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Theory of the anomalous Hall effect from the Kubo formula and the Dirac equation
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A model to treat the anomalous Hall effect is developed. Based on the Kubo formalism and on the Dirac
equation, this model allows the simultaneous calculation of the skew-scattering and side-jump contributions to
the anomalous Hall conductivity. The continuity and the consistency with the weak-relativistic limit described
by the Pauli Hamiltonian is shown. For both approaches, Dirac and Pauli, the Feynman diagrams, which lead
to the skew-scattering and the side-jump contributions, are underlined. In order to illustrate this method, we
apply it to a particular case: a ferromagnetic bulk compound in the limit of weak-scattering and free-electrons
approximation. Explicit expressions for the anomalous Hall conductivity for both skew-scattering and side-
jump mechanisms are obtained. Within this model, the recently predicted ‘‘spin Hall effect’’ appears naturally.

DOI: 10.1103/PhysRevB.64.014416 PACS number~s!: 72.15.Gd, 72.25.Ba, 72.10.Bg
to
s
lle

fi-

-
rb
n

ti
i

ith
g
ll
u

c

lo
he
e

vio
in

s

e
ly

e
e
of
h

e
w-
y

in
y a
e,
u-
pic
the
ces-
lec-
pi-
y
g.
ace-
g
ha-

the
he

ag-
to a
rre-

t
cket
I. INTRODUCTION

The Hall resistivity of magnetic materials, in addition
the normal part proportional to the magnetic field, contain
supplementary part proportional to the magnetization, ca
the anomalous Hall resistivity

rH5R0H1RSM , ~1!

whereR0 andRS are the normal and anomalous Hall coef
cients, respectively,H the magnetic field, andM the magne-
tization. While the normal Hall effect results from the Lo
renz force, the anomalous Hall effect is due to the spin-o
coupling in the presence of spin polarization. Experime
tally, the normal and anomalous parts can be extracted
measuring the Hall resistivity as a function of the magne
field. At high magnetic field, when the magnetic saturation
reached, we get a linear variation of the Hall resistivity w
a slope related toR0 and an extrapolated value at zero ma
netic field related toRS . The normal and anomalous Ha
coefficients have been determined for a large number of b
alloys. These studies1–5 reveal that the sign ofRS can change
according to the alloy composition and thatuRSM u is gener-
ally larger thanuR0Hu for typical values of the magneti
field.

For different reasons, renewed attention to the anoma
Hall effect is observed quite recently. It is not only due to t
increasing interest in spin-dependent transport phenom
but also because of some particular and interesting beha
of the anomalous Hall resistivity obtained experimentally
granular alloys,6 in magnetic films,7 and multilayers.8 In ad-
dition, the anomalous Hall effect is increasingly used a
measurement tool to detect, for example, magnetization,9 dy-
namics of magnetic domains,10 or perpendicular
anisotropy.11 In addition, a new effect closely related to th
anomalous Hall effect, the ‘‘spin Hall effect,’’ has recent
been predicted.12

In the 1960’s, a number of theoretical works13–16 at-
tempted to elucidate the physical mechanisms responsibl
the anomalous Hall effect and to calculate an explicit expr
sion for the anomalous Hall resistivity. A series
controversies17–19 arose from those pioneering works whic
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were solved through detailed calculations20 and
comparisons.21 It is now accepted22 that two mechanisms ar
responsible for the anomalous Hall effect: the ske
scattering proposed by Smit14 and the side-jump proposed b
Berger.16

An illustrative picture of these mechanisms is given
Fig. 1. Consider an incident plane wave characterized b
wave vectork which is scattered by a central potential du
for example, to impurity. In the presence of spin-orbit co
pling, the amplitude of the wave packet becomes anisotro
in the sense that it depends of the relative directions of
scattered and incident waves and of the spin. After a suc
sion of scattering events, the average trajectory of the e
tron is deflected by a spin-dependent angle, which is ty
cally of order 1022 rad. This first mechanism, depicted b
diagram ~a! in Fig. 1, corresponds to the skew-scatterin
The second mechanism corresponds to a lateral displ
ment,d'10211 m, of the center of the wave-packet durin
the scattering, which is also spin dependent. This mec
nism, depicted by diagram~b! in Fig. 1, corresponds to the
side jump. In both cases, due to the spin-orbit coupling,
effect is asymmetrical in respect to the spin state. T
spin-up and spin-down currents are then different. In m
netic materials, this leads to a nonzero spin current and
transverse component in the charge current, which co
sponds to the anomalous Hall effect.

FIG. 1. Schematic picture of the skew-scattering~a! and side-
jump ~b! mechanisms from a quantum point of view (( corre-
sponds to spin up and̂ to spin down!. The bold curves represen
the anisotropic enhancement of the amplitude of the wave-pa
due to spin-orbit coupling.
©2001 The American Physical Society16-1
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A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 014416
The skew scattering and the side-jump mechanisms
different contributions to the anomalous Hall resistivity. F
bulk material, it has been shown that, in certain limits, t
skew-scattering contribution is simply proportional to t
resistivity14,15 while the side-jump contribution is propor
tional to the square of the resistivity.16 Then, we should have
the simple expression

r̃H5 r̃yx5ar̃xx1br̃xx
2 , ~2!

which implies that the relative importance of these two co
tributions depends both on the temperature and on the im
rity concentration. However, we show in this paper th
even if the relation~2! remains correct, the skew-scatterin
mechanism contributes also to the quadratic term in the c
of impurity scattering. Such behavior has already be
shown by Kondorskiiet al.23

The traditional way to calculate the anomalous Hall res
tivity is to include the contribution of spin-orbit coupling i
the transition probability~it leads to the skew-scattering pro
vided one goes beyond the Born approximation! and in the
velocity ~it leads to the so-called anomalous velocity whi
gives the side jump!. While the skew scattering can be o
tained in a classical approach it is claimed that the side ju
is a pure quantum effect. We shall discuss this point in
Sec. II of this paper. Most of the calculations of the anom
lous Hall resistivity are based on the Boltzmann equation
used severe approximations, in particular concerning
side-jump contribution. Some calculations23 are based on the
Kubo formalism, but surprisingly it is claimed that the sid
jump contribution vanishes, and only the skew-scatter
contribution is calculated.

Although the anomalous Hall effect is an old phenome
which has motivated a lot of experimental and theoreti
studies, a unified model, able to calculate the skew-scatte
and side-jump contributions on the same footing, was s
missing. In this paper, we propose such a model. It is ba
on the Kubo formalism and has the peculiarity to be bu
from the Dirac equation. The justification for such an a
proach is given in Sec. III where we discuss in detail tw
different approaches for solving the anomalous Hall effe
i.e., based on Dirac and Pauli equations, and study the
sistency in the weak-relativistic limit of the expressions
the conductivity tensors obtained in these two approache
Sec. IV, we calculate the anomalous Hall conductivity o
disordered ferromagnetic bulk compound. The results
discussed in Sec. V.

II. COMMENTS ON THE PHYSICAL NATURE OF
THE SIDE-JUMP MECHANISM

It is often believed that the side-jump is a pure quant
effect and has no classical equivalent.22 The usual descrip-
tion of the side jump is then based on a quantum picture@see
Fig. 1~b!# of a plane-wave transformed by scattering in t
presence of spin-orbit coupling into a spherical wave wh
center is shifted in a lateral direction~perpendicular to the
momentum and to the spin!. The sign of the displacement i
opposite for spin up (s51) and spin down (s521). A
simple calculation in terms of phase-shift allows to det
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mine this displacement. We start from the Pauli Hamilton

H5
p2

2m
2mB~s•Beff!1W5H01W, ~3!

wheres is the Pauli matrix,Beff the effective magnetic field
due to exchange-correlation energy, andW the total potential
including the spin-orbit coupling

W5V1
\

4m2c2
~s3“V!•p. ~4!

