifi to
H® neglects only orbital magnetism effects. However, the
calculations of the weak-relativistic limits di* and H®
made in Sec. Il reveal an additional difference which corre-
sponds to a different symmetry of the relativistic corrections
(28)  to the exchange coupling: wheres¥, . [see Eq.(26)] is
isotropic with respect to the direction of the momentum,
wherer is the position operator. When we insert the expresH®, . [see Eq.(27)] is anisotropic because its amplitude de-
sion of the Hamiltoniangi” or HB, we get the simple form pends, through the scalar produpt Bs), on the angle be-
tween the directions of the momentum and the effective
0 co magnetic field. Thus the use &2 can lead to anisotropic
co O (29 effects, such as the magnetocrystalline anisotropy or the
AMR, which differ from those obtained from the exact
The effective velocity operator can be obtained from @2§) Kohn-Sham-Dirac Hamiltoniaki”.
by the change of basis! “*vM but in order to get the cor- Let us first consider the magnetocrystalline anisotropy of
rections of order 1 to the velocity, it would be necessary a uniaxial systente.g., a material with an hexagonal lattice,
to expandM up to the order B* which is cumbersome. It or an ultrathin film. If we start fromH”, the magnetic an-
can also be obtained fronhﬂlg\ff using isotropy arises only as a second-order perturbation due to the
spin-orbithoupIing, so that it is of ordercf/. In contrast, if
A 1 A 1 - A~ A we useH", it is easy to see that the relativistic correction of
VEff:E[r’Heff]:E[r’HA]+E[r’ch]:VA+V'°' the exchange interactiomd® ., gives rise to an additional
(300  contribution to the magnetocrystalline anisotropy, already in
~ the first order of perturbation, i.e., of orderci/ which is
wherev” is the nonrelativistic velocity anvzifC the relativistic unphysical.
corrections of order t7 to the velocity. From the expression Although the details are somewhat more complicated, a
of HA, we getv®=a/m and from Eq.(B4) where diamag- similar result is obtained when considering the AMR of a

To complete this study, we want to comment briefly on
the velocity operator which is by definition

T A
v=r[rHl= o (rH- r)—a—p,

V=Ca=

netic terms are neglected, we get cubic system: starting fro”, the AMR arises as a second-
order perturbation due to the spin-orbit coupling, i.e., it is of
N pZp h order 1£%, whereas starting fron®, an additional AMR
Vie="— omic2 t— amic ("'XVV)+ mec z[p( Befr) term of order 1¢? arises as a first-order perturbation due to
HTBXC
In the limit of c—, these spurious terms of ordercd/
+ (o Betr)p]+ 3 2[p2A+Ap +p(p-A+A-p) dominate over the correct terms of ordec*/which is of
4mc course unacceptable. Aslfﬂb initio calculations of magne-
+(p-A+A-p)pl. (31) tocrystalline anisotropy~* starting for the Dirac equation

rely on the approximatior{5), their validity can be ques-
In the case of a uniform effective magnetic field and in ab-tioneda priori. Let us make a simple estimate of the orders
sence of orbital magnetism, it reduces to of magnitude for the physical value of Starting fromH?*,

094434-5
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For a nonuniform effective magnetic field, additional rela-
tivistic corrections are obtainesee Eqs.(B4] and (C6)).

The qualitative importance of these corrections remains to be
investigated.

To conclude, we want to underline two aspects which rep-
resent the important results of this work. On the one hand,
we have derived a convenient form of the Dirac Green’s
function which is valid for any value af and has the advan-
tage to be express in terms of X2) matrices, in particular
, , , , , the nonrelativistic Green’s function. This is a quite general
10" 10°  10° 10 10" 10% form which can be used to treat different problems. We have

c(ms”) applied it as an alternative way to separate particles from
antiparticles in order to extract the effective Hamiltonian and
effective velocity in the weak-relativistic limit. On the other
hand, we have performed a detailed comparison in the weak-
relativistic limit between the Kohn-Sham-Dirac equation and
its approximate form containing the exchange coupling. This
study has revealed a difference of symmetry in the relativis-
tic corrections to the exchange coupling which leads to arti-