The state of the systemuCks& after scattering is given in the
Born approximation by the Lippmann-Schwinger equ
tion uCks&5uk,s&1(k8s8uk8,s8&G0(k8,s8,«k

s)^k8,s8uWuk,s&,
where«k

s and G0 are, respectively, the eigenvalues and t
Green’s function associated withH0. The matrix elements of
the potential are

^k8,s8uWuk,s&5Ṽkk8S dss81
i\2

4m2c2
~ss8s3k8!•kD , ~5!

whereṼkk8 is the Fourier transform ofV. As the spin-orbit
term is imaginary, it will influence the phase of the spheric
wave. Thus, for small spin-orbit coupling, the wave functi
Cks(r )5^r uCks& which describes the wave after scatteri
can be expressed as

Cks~r !}ei r•k1 (
k8s8

dss8G0~k8s8,«k
s!Ṽkk8e

i rs8•k8, ~6!

where we have assumed that the effective magnetic fiel
along thez direction. The center of the wave packet aft
scattering is given by

r s8[r1
\2

4m2c2
~sss3k!, ~7!

which is clearly spin dependent and means that the shif
the center of the wave packet is different for spin up and s
down. The lateral displacement, defined asd s[r s82r , is
then equal to

d s5
l2

4\
~sss3p!, ~8!

where we have introduced the lengthl which corresponds to
the Compton wave length|c5\/mc in the case of free elec
trons. In real materials, Berger16 has shown that the spin
orbit coupling ~i.e., l2) is renormalized by band structur
effects by a factora.104. We then obtain a lateral displace
ment d which is independent of disorder and of ord
l2kF/4'a|c

2kF/4'10211 m, in agreement with experimen
tal results. Identical expression ford was originally derived
by Lyo et al.21

In a pure classical picture, such a lateral displacement
be experienced by a particle with spin. As a simple exam
consider an electron with a chargee (e,0) subject to a
uniform electric fieldE5Eux (E.0) in the regionx.0;
there is no field in the regionx,0. An incident electron
6-2
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THEORY OF THE ANOMALOUS HALL EFFECT FROM . . . PHYSICAL REVIEW B64 014416
coming from the regionx,0 is reflected by the field a
sketched in Fig. 2. The velocity is given by

v5
]H

]p
5

p

m
2

e\

4m2c2
~s3E!, ~9!

and therefore contains an anomalous contributionva5
2e\(s3E)/4m2c2 arising from the spin-orbit interaction
In the field region (x.0), where the trajectory is parabolic
the electron~we assume the spin to be along thez axis! has
an anomalous velocity along they axis, va

y5
2e\(szE)/4m2c2. The electron therefore emerges with
shift along y, proportional to its spinsz . For an arbitrary
electric field, the shift due to the anomalous velocity can
easily calculated

d5E
2`

1`

vadt52E
2`

1` e\

4m2c2
~s3E!dt, ~10!

with eEdt5dp, so that

d52
\s

4m2c2
3E

2`

1`

dp5
l2s

4\
3~p2p8!. ~11!

In the above derivation, we have assumed that the spi
perpendicular to the scattering plane. The lateral displa
ment that we obtain is consistent with the one obtained in
quantum picture. Indeed, the parallel can be simply done
replacing in this classical calculation the momentum by
momentum operator and by making the angular average
the final momentump8: thus Eq.~11! coincides with Eq.~8!.

III. COMPARISON OF THE DIRAC
AND PAULI APPROACHES

Generally, the calculations of the anomalous Hall cond
tivity are based on the Pauli Hamiltonian. However, in o
modelization, i.e., within the framework of the Kubo forma
ism, it appears to be simpler to adopt a relativistic appro
based on the Dirac equation. To justify that, let us first
member the derivation of the skew scattering and the s
jump contributions in the Pauli approach. In presence of
exchange coupling, the Pauli Hamiltonian isH5H̃1Hrc

whereH̃ is the nonrelativistic Hamiltonian

FIG. 2. Classical picture of the side-jump mechanism. T
dashed line corresponds to the nonrelativistic trajectory of the
ticle and the solid lines to the relativistic trajectories for spin
(() and spin down (̂ ).
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H̃5
p2

2m
2mB~s•Beff!1V, ~12!

and Hrc the first relativistic corrections to the Hamiltonia
~order 1/c2)

Hrc52
p4

8m3c2
1

\

4m2c2
~s3“V!•p1

\2

8m2c2
DV1H rxc ,

~13!

which contains the relativistic mass correction, the spin-o
coupling, the Darwin term and the relativistic correction
the exchange couplingH rxc . Since the effect we are inter
ested in results from the spin-orbit coupling, we do not ne
to give the explicit expression ofH rxc ~calculations and com-
ments on this term are presented in Ref. 31!. In this work, we
do not consider the contribution of the periodic part of t
spin-orbit coupling~i.e., due to the lattice! but only the ape-
riodic part due to the presence of impurities. In the Pa
approach, the velocity contains two parts. One resulting fr
the nonrelativistic Hamiltonianṽ5p/m and another one re
sulting from the relativistic corrections

vrc52
p2p

2m3c2
1

\

4m2c2
~s3“V!1vrxc , ~14!

wherevrxc is the velocity related toH rxc . In this description,
the spin-orbit contribution to the velocity@second term in Eq.
~14!#, the so-called anomalous velocity, appears in a nat
and transparent way. When we insert this contribution in
Kubo formula, we obtain the side-jump contribution. It
also possible to isolate the spin-orbit contribution in t
Green’s functionG associated withH by making the follow-
ing expansion:

G5G̃1G̃HrcG̃1G̃HrcG̃HrcG̃1•••, ~15!

where G̃ is the nonrelativistic Green’s function associat
with the nonrelativistic HamiltonianH̃. When we insert this
expression in the Kubo formula and proceed beyond
Born approximation, we obtain the skew-scattering contrib
tion. Therefore, in the Pauli approach we get separately
skew-scattering and the side-jump contributions when
Green’s functions and the velocities are respectively c
rected by the spin-orbit coupling.

One important problem in the Pauli approach is to tr
disorder. Actually, the spin-orbit coupling introduces tw
things: off-diagonal disorder~in the tight-binding approxi-
mation! and disorder in the velocity through the anomalo
velocity. The second consequence is critical because
then difficult to calculate precisely the vertex corrections a
accordingly the anomalous Hall resistivity. To avoid the
problems, we have chosen to base our model upon the D
equation instead of the Pauli equation. In presence of
exchange coupling, it has the form24,25

H5c~a•p!1bmc21V2mBb~s•Beff!, ~16!

e
r-
6-3



th
o
-

b
co
rb

m
he
no
re
w
o
e
e

is,
st

b
on
r-
t
w
te
-

ner-

n

ons

o
-
zero

s at

d

irac
-

A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 014416
where the first term is the kinetic energy, the second term
mass energy, the third term is the potential, and the last
the exchange coupling. From Eq.~16!, we see that the veloc
ity is simply

v5
]H

]p
5ca5cS 0 s

s 0 D . ~17!

At this level, there appears an apparent contradiction
tween the two approaches since, in the Dirac approach,
trary to the Pauli approach, we do not have any spin-o
contribution to the velocity~anomalous velocity!. It is there-
fore not cleara priori whether the side-jump mechanis
would emerge from the Dirac approach. Actually, in t
Dirac approach, the spin-orbit coupling, although it does
appear explicitly, is properly taken into account. Therefo
the conductivity should contain simultaneously the ske
scattering and side-jump contributions as well as higher
der contributions in 1/c2. However, the expressions of th
conductivity obtained in the Dirac and Pauli approach
should coincide in the weak-relativistic limit. To check th
we have calculated, in a formal manner, the weak-relativi
limit up to order 1/c2 of the conductivity obtained from the
Dirac equation and compared it with the conductivity o
tained from the Pauli equation. The determination of the c
ductivity tensor is performed in the Kubo formalism. In ce
tain limits, the conductivity can be expressed as a produc
operators, namely, Green’s functions and velocities. Ho
ever, the formulations proposed in the literature are of
confused or even wrong26–28 concerning the off-diagonal el
B
e

p-
o

x-

ic
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ements of the conductivity tensor due to an abusive ge
alization of the Kubo-Greenwood formula.29 In order to
clarify the situation, we present in Appendix A the derivatio
of the conductivity tensor from the original Kubo formula35

and summarize the different stages and approximati
which lead first to the Bastin formula37 and finally to the
Streda formula.38 We show that the latter is a sum of tw
termss̃ i j

I and s̃ i j
I I , respectively, given, in the limits of inde

pendent electrons approximation, zero temperature and
frequency, by Eqs.~A14! and ~A15!:

s̃ i j 5s̃ i j
I 1s̃ i j

I I ,

s̃ i j
I [

e2\

4pV
Tr^v i~G12G2!v jG

22v iG
1v j~G12G2!&c ,

s̃ i j
I I [2

e2

4ipV
Tr^~G12G2!~r iv j2r jv i !&c , ~18!

wherei and j are the direction indices,V the volume of the
sample,̂ •••&c denotes the configurational average, andG1

andG2 are the retarded and advanced Green’s function
the Fermi levelG65G(«F6 i0)5(«F6 i02H)21. The pro-
cedure that we follow is first to insert the Dirac velocity an
Dirac Green’s function in Eq.~18!, next to perform a weak-
relativistic expansion ofs̃ i j and finally to compare it with
the expression obtained in the Pauli approach. The D
velocity is given by Eq.~17! and for the Dirac Green’s func
tion, we have used an exact expression derived from Eq.~16!
and given in Ref. 31 by Eq.~A3!
G65S G̃62G̃6
s•p

2mc
@«F2V2mB~s•Beff!#D

6
s•p

2mc
G̃6 G̃6

s•p

2mc
~Q6!21D6Q6

D6
s•p

2mc
G̃6

1

2mc2
D6Q6 D , ~19!
m

ld.

con-
n

where the operatorsD6 andQ6 are given by

D65S 11Q6
@«F2V2mB~s•Beff!#

2mc2 D 21

, ~20!

Q6511
~s•p!G̃6~s•p!

2m
. ~21!

The details of the calculations are presented in Appendix
The determination of the conductivity is done up to ord
1/c2. It is shown that the identification with the Pauli a
proach is successful only when one considers the total c
ductivity s̃ i j 5s̃ i j

I 1s̃ i j
I I . Indeed, when we compare the e

pression ofs̃ i j
I obtained in the Dirac approach@see Eq.~B5!

for order 1/c0 and Eq.~B9! for order 1/c2# to the one ob-
tained in Pauli approach, we obtained different terms wh
.
r

n-

h

are exactly canceled by terms ins̃ i j
I I @see Eq.~B6! for order

1/c0 and Eq.~B10! for order 1/c2#. The nonrelativistic limit
of the total conductivity obtained in the Dirac approach is

s̃ i j
(0)5

e2\

4pV
TrK pi

m
~G̃12G̃2!

pj

m
G̃22

pi

m
G̃1

pj

m
~G̃12G̃2!L

c

2
e2

4ipV
TrK ~G̃12G̃2!S r i

pj

m
2r j

pi

mD L
c

, ~22!

which corresponds exactly to the conductivity obtained fro
Eq. ~18! when one inserts the nonrelativistic velocityṽ
5p/m and the nonrelativistic Green’s functionG̃. The last
term in Eq.~22! is zero in absence of external magnetic fie
The fact that a supplementary term ins̃ i j

I (0) is present in the
Dirac approch and not in the Pauli approach has serious
sequences when one neglectss̃ i j

I I (0) because it leads to a
6-4
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THEORY OF THE ANOMALOUS HALL EFFECT FROM . . . PHYSICAL REVIEW B64 014416
additional contribution at order 1/c0 to the off-diagonal con-
ductivity which does not disappear in the nonrelativistic lim
and thus would give unphysical results. At order 1/c2, the
total conductivity obtained in the Dirac approach is

s̃ i j
(2)5s̃ i j

SS1s̃ i j
SJ1s̃ i j

or , ~23!

where s̃ i j
SS contains the terms which lead to the skew sc

tering

s̃ i j
SS5

e2\

4pV
TrK pi

m
~G̃1HrcG̃12G̃2HrcG̃2!

pj

m
G̃2

1
pi

m
~G̃12G̃2!

pj

m
G̃2HrcG̃2

2
pi

m
G̃1HrcG̃1

pj

m
~G̃12G̃2!

2
pi

m
G̃1

pj

m
~G̃1HrcG̃12G̃2HrcG̃2!L

c

, ~24!

s̃ i j
SJ contains the terms which lead to the side jump

s̃ i j
SJ5

e2\

4pV
TrK ~vrc! i~G̃12G̃2!

pj

m
G̃2

2~vrc! i G̃
1

pj

m
~G̃12G̃2!

1
pi

m
~G̃12G̃2!~vrc! j G̃

2

2
pi

m
G̃1~vrc! j~G̃12G̃2!L , ~25!

and s̃ i j
or is equal to

s̃ i j
or52

e2

4ipV
TrK ~G̃12G̃2!@r i~vrc! j2r j~vrc! i #

1~G̃1HrcG̃12G̃2HrcG̃2!S r i

pj

m
2r j

pi

mD L
c

.

~26!

In addition to the skew-scattering and side-jump contrib
tions to the anomalous Hall effect, we identify a new con
bution s̃ i j

or which is related to the orbital momentumL5r
3p. The expression~23! of the conductivity corresponds ex
actly to the one which is obtained from Eq.~18! when one
inserts the first order corrections to the velocityvrc and to the
Green functionG̃HrcG̃ wherevrc andHrc are given, respec
tively, by Eqs.~13! and ~14!. We have then proved in th
weak-relativistic limit~up to order 1/c2) the coincidence of
the conductivity in the two approaches.

In summary, from the Pauli Hamiltonian, we get th
skew-scattering and the side-jump contributions separa
while, from the Dirac Hamiltonian, we get the both cont
butions and also higher order in 1/c2 contributions simulta-
01441
-
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-
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neously. Therefore, in a full relativistic Dirac description,
will be difficult to assess the importance of each contrib
tions. However, this approach has a great advantage ove
Pauli approach: it allows a simpler treatment of the disor
because, in contrast to the Pauli approach where both
velocities and the Green’s functions contain disorder, the
order is only present in the Green’s functions. It is thus p
sible to take one of the velocity operator outside of the c
figurational average and to calculate precisely the ver
corrections to the conductivity. For this reason, the Dir
approach should be more efficient to calculate the anoma
Hall resistivity.

In the next section, we present a direct application of o
model. In order to perform the analytical calculations, w
restrict ourselves to the weak-relativistic limit and to a
proximate calculations of the vertex corrections; then the
sults that we obtain can still be compared to the ones
tained from the Pauli approach.

IV. ANOMALOUS HALL CONDUCTIVITY
OF A FERROMAGNETIC COMPOUND

In this section, we present the calculation of the anom
lous Hall conductivity of a ferromagnetic bulk compoun
submitted to a potential. This calculation is done in bo
Dirac and Pauli approaches in order to show the similari
and the differences between these two approaches. We
sider a system with a cubic symmetry and a magnetiza
along thez axis. Thus, the conductivity tensor has the for

s̃5S s̃xx s̃xy 0

2s̃xy s̃xx 0

0 0 s̃zz

D . ~27!