10*

Magnetocrystalline anisotropy (eV)
3

FIG. 1. This figure shows the typical variation of the magneto-
crystalline anisotropy of a uniaxial ferromagnet as a functioe. of
The physical value of is indicated by the vertical line. The solid
curve is the correct valug€” obtained fromH”, whereas the dashed
line represents the spurious contributigf obtained fromH8&.

the magnetocrystalline anisotropy per atorif is ficial anisotropic effects. A qualitative estimation has shown
that, in the case of transition metals, this difference is not
N1 significant.
KA~ =2~ = (33
W 4

APPENDIX A: DIRAC GREEN’S FUNCTION IN
where g, is the spin-orbit constant and/ the bandwidth. PRESENCE OF AN EXCHANGE COUPLING
Starting fromH®, on the other hand, it is quite easy to cal-

culate the magnetocrystalline anisotropy dugfy, , In this appendix, we summarize the derivation of the

Dirac Green’s function starting from® given by Eq.(5). It
follows the same steps as starting fréth but involves dif-
—, (34) ferent matrices and leads to a different expression of the final
2mc? Dirac Green’s function. To simplify the notations, we intro-

duce® = — ug(o-Bgs), then
For a transition-metal ferromagnet, by taking typical values V+0 c(o-p)
Aso=~0.1 eV andW~5 eV, one obtaink”~2x10"3 eV. HB= )
Taking er~10 eV, A.,=2 eV, andmc®~500 keV, we c(o-p) V-2mc*-0
obtainK®~2x10"° eV. Therefore, in spite of the fact that The Dirac Green's functio(z)=(z—H®) ! can then be
KB>KA in the limit c—, we find thatK B<K” for the the  \yritten as
physical valuec~3x 10 ms . This result is visualized in
Fig. 1. Then, the quantitative results of first-principles calcu- . -V- -1 .
lations of the magnetocrystalline anisotropy based on the ap- G(2)=|1+A" (2 0 7-V+0 A" N(2).
proximate Kohn-Sham-Dirac Hamiltonia#® should not be (A2)
perturbed in a significant manner by the spurious contribu-
tion of order 1¢2. In spite of this fortunate circumstance, it A~ iS given by Eq.(10) where we replacer by p and
would be desirable to develop a more satisfactory theoreticalefine Go(z)=(z— p?/2m) 1. We perform the direct inver-
approach which is free from unphysical spurious contribu-sion of the matrices which appear in E42). It leads to the

KBN lc-:FAEX

whereeg is the Fermi level and\ ., the exchange splitting.

(A1)

tions. final expression:
~ ~ P TP ~ _op__,
G(2)=G(2) 5, (z=V+0)D(2) 5~ G(2)  G(2)5-Q (2)D(2)Q(2)
G(2)= b ) , (A3)
D(2) 5 G(2) S—5D(Q@

whereG is the (2x2) nonrelativistic Green’s function associated with the<@) nonrelativistic HamiltoniarH 8= p?/2m
+V+0, and the operator® andQ are given by

094434-6
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-1

D(2)-| 1+ Q) Tt (A%)
2)= ) ——|
2m¢c?
(0-p)G(2)(0p)
Q(z)=1+ o . (A5)
A semirelativistic expansio(z)=2_,G"(z) can also be given. The successive terms are
G(z) ©
GO(z)= : A6
(2) ( 0 o (A6)
k
~ _op (z=V+0)
0 —
G(Z)ch o (2)
G 1)(z)= ' (A7)
(z-V+0)\“op o
Q(2) P 2mc°(z)
k
~ _op (z—=V+0) op
—B(2) —(z— - 0
G(Z)ch(z V+0) —Q(2) 2 2mc°(z)
G2+ (7) = K , (A8)
0 1 )(z—V+ B) Q2)
— - z
2m¢c 2mc
|
for k=0. p* h? fi
HA=— V+ o (VVX )
3A2 2.2 2.2
APPENDIX B: EFFECTIVE HAMILTONIAN IN 8m-c 8m-e amce
PRESENCE OF A POTENTIAL VECTOR s
~ + [p?(0Befy) + (0 Bes) P°]
Transformations oH” and H%. allow to get a more fa- 4m?2c? P eff erP
miliar expression of the effective Hamiltoniad%;;. Ne- 5 5
glecting diamagnetic terms, we have P~ . . P
ez | m (PATAPIF(p-A+A-p) T
2
HA:(U' ™ +V
2m +(A-p=p-AV+V(p-A=A-p) |, (B4)
P’ e
= om TV #e(0Ber) = 5 _(p-A+A-p), (BL)  where we have used the following identities:
where we have used the identities (o-mV(o-m=aV-a+io- (aVXm),
(Uﬂ)(ﬂﬂ):ﬂﬂ+|0(ﬂx77), 2pr:p2V+Vp2+ﬁ2AV, (BS)