We are only interested in the relativistic corrections to t
off-diagonal elements which correspond to the anomal
Hall effect. We do not study the relativistic corrections to t
diagonal elements which correspond to the anisotropic m
netoresistance~AMR! and lead to a difference of order 1/c4

betweens̃xx and s̃zz. Thus, in this work, the diagonal ele
ments are calculated at order 1/c0 and by consequence are a
equal, while the off-diagonal elements are calculated at or
1/c2. To get analytical expressions, we have made sev
approximations: free-electron approximation, wea
scattering limit and weak-relativistic limit for the Dirac ap
proach. In Sec. III, we have shown that the conductivity
equal to

s̃ i j 5
e2\

4pV
Tr^v i~G12G2!v jG

22v iG
1v j~G12G2!&c

2
e2

4ipV
Tr^~G12G2!~r iv j2r jv i !&c , ~28!

where the Green’s functionG6 is associated with the tota
Hamiltonian: G65(«F6 i02H)215(«F6 i02H02W)21

whereH0 is the nonperturbed Hamiltonian andW the pertur-
bation~equal to the potentialV in the Dirac approach and to
V1HSO in the Pauli approach whereHSO is the spin-orbit
6-5
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FIG. 3. Illustration of the conductivity with the help of Feynman diagrams. The total conductivity~hatched diagram!, expressed as an
infinite sum of diagrams involving the nondisordered Green’s functionG0 ~thin curve line!, can be rewritten as an infinite sum of diagram
involving the average Green’s functionG ~bold curve line!. The wave lines refer to the velocity and the dashed lines to the potential
fo
ia
ol

l

p
in
ct
n

o
he

h

q

a

f
ed
n
-
th
n
co
dia
d

he
rate
n’s
e

s,

ions
e
er-

of
the

nd
orn

ns.

etic
l.

are
s

coupling!. The explicit form of the potentialV does not enter
in the calculations, thus the results obtained below apply
both impurity scattering and phonon scattering in the ad
batic approximation. We modelize the compound in the f
lowing way: the total volume of the sampleV5L3 is divided
into N cells of volumeV05a3. In each cell, the potentia
takes a constant valueV with a probability distributionP(V)
which is characterized by its moments^Vn&c5*P(V)VndV.
A proper choice of the energy origin yields^V&c50. We
assume that there are no correlations in the value of the
tential in different cells. In this first approach, we neglect
Eq. ~28! the contribution of the terms which involves produ
of two advanced~or retarded! Green’s functions. Such a
approximation is justified in the weak-disorder limit.32 In
Appendix B, we have shown thats̃ i j

I I , calculated in the Dirac
approach, contains two parts, the first one related to the
bital momentum, which is negligible in our model, and t
second one which is exactly compensated by terms ins̃ i j

I .
Then, we do not need to calculate this contribution. T
conductivity reduces to

s̃ i j 5
e2\

2pV
Tr^v iG

1v jG
2&c . ~29!

We introduce first thet matrix T5W1WG0T which allows
one to write the Green’s function asG5G01G0TG0 where
G0 is the nonperturbed Green’s function. Inserting this in E
~29!, we get

s̃ i j 5
e2\

2pV
Tr^v iG0

1v jG0
2&c

1
e2\

2pV
Tr^v iG0

1TG0
1v jG0

2TG0
2&c . ~30!

This equation can be illustrated with the help of Feynm
diagrams as is done in Fig. 3. The conductivitys̃ i j , repre-
sented by the full diagram, is then expressed as a sum o
infinite number of diagrams. Only few of them are depict
in Fig. 3: diagram~a! which corresponds to the first term i
Eq. ~30! and diagrams from~b!–~f! which are some repre
sentative samples of the kind of diagrams which give
second term in Eq.~30!. The main approximation done i
our calculation is to neglect the crossed diagrams which
respond to weak-localization corrections, i.e., we neglect
grams such as~e! and ~f! and we keep only the so-calle
01441
r
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e
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ladder diagrams. Weak-localization corrections to t
anomalous Hall conductivity are discussed in a sepa
paper.33 We introduce the configurational average Gree
function G5^G&c which can be written with the help of th
self-energy S5^WG0W&c1^WG0WG0W&c1¯ since G
5(«F2H02S)21. When we neglect the crossed diagram
Eq. ~30! can be written as

s̃ i j 5
e2\

2pV
Tr^v iG

1v jG
2&c

1
e2\

2pV
Tr^v iG

1T8G1v jG
2T8G2&c , ~31!

with T8 solution of T85W1WGT8. The first term in the
right side hand is the so-called bubble term ([s̃ i j

bubble) and
the second one corresponds to the vertex correct
([s̃ i j

vertex). Within this transformation, the calculation of th
conductivity is then reduced to two distinct problems: det
mination of the average Green’s function~i.e., the self-
energy! and calculation of the vertex corrections. Because
the weak-scattering limit, we keep in the self-energy and
t matrix the lowest sufficient orders

H S5^WG0W&c ,

T85W1WGW.
~32!

In the t matrix, we have to keep the terms up to the seco
order withV because it is necessary to go beyond the B
approximation to get the skew scattering.14 The explicit cal-
culation of Eq.~31! in the approximations~32! for the Dirac
and Pauli approaches is presented in the next two sectio

A. Dirac approach

We assume free electrons in a uniform effective magn
field Beff parallel to thez axis and submitted to a potentia
The nonperturbed part of the Hamiltonian is

H05c~a•p!1~b21!mc22mBbszBeff , ~33!

and the perturbation part is simply the potentialW5V. The
matrix elements of the average Green’s function
^k,suG6uk,s&5(«F2«k

s6 i\/2tk
s)21 where the eigenvalue

«k
s of Eq. ~33! are in the weak-relativistic limit equals to
6-6
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THEORY OF THE ANOMALOUS HALL EFFECT FROM . . . PHYSICAL REVIEW B64 014416
«k
s5

\2k2

2m
2smBBeff1oS 1

c2D , ~34!

for the upper band, and

«k
s522mc21oS 1

c0D , ~35!

for the lower band. Thes index refers to the spin (s51 for
spin up ands521 for spin down!, thek index refers to the
upper band and thek to the lower band. The lifetimetk

s

which appears in the expression of the average Green’s f
tion is given by

\

2tk
s

52Im^k,suS1uk,s&52Im^k,su^VG0
1V&cuk,s&

5pV0Ns~«k
s!^V2&c , ~36!

whereNs is the density of states of spins by unit volume. In
the Dirac approach, the velocityv is simply equal toca.
Because we have chosen to work in the basis where
nonperturbed HamiltonianH0 ~and by consequence th
Green’s functionG0) is diagonal, we have to calculate th
velocity in this basis, we get

v5S u~k!1oS 1

c2D , cs1oS 1

cD
cs1oS 1

cD , o~c0!
D , ~37!

whereu(k) is the (232) matrix

u~k!5
\k

m S 1 0

0 1D . ~38!

We have now all the ingredients to calculate the bubble te
in Eq. ~31!

s̃ i j
bubble5

e2\

2pV (
kss8

^k,suv i uk,s8&^k,s8uG1uk,s8&

3^k,s8uv j uk,s&^k,suG2uk,s&. ~39!

The configurational averagê•••&c has been dropped be
cause in the Dirac approach the velocity is a nondisorde
quantity. At order 1/c0, only the diagonal elements (s5s8,
no spin flip! of the velocity and the particles in the upp
band contribute, then we have
01441
c-

he

m

d

s̃ i j
bubble5

e2\3

2pm2V
(
ks

kikj

~«F2«k
s!21

\2

4~tk
s!2

. ~40!

The dispersion law«k
s given by Eq.~34! is isotropic at order

1/c0. Then, the angular dependence is entirely contained
the factorkikj , which means that only diagonal componen
of the conductivity are different from zero. To order 1/c0, the
vertex corrections to the diagonal components vanish, so
the total conductivitys̃ i i is equal tos̃ i i

bubble. After integration
over k, we get

s̃xx5e2N ↑
l ↑vF

↑

3
1e2N ↓

l ↓vF
↓

3
[s̃xx

↑ 1s̃xx
↓ , ~41!

which corresponds to the Einstein relation with two sp
channels wherel s5vF

s tF
s is the mean-free path,vF

s and Ns

are the velocity and the density of states by unit volume
the Fermi energy for spins, respectively~identical expres-
sions are obtained fors̃yy and s̃zz). The diagram which
gives this contribution is depicted on Fig. 4.

The off-diagonal components of the conductivity ari
only when we take the vertex corrections into account. If
expend thet matrix up to the second order inV, from Eq.
~31!, we get

s̃ i j
vertex5

e2\

2pV
Tr^v iG

1~V1VG1V!G1

3v jG
2~V1VG2V!G2&c . ~42!

We then need the potential in the new basis

V5Ṽ~k82k!S U~k,k8!1oS 1

c4D ,
\~s•k8!

2mc
1oS 1

c3D
\~s•k8!

2mc
1oS 1

c3D , o~c0!
D ,

~43!

whereU(k,k8) is the (232) matrix

FIG. 4. Bubble diagram contributing to the diagonal conduct

ity s̃xx . The signs1/2 refer to the retarded/advanced avera
Green’s functionG6.
6-7



U~k,k8!5S 12
\2@~k82k!212i ~k83k!•ez#

8m2c2

\2@~kx82 iky8!kz82~kx2 iky!kz2 i ~k83k!•~ex2 iey!#

4m2c2

\2@~kx81 iky8!kz82~kx1 iky!kz2 i ~k83k!•~ex1 iey!#
12

\2@~k82k!222i ~k83k!•ez# D ,
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and Ṽ(q)5*dreiq•rV(r )/V is the Fourier transform of the
potential. When we study in detail all the diagrams includ
in Eq. ~42!, we see that only two kind of diagrams34 contrib-
ute to the conductivity at order 1/c2. These diagrams ar
depicted on Figs. 5 and 6~left column!.

The first series of diagrams~see Fig. 5! involves velocities
at order 1/c0, Green’s functions at order 1/c0, which means
that only particles in the upper band contribute, and poten
twice at order 1/c0 and once at order 1/c2 which ensures a
total order of 1/c2 for the conductivity. The diagrams of thi
first series correspond to the skew-scattering mechan
The second series of diagrams~left column in Fig. 6! in-
volves one velocity at order 1/c0 and one at orderc, three
Green’s functions at order 1/c0 and one at order 1/c2, which
means that we have a transition of particles between the
per and lower bands, and potential one time at order 1/c0 and
one time at order 1/c which ensures a total order of 1/c2 for
the conductivity. The diagrams of this second series co
spond to the side-jump mechanism. In the following,
present the explicit calculation of the conductivity due
these two series. Let us start with the skew scattering.
present the calculation of the diagram~a! in Fig. 5, which
gives

s̃xy
(5a)5

e2\

2pV (
kk8k9s

^^k,suvxuk,s& (0)^k,suG1uk,s& (0)

3^k,suVuk8,s& (0)^k8,suG1uk8,s& (0)

3^k8,suVuk9,s& (0)^k9,suG1uk9,s& (0)

3^k9,suvyuk9,s& (0)^k9,suG2uk9,s& (0)

3^k9,suVuk,s& (2)^k,suG2uk,s& (0)&c . ~45!

The number in bracket indicates the order with respect toc
of the matrix elements like in Fig. 5 when the order is d
ferent than zero. We remark that for a total order 1/c2 of the
conductivity, the spin is conserved during the process~no
spin-flip scattering!. We insert in this expression, the matr

FIG. 5. Diagrams contributing to the off-diagonal conductiv

s̃xy through the skew-scattering mechanism in both Pauli and D
approaches. The number in bracket indicates the order with res
to 1/c of the matrix elements of the velocity~wave line!, average
Green’s function~bold curve line!, and potential~dashed line!. It is
omitted in case of zero order with 1/c.
01441
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elements given by Eqs.~38! and ~44! and perform the inte-
gration overk, k8, andk9. The final contribution to the con
ductivity corresponding to the diagram~a! is a complex
quantity. The calculation of the diagram~b! gives the conju-
gated expression, then the total contribution due to the sk
scattering mechanism is a real quantity equal to

s̃xy
SS52

pm2l2

6\2

^V3&c

^V2&c

~N↑V0s̃xx
↑ ~vF

↑ !22N↓V0s̃xx
↓ ~vF

↓ !2!

[s̃xy
SS↑1s̃xy

SS↓ . ~46!

We turn now our attention to the side-jump mechanism. D
gram ~a! of Fig. 6 gives

s̃xy
(6a)5

e2\

2pV (
kk8s

^^k,suvxuk,2s& (21)^k,2suG1uk,2s& (2)

3^k,2suVuk8,s& (1)^k8,suG1uk8,s& (0)

3^k8,suvyuk8,s& (0)^k8,suG2uk8,s& (0)

3^k8,suVuk,s& (0)^k,suG2uk,s& (0)&c . ~47!

In this mechanism, due to the presence of off-diagonal e
ments in the velocity~37! and the potential~43!, a particle of

c
ect

FIG. 6. Diagrams contributing to the off-diagonal conductivi

s̃xy through the side-jump mechanism in Dirac approach~left col-
umn! and Pauli approach~right column!. The number in bracket
indicates the order with respect to 1/c of the matrix elements of the
velocity ~wave line!, average Green’s function~bold curve line!,
and potential~dashed line!.
6-8
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THEORY OF THE ANOMALOUS HALL EFFECT FROM . . . PHYSICAL REVIEW B64 014416
the upper band«k
s experiences a virtual transition in th

lower band«k
2s associated to the opposite spin. We perfo

the integrations overk andk8, add the contributions of Figs
6~a!–6~d! and finally obtained

s̃xy
SJ52e2N ↑

2d↑vF
↑

3
1e2N ↓

2d↓vF
↓

3
[s̃xy

SJ↑1s̃xy
SJ↓ ,

~48!

whereds is the transverse displacement~or side jump! given
by \vF

s /4mc25l2kF
s /4. The expression ofs̃xy for the side

jump is similar to the expression~41! of s̃xx but instead of
the mean-free pathl, we have 2d. In contrast tos̃xy

SS, the
side-jump contribution to the off-diagonal conductivity is i
dependent of disorder.

In the case of a parabolic band, the Einstein relation~41!
reduces to the Drude formula with two spin channels

s̃xx5e2
n↑tF

↑

m
1e2

n↓tF
↓

m
, ~49!

wherens5mNs(vF
s )2/3 is the electron density for spin s. Th

skew-scattering~46! and side-jump~48! contributions yield

s̃xy
SS52

e2l2

2\

pV0^V
3&c

\^V2&c

~n↑
2tF

↑ 2n↓
2tF

↓ ! ~50!

and

s̃xy
SJ52

e2l2

2\
~n↑2n↓!. ~51!

B. Pauli approach

In the Pauli approach, the Hamiltonian given by Eq.~3! is
the sum of a non-perturbed part and a perturbationW given
by Eq. ~4! which contains the potential and the spin-or
coupling. The velocity associated with this Hamiltonian co
sists of a normal part and an anomalous part due to the s
orbit coupling

v5
p

m
1

\

4m2c2
~s3“V!. ~52!

The spin-orbit coupling contribution to the life-time is n
relevant, then the average Green’s function is^k,suG6uk,s&
5(«F2«k

s6 i\/2tk
s)21 wheretk

s is given by Eq.~36!. As a

consequence, the derivation of the diagonal conductivitys̃xx
is similar to the one done in the Dirac approach and
obtain the expression~41!.

The off-diagonal elements of the conductivity are o
tained from the vertex corrections. For the skew scatter
the diagrams which contribute are exactly the same tha
the Dirac approach~see Fig. 5! because the only matrix ele
ments of the potential~44! which contribute in the Dirac
approach correspond precisely to the matrix elements of
potential in the Pauli approach@see Eq.~5!#. The other terms
in Eq. ~44! are Darwin-like terms and do not contribute
the off-diagonal conductivity. Then, in the Pauli approac
01441
-
in-

e

-
g,
in

e

,

the skew-scattering mechanism corresponds to the s
Feynman diagrams and gives the same final expression~46!
as the weak-relativistic limit of the Dirac approach.

Concerning the side jump, the correspondence betw
the two approaches is not so simple. In the Dirac approa
we have seen that a virtual transition occurs from the up
band to the lower band. In the Pauli approach, no suc
transition can take place because there is only one b
However, we have a supplementary part in the velocity,
anomalous velocity which is of order 1/c2 and leads to the
side-jump mechanism. The corresponding diagrams are
picted on the right column of Fig. 6. For each diagram in t
left column~i.e., in the Dirac approach!, we have an equiva-
lent diagram in the right column~i.e., in the Pauli approach!.
The change between the left and right column correspond
a vertex renormalization because the matrix elements of
productvGV in the Dirac approach are equal to the mat
elements ofv in the Pauli approach

^k,suvuk8,s8&5
\k

m
dkk8dss8

1Ṽ~k82k!
i\

4m2c2
sss83~k2k8!.