pXA+AXp:_iﬁBeff. (BZ)
For a uniform effective fieldH” reduces to
~. p?
HA:%ﬁLV_MB[(O"F L) - Bettl, (B3)

whereL =rXp is the orbital momentum. In absence of or-

bital magnetism, this last expression is identicaH®. We
turn now our attention to the relativistic correctiohy .
After transformation of Eq(24) and neglecting the diamag-
netic terms, we can rewritd”. as

and replaced the momentum opergtaas well as the opera-
tor p2, where they act only on the potential, respectively by
the gradientV = —p/i# and by the Laplacian = — p?/#42.

In the case of a uniform effective magnetic fieitf;. reduces

to

A P’ e h (VVX )
= — - TT
" 8m3c?2 8m2c? 4m?2c?
B
+ PR pA(o+L)-Begfl. (B6)
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The hermiticity of Eq.(B4) is manifest and the hermiticity of E¢B6) is assured by the fact thaf andB,¢; commute in the

case of a uniform effective magnetic field.

APPENDIX C: EFFECTIVE HAMILTONIAN IN PRESENCE OF AN EXCHANGE COUPLING

In this appendix, we summarize the derivation of the effective Hamiltonian starting from the Dirac Green'’s fA8jion

We cut the expansion after the second order with ftien

- - op op-
G(Z)—G(Z)R(Z—V‘f‘@)mG(Z)

G(z) =~ 0-pé
2mc
The block diagonalizatioi ~*GM is obtained with
o-p
p2 —-1/2 1 - ZmC
M=| 1+ , (C2
4m? op 1
2mc
and leads to
p2 2
9+(2)= G(Z)+ G(Z)+G(Z) 202
—G(z) (z V+G)) (z), (C3
which can be written a&+GHE.G where
. p“ 1
P’ P
- V+0)—(V+0 . C4
8m2c2( )—( )szc2 (C4

In order to get a more usual expressionHff., we made
some transformations of E¢C4) using identitiegB5) where
we have replacedr by p and the relation

(0-p)(0-Betr)(0-p)=—p(0-Beir) - p+7(VXBer) - p

+(0-p)(Bets-p) + (P Betr) (- ).
(CH

Finally, we get

- o-p
G(Z)ch

(CD

(2) —Q(Z)

2mc?

4 ﬁ2

Hrcz_m+8m2 2A[V ,LLB(O' Beff)]

h hu
4m c?

(@ P B P+ (p-Ber) (P,

(C6)

In the case of a uniform effective magnetic field, it reduces to

HE Pt + e AV+ h (VVXDp)
= — o
" 8m3c? 8m3c? 4m?c? P

3P (Berrp). (€7

The hermiticity of Eqs.(C4) and (C6) is manifest and the
hermiticity of Eq.(C7) is assured by the fact thptand B,
commute in the case of a uniform effective magnetic field.

APPENDIX D: EFFECTIVE VELOCITY OPERATOR IN
PRESENCE OF AN EXCHANGE COUPLING

In this appendix, we summarize the derivation of the ef-
fective velocity starting fromHE. From the expression of

HB—pZ/2m+V+®, we getvB=p/m and from the expres-
sion (C6) of HE., we get

s_ PP

hu
—2m302+ amic (0'>< VV)+

(VXBeff)

MB
+ ———[0(Bet-p) +(P-Betr) 0+ (07 p) Bess
4m-c

+Beti(o-p)]. (D1)
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This expression differs from the result obtained by Kietft p2p
al.!® on two points: they get a wrong coefficiefa factor 2 Ve =— —— 5t 55 (eXVV)
missing for the contribution of the relativistic mass correc- 2m°c®  4m°c

tion and they obtain a contribution from the Darwin term

which should not appear because the commufatakV] is M

gqual to zero. In the case of a uniform effective magnetic + T[U(Be”.p)JrBeff(g. p)]. (D2)
field, Eq.(D1) reduces to c
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