~53!

Thus, when we calculate, for example, Fig. 6~a8)

s̃xy
6(a8)5

e2\

2pV (
kk8s

^^k,suvxuk8,s& (2)^k8,suG1uk8,s& (0)

3^k8,suvyuk8,s& (0)^k8,suG2uk8,s& (0)

3^k8,suVuk,s& (0)^k,suG2uk,s& (0)&c , ~54!

we obtain the same contribution than from the express
~47! of Fig. 6~a!. The final result, after summation over Fig
6~a8! to 6~d8!, is then identical to Eq.~48!.

V. DISCUSSION

We now briefly discuss the influence of impurity scatte
ing and phonon scattering on the resistivity and on
anomalous Hall resistivity, which are, in the limits̃xy!s̃xx

simply given byr̃xx.1/s̃xx and r̃H52 r̃xy.s̃xy /s̃xx
2 . The

only terms which depend on the scattering in the express
of s̃xy given by Eqs.~46! and~48! and ofs̃xx given by~41!,
are the momentŝV2&c and ^V3&c . Indeed, we have

5
s̃xx}

1

^V2&c

,

s̃xy
SS}

^V3&c

^V2&c
2

,

s̃xy
SJ independent of̂Vn&c .

~55!
6-9
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A. CRÉPIEUX AND P. BRUNO PHYSICAL REVIEW B64 014416
Then, the variations with the moments^V2&c and ^V3&c of
the resistivity and the anomalous Hall resistivity are simi
to r̃xx}^V2&c , r̃xy

SS}^V3&c , and r̃xy
SJ}^V2&c

2 .
To illustrate the dependence with disorder in the case

impurity scattering, we consider a binary alloyAxB12x for
which

^V2&c5x~12x!~«A2«B!2 ~56!

and

^V3&c5x~12x!~122x!~«A2«B!3, ~57!

where«A(B) is the value of the potentialV on siteA(B) and
x is the concentration of sitesA. Keeping the lowest orders in
x ~weak-disorder limit!, we get

H r̃xx}x,

r̃xy
SS}~x23x2!,

r̃xy
SJ}x2,

~58!

which is in agreement with the simple relation given by E
~2! but in contradiction with the common belief that the qu
dratic term would arise only from the side-jump mechanis
In fact, the skew-scattering mechanism, which is respons
for the linear term, gives also an important contribution
the quadratic term, a result that Kondorskiiet al.23 have al-
ready obtained. In addition, our calculations specify all
approximations which founded the relation~2! and show that
it should not be valid in the general case, in particular
high-disordered system, high-relativistic limit, complex ba
structure or in the case of heterogeneous systems, suc
thin films or multilayers.

Something may also be said about phonon scattering.
to the fluctuating sign of the potential generated by phono
the third moment̂ V&c

3 can be expected to be very small a
accordingly, the skew-scattering contribution~46! to the con-
ductivity is negligible.22 We then have

H r̃xx}^V2&c ,

r̃xy
SS.0,

r̃xy
SJ}^V2&c

2

~59!

which yields the simple relationr̃xy}r̃xx
2 , in agreement with

experimental results.30

The Hall angle, which corresponds to the angle betw
the electric field and the charge current, is an import
quantity. For an applied electric field in thex direction and
an effective magnetic field in thez direction, we have
tg(uH)[ j y / j x5s̃yx /s̃xx . The conductivity elementss̃xx

and s̃yx are in a first approximation the sums of contrib
tions due to spins up and down. We can thus define a s
dependent Hall angle

tg~uH
↑(↓)![

j y
↑(↓)

j x
↑(↓)

5
s̃yx

↑(↓)

s̃xx
↑(↓)

. ~60!
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We insert expressions~46! and ~48! of the skew-scattering
and side-jump off-diagonal conductivities as well as expr
sion ~41! of the diagonal conductivity and obtain for spin

uH
s 'sS 2ds

l s
1

pm2l2

6\2

^V3&c

^V2&c

NsV0~vF
s !2D . ~61!

uH
↑ and uH

↓ are not only opposite in sign, they take distin
absolute values due to spin polarization. As a conseque
the spin current (j ↑2 j ↓) has a longitudinal~i.e., along thex
axis! and a transverse~i.e., along they axis! component and
the charge current (j ↑1 j ↓) acquires a transverse compone
which corresponds to the anomalous Hall effect. In a pa
magnetic material, Eq.~61! yields uH

↑ 52uH
↓ and both the

transverse component of the charge current and the long
dinal component of the spin current vanish. However,
transverse component of the spin current remains. It co
sponds precisely to the ‘‘spin Hall effect’’ recentl
proposed.12

In the case of impurity scattering and in the weak-disor
limit, the magnitude of the Hall angle is determined mos
by the skew-scattering contribution. Indeed, in this limit w
have uH

SJ'2d/ l'1023 rad whereas uH
SS'p(122x)(«A

2«B)«F/3mc2W'531022 rad where we have takenl
'200 Å , x'0.2, «A2«B'2 eV, «F'10 eV, the band
width W'5 eV, mc2.500 keV and a band factora'104.
For simplicity, we have dropped the spin index. This order
magnitude is consistent with experimental results.22 When
the disorder increases, the mean-free-pathl decreases signifi-
cantly which means, since the quantityd is disorder indepen-
dent, an increase in the side-jump contribution to the H
angle. However, the skew-scattering contribution to the H
angle increases in the same way. It is thus not possibl
predict in this first approach which contribution is domina
in the high-disorder regime. In the case of phonon scatter
the Hall angle contains mostly the side-jump contributi
uH5uH

SJ'2d/ l which is of order'1022 rad where we have
used d'10211 m and l 5tvF with a relaxation timet
'10215 s andvF'106 m s21.

To summarize, we have, in this article, proposed a mo
based on the Dirac equation and on the Kubo formali
which allows one to calculate on the same footing t
anomalous Hall conductivity due to both skew-scattering a
side-jump mechanisms. The consistency of this appro
with the one based on the Pauli equation has been studie
detail in the weak-relativistic limit. In particular, we hav
shown that in order to calculate the anomalous Hall cond
tivity one has to consider in the Dirac approach the to
conductivity s̃ i j

I 1s̃ i j
I I , otherwise unphysical results are o

tained. Next, we applied our model to treat a disordered
romagnetic bulk compound submitted to a potential in
free electron approximation, weak-scattering and we
relativistic limits. By these means, we have obtained expl
expressions for the anomalous Hall conductivity for bo
skew-scattering and side-jump mechanisms@given by Eqs.
~46! and ~48!#. In addition, we have highlighted the differ
ence concerning the Feynman diagrams describing the s
6-10
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jump mechanism in the Dirac and Pauli approaches and h
shown that it corresponds to different vertex renormali
tions.

APPENDIX A: FROM THE KUBO FORMULA TO
THE STREDA FORMULA

In the linear response approximation, Kubo has sho
that the conductivity tensor is related to a two currents c
relation function35

s̃ i j ~v!5V lim
s→01

E
0

b

dlE
0

1`

dte( i t /\)(2\v1 is)

3Tr^r0Jj~0!Ji~ t1 i\l!&c , ~A1!

where it is assumed that the applied field leads
a time-dependent perturbation of the formH8(t)
5H08exp@ i t /\(2\v1 is)#. V is the volume of the sample
b[1/kBT, r0 is the density matrix in equilibrium in absenc
of perturbation,Ji is the i component of the current densit
operator in the Heisenberg representation, and^•••&c de-
notes the configurational average. Following Luttinger,36 we
obtain in the independent electrons approximation

^nuJi~ t1 i\l!um&5e( i /\)(t1 i\l)(«n2«m)^nuJ̃i um&, ~A2!

where we have usedH5(n«nan
1an and definedJ̃ as the

current density operator in the Schro¨dinger representation
Using the relation Tr@r0am

1anap
1aq#5dmqdnpf («m)@1

2 f («n)# where f («) is the Fermi-Dirac distribution func
tion, we get

s̃ i j ~v!5V lim
s→01

E
0

b

dle2l(«n2«m)

3E
0

1`

dt(
nm

^ f ~«m!~12 f ~«n!!

3e( i t /\)(2\v1 is1«n2«m)^muJ̃ j un&^nuJ̃i um&&c .

~A3!

The integration over l leads to a factor (1
2e2b(«n2«m))/(«n2«m) which can be simplified with
f («m)@12 f («n)# as

12e2b(«n2«m)

«n2«m
f ~«m!@12 f ~«n!#5

f ~«m!2 f ~«n!

«n2«m
.

~A4!

Inserting this in Eq.~A3! and performing the integration ove
t, we obtain
01441
ve
-

n
r-

o

s̃ i j ~v!5 i\V lim
s→01

(
nm

K f ~«m!2 f ~«n!

~«n2«m!~«n2«m2\v1 is!

3^muJ̃ j un&^nuJ̃i um&L
c

. ~A5!

We shall now make some transformations of this express
in order to get the Bastin formula.

We restrict our derivation to zero frequency~from now,
we drop the v variable!. After inserting the identity
*2`

1`d«d(«2H)51 in Eq. ~A5!, we obtain

s̃ i j 5 i\V lim
s→01

E
2`

1`

d«(
nm

K S f ~«!d~«2«m!

~«n2«!~«n2«1 is!

2
f ~«!d~«2«n!

~«2«m!~«2«m1 is! D ^muJ̃ j un&^nuJ̃i um&L
c

.

~A6!

We remark that

lim
s→01

1

~«n2«!~«n2«1 is!
5 lim

s→01

d

d« S 1

«n2«1 isD ;

~A7!

then we have

s̃ i j 52 i\V lim
s→01

E
2`

1`

d« f ~«!

3(
nm

K ^muJ̃ j un&
d

d« S 1

«2«n2 isD ^nuJ̃i um&d~«2«m!

2^muJ̃ j un&d~«2«n!^nuJ̃i um&
d

d« S 1

«2«m1 isD L
c

,

~A8!

which can be expressed as

s̃ i j 5
ie2\

V E
2`

1`

d« f ~«!

3TrK v i

dG1~«!

d«
v jd~«2H !2v id~«2H !v j

dG2~«!

d« L
c

,

~A9!

where we have introduced the Green’s functionG6(«)
5 lims→01(«2H6 is)21 and the velocity through the rela
tion J̃52ev/V. This expression for the conductivity wa
first obtained by Bastinet al.37 but in the particular case of a
6-11
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Schrödinger Hamiltonian and made explicit use of the for
taken by the velocity operator in the Schro¨dinger case. The
present derivation is more general in the sense that it is
dependent of the explicit form of the velocity operator and
therefore valid both for the Schro¨dinger, Pauli, and Dirac
cases. The only restriction is the independent electrons
proximation. This formula, called Bastin formula, is intere
ing because it expresses the conductivity as a produc
velocities and Green’s functions. However, it is still difficu
to calculate because of the integration over the energy«. By
making an integration by parts, a factord f(«)/d« appears
instead of the factorf («) and the integration interval will be
thus reduced.

In Eq. ~A9!, we express the delta function in terms
Green’s functions using d(«2H)52„G1(«)
2G2(«)…/2ip. We keep one half of this expression an
make an integration by parts on the second half, then we

s̃ i j 52
e2\

4pVE
2`

1`

d«
d f~«!

d«
Tr^v i~G1~«!

2G2~«!!v jG
2~«!2v iG

1~«!v j~G1~«!2G2~«!!&c

1
e2\

4pVE
2`

1`

d« f ~«!TrK v i

dG2~«!

d«
v jG

2~«!

2v iG
2~«!v j

dG2~«!

d«
1v iG

1~«!v j

dG1~«!

d«

2v i

dG1~«!

d«
v jG

1~«!L
c

. ~A10!

The second term in this expression can be simplified by
ing the relations dG6(«)/d«52@G6(«)#2 and i\v i
5@r i ,H#52@r i ,G21# and by performing once more an in
tegration by parts. Finally, the conductivity can be written
a sum of two termss̃ i j 5s̃ i j

I 1s̃ i j
I I where

s̃ i j
I 52

e2\

4pVE
2`

1`

d«
d f~«!

d«
Tr^v i~G1~«!

2G2~«!!v jG
2~«!2v iG

1~«!v j~G1~«!2G2~«!!&c

~A11!

and

s̃ i j
I I 5

e2

4ipVE
2`

1`

d«
d f~«!

d«

3Tr^~G1~«!2G2~«!!~r iv j2r jv i !&c . ~A12!

Equations~A11! and ~A12! correspond to the formula ob
tained by Streda38 in the Schro¨dinger case. The present der
vation shows that it holds also in the Pauli and Dirac cas
01441
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For the diagonal components of the conductivity tensor,s̃ i j
I I

is equal to zero and we obtain the Kubo-Greenwo
formula29

s̃ i i 5
e2\

4pVE
2`

1`

d«
d f~«!

d«
Tr^v i~G1~«!2G2~«!!

3v i~G1~«!2G2~«!!&c . ~A13!

At zero temperature, the factord f(«)/d« is equal to2d(«
2«F), only electrons at the Fermi level contribute to th
conductivity ~for both diagonal and off-diagonal compo
nents!. In conclusion, atv50 and T50, the conductivity
tensor can be expressed as a sum of two termss̃ i j 5s̃ i j

I

1s̃ i j
I I with

s̃ i j
I 5

e2\

4pV
Tr^v i~G12G2!v jG

22v iG
1v j~G12G2!&c

~A14!

and

s̃ i j
I I 52

e2

4ipV
Tr^~G12G2!~r iv j2r jv i !&c , ~A15!

where we have dropped the energy reference«F by introduc-
ing the Green’s functions at the Fermi levelG65G(«F
6 i0)5(«F6 i02H)21.

APPENDIX B: STREDA FORMULA IN
THE WEAK-RELATIVISTIC LIMIT

In this appendix, we give the detail of the calculatio
concerning the weak-relativistic expansion of the Streda c
ductivity starting from the Dirac equation. From Eq.~A14!,
we see thats̃ i j

I is a combination of terms such as

L i j ~z1 ,z2!5
e2\

4pV
Tr^v iG~z1!v jG~z2!&c , ~B1!

wherez1 and z2 are equals to«F6 i0. When we insert the
Dirac velocity ~17! and the Dirac Green’s function~19! in
Eq. ~B1!, make the explicit product of the four operators a
take the trace over the lower and upper components of
wave function, we obtain the general form
6-12
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L i j ~z1 ,z2!5
e2\

4pV
TrK s iD~z1!

s•p

2m
G̃~z1!s jD~z2!

s•p

2m
G̃~z2!

1s i G̃~z1!
s•p

2m
Q21~z1!D~z1!Q~z1!s j G̃~z2!

s•p

2m
Q21~z2!D~z2!Q~z2!

1s iD~z1!S 1

2m
1

s•p

2m
G̃~z1!

s•p

2m Ds j S G̃~z2!2G̃~z2!
s•p

2mc
@z22V2mB~s•Beff!#D~z2!

s•p

2mc
G̃~z2! D

1s i S G̃~z1!2G̃~z1!
s•p

2mc
@z12V2mB~s•Beff!#D~z1!

s•p

2mc
G̃~z1! Ds jD~z2!S 1

2m
1

s•p

2m
G̃~z2!

s•p

2m D L
c

.

~B2!
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Similarly, when we insert Eqs.~17! and ~19! in Eq. ~A15!,
we get

s̃ i j
I I 52

e2

4ipV
TrK S G̃1

s•p

2m
~Q1!21D1Q11D1

s•p

2m
G̃1

2G̃2
s•p

2m
~Q2!21D2Q22D2

s•p

2m
G̃2D (r is j2r js i) L

c

.

~B3!

Expressions~B2! and~B3! are exact expressions without an
assumption on the value ofc. We will now calculate the
weak-relativistic expansion of these expressions at ord
1/c0 and 1/c2 in order to compare them with the expressi
obtained from the Pauli approach.

1. Dirac conductivity at order 1Õc0

In the nonrelativistic limit,D is simply equal to the unit
matrix @see Eq.~20!#, thus Eq.~B2! can be rewritten as

L i j
(0)~z1 ,z2!5

e2\

4pV
TrK pi

m
G̃~z1!

pj

m
G̃~z2!

1
1

2m
~s is j G̃~z2!1s js i G̃~z1!!L

c

,

~B4!

where we have used the fact thats i(s•p)1(s•p)s i
52pi . When we insert this expression in Eq.~A14!, the
conductivity s̃ i j

I at order 1/c0 is

s̃ i j
I (0)5

e2\

4pV
TrK pi

m
~G̃12G̃2!

pj

m
G̃22

pi

m
G̃1

pj

m
~G̃1

2G̃2!L
c

1« i jk

e2\

4ipmV
Tr^sk~G̃12G̃2!&c ,

~B5!

where« i jk51 if $ i , j ,k%5$x,y,z% or cyclic permutations and
« i jk50 otherwise. This factor is introduced through the te
01441
rs

(s is j2s js i)52i« i jksk . The first term on the right hand
side corresponds exactly to the contribution that we get i
nonrelativistic description because in this case the velocit
ṽ5p/m and the Green’s function is simply the nonrelativi
tic Green’s functionG̃. In contrast, the second term is n
present in the Pauli approach and should not appear whe
take the non-relativistic limit in the Dirac approach. In fac
we show below that this term is exactly cancelled by
opposite term ins̃ i j

I I (0) . ReplacingD by 1 in Eq. ~B3!, we

get s̃ i j
I I at order 1/c0

s̃ i j
I I (0)52

e2

4ipV
TrK ~G̃12G̃2!S r i

pj

m
2r j

pi

mD L
c

2« i jk

e2\

4ipmV
Tr^sk~G̃12G̃2!&c , ~B6!

where we have used the relations (s•A)(s•B)5(A•B)
1 i s(A3B) and @r i ,pj #5 i\d i j . The second term in the
right hand side cancels the supplementary term in Eq.~B5!
and we obtain finally for the total Dirac conductivity at ord
1/c0

s̃ i j
(0)5s̃ i j

I (0)1s̃ i j
I I (0)

5
e2\

4pV
TrK pi

m
~G̃12G̃2!

pj

m
G̃2

2
pi

m
G̃1

pj

m
~G̃12G̃2!L

c

2
e2

4ipV
TrK ~G̃12G̃2!S r i

pj

m
2r j

pi

mD L
c

, ~B7!

which corresponds exactly to the total conductivity obtain
from Eqs.~A14! and~A15! when we insert the nonrelativis
tic Pauli velocity ṽ5p/m and the nonrelativistic Paul
Green’s functionG̃.
6-13
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2. Dirac conductivity at order 1Õc2

To get s̃ i j at order 1/c2, it is necessary to take into account the next terms in the expansion ofD given by Eq.~20!:
D(z)'12Q(z)@z2V2mB(s•Beff)#/2mc2. Thus, from Eq.~B2!, we get

L i j
(2)~z1 ,z2!5

e2\

4pV
TrK pi

m
G̃~z1!~vrc! j G̃~z2!1~vrc! i G̃~z1!

pj

m
G̃~z2!1

pi

m
G̃~z1!

pj

m
G̃~z2!HrcG̃~z2!

1
pi

m
G̃~z1!HrcG̃~z1!

pj

m
G̃~z2!2

1

8m3c2
$s is j G̃~z2!s•p@z22V2mB~s•Beff!#s•pG̃~z2!

1s js i G̃~z1!s•p@z12V2mB~s•Beff!#s•pG̃~z1!%2
1

2m3c2
pipj~G̃~z1!1G̃~z2!!

2
1

4m2c2
$s i@z12V2mB~s•Beff!#s j G̃~z2!1s j@z22V2mB~s•Beff!#s i G̃~z1!%

2
i

4m3c2
~z12z2!~~p3s! i G̃~z1!pjG̃~z2!2piG̃~z1!~p3s! j G̃~z2!!L

c

, ~B8!

whereHrc andvrc are the relativistic corrections at order 1/c2 to the Hamiltonian and the velocity respectively given by E
~13! and~14!. The last term on the right-hand side does not contribute because (z12z2)→0. Inserting the expression~B8! in
the conductivity~A14!, we gets̃ i j

I at order 1/c2

s̃ i j
I (2)5

e2\

4pV
TrK ~vrc! i~G̃12G̃2!

pj

m
G̃22~vrc! i G̃

1
pj

m
~G̃12G̃2!1

pi

m
~G̃12G̃2!~vrc! j G̃

2

2
pi

m
G̃1~vrc! j~G̃12G̃2!1

pi

m
~G̃1HrcG̃12G̃2HrcG̃2!

pj

m
G̃21

pi

m
~G̃12G̃2!

pj

m
G̃2HrcG̃2

2
pi

m
G̃1HrcG̃1

pj

m
~G̃12G̃2!2

pi

m
G̃1

pj

m
~G̃1HrcG̃12G̃2HrcG̃2!L

c

2« i jk

e2\

16ipm3c2V
Tr^$G̃1s•p@«F2V2mB~s•Beff!#s•pG̃12G̃2s•p@«F2V2mB~s•Beff!#s•pG̃2%sk&c

1
e2\

16pm2c2V
Tr^~G̃12G̃2!$s i@«F2V2mB~s•Beff!#s j2s j@«F2V2mB~s•Beff!#s i%&c . ~B9!

The first term corresponds exactly to the relativistic corrections that we get at oder 1/c2 in the Pauli approch. The two las
terms are supplementary terms which should not appear. We show that they are cancelled by terms ins̃ i j

I I (2) . Indeed, when we

expandD up to the second order in 1/c in the expression~B3! of s̃ i j
I I , we obtain

s̃ i j
I I (2)52

e2

4ipV
TrK ~G̃1HrcG̃12G̃2HrcG̃2!S r i

pj

m
2r j

pi

mD1~G̃12G̃2!@r i~vrc! j2r j~vrc! i #L
c

1« i jk

e2\

16ipm3c2V
Tr^$G̃1s•p@«F2V2mB~s•Beff!#s•pG̃12G̃2s•p@«F2V2mB~s•Beff!#s•pG̃2%sk&c

2
e2\

16pm2c2V
Tr^~G̃12G̃2!$s i@«F2V2mB~s•Beff!#s j2s j@«F2V2mB~s•Beff!#s i%&c . ~B10!

The two last terms on the right-hand side cancel the supplementary terms in Eq.~B9! and we obtain finally for the tota
conductivity at order 1/c2
014416-14
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s̃ i j
(2)5s̃ i j

I (2)1s̃ i j
I I (2)5

e2\

4pV
TrK ~vrc! i~G̃12G̃2!

pj

m
G̃22~vrc! i G̃

1
pj

m
~G̃12G̃2!1

pi

m
~G̃12G̃2!~vrc! j G̃

2

2
pi

m
G̃1~vrc! j~G̃12G̃2!1

pi

m
~G̃1HrcG̃12G̃2HrcG̃2!

pj

m
G̃21

pi

m
~G̃12G̃2!

pj

m
G̃2HrcG̃2

2
pi

m
G̃1HrcG̃1

pj

m
~G̃12G̃2!2

pi

m
G̃1

pj

m
~G̃1HrcG̃12G̃2HrcG̃2!L

c

2
e2

4ipV
TrK ~G̃1HrcG̃12G̃2HrcG̃2!S r i

pj

m
2r j

pi

mD1~G̃12G̃2!@r i~vrc! j2r j~vrc! i #L
c

. ~B11!

This expression corresponds exactly to the one that we get from the Pauli approach when we report the Pauli velocit
1/c2, vrc , and the Pauli Hamiltonian at order 1/c2, Hrc , in Eqs.~A14! and~A15!. For higher order terms~say of order 1/c2n

with n.1), we can predict that similar cancellations occur when we consider the total conductivitys̃ i j
I (2n)1s̃ i j

I I (2n) . We have
thus proved in this appendix the consistency between the Pauli conductivity and the weak-relativistic limit of th
conductivity.
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