
PHYSICAL REVIEW B, VOLUME 64, 144423
Weak localization in ferromagnets with spin-orbit interaction
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Weak localization corrections to conductivity of ferromagnetic systems are studied theoretically in the case
when spin-orbit interaction plays a significant role. Two cases are analyzed in detail:~i! the case when the
spin-orbit interaction is due to scattering from impurities and~ii ! the case when the spin-orbit interaction
results from reduced dimensionality of the system and is of the Bychkov-Rashba type. Results of the analysis
show that the localization corrections to conductivity of ferromagnetic metals lead to a negative
magnetoresistance—also in the presence of the spin-orbit scattering. Positive magnetoresistance due to weak
antilocalization, typical of nonmagnetic systems, does not occur in ferromagnetic systems. In the case of
two-dimensional ferromagnets, the quantum corrections depend on the magnetization orientation with respect
to the plane of the system.
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I. INTRODUCTION

Owing to the giant magnetoresistance effect discovere
artificially layered structures,1,2 transport properties of low
dimensional magnetic systems were extensively studie
the past decade. The huge interest was stimulated by a
cations of the effect in magnetoelectronics, particularly
read-write heads, field sensors, random access memory
ments, and others.3 Since the effect exists also at room tem
perature~which is important for applications!, there was only
a little interest in the low-temperature regime, where qu
tum corrections to conductivity may play a certain role. Th
regime, however, may be important in view of possible a
plications of metallic and/or semiconducting magnetic s
tems in spintronics4 and quantum computing.5

The quantum corrections to electrical conductivity, rela
to scattering of electrons from impurities in nonmagne
metals and doped semiconductors, were extensively stu
in the past two decades.6–9 However, the problem of quan
tum corrections in ferromagnetic metals is still unexplore
Only a few works on this subject can be found in the relev
literature. These include two theoretical works10,11and a few
reports on experiments,12–17 which prove the existence an
importance of the quantum corrections related to both w
localization and electron-electron interaction effects. T
theoretical description, however, was restricted to the effe
of localization on the spin-density fluctuations in the vicin
of the ferromagnetic transition10 and to electron-electron in
teraction effects in spin-dependent quantum wells.11

It is well known that the quantum corrections due to we
localization in nonmagnetic systems are suppressed by a
ficiently large magnetic inductionB. One may then expect
similar suppression of weak localization by an internal m
netic inductionBint in ferromagnets. But this point is still no
definitely clear from the experimental point of view, at lea
for some kinds of ferromagnetic materials. It is then reas
able to assume that the internal magnetic induction exis
inside the ferromagnets may reduce the localization cor
0163-1829/2001/64~14!/144423~13!/$20.00 64 1444
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tions instead of destroying them totally. Very likely, one c
expect only a slight effect ofBint in the case of newly de-
veloped magnetic semiconductors like GaMnAs alloys.18

Spin-orbit ~SO! scattering from paramagnetic impuritie
in nonmagnetic metals is known to have a significant infl
ence on the quantum corrections. It can reverse the sig
the localization correction~so-called weak antilocalization
effect!, which results in a positive magnetoresistance at w
magnetic fields.19–21 However, SO interaction may also re
sult from other sources, like, for example, the Dresselhau22

or Bychkov-Rashba23 terms in the relevant Hamiltonian
These terms are related to the lack of inversion symmetr
certain crystals or to reduced dimensionality in quantu
confined structures, respectively. In the context of weak
calization theory, this type of spin-orbit interaction has be
studied by Aronov and Lyanda-Geller.24–26

Recently, there is a large interest in SO interaction
magnetically ordered materials. First, the SO scattering
believed to be responsible for the anomalous Hall effec
ferromagnets.27–29 Second, the SO interaction is one of th
main interactions which determine the spin diffusion leng
The latter quantity plays a crucial role in the dependence
the giant magnetoresistance effect on the sublayer th
nesses, when the current flows perpendicularly to
films.30,31

In this paper we study the localization corrections to co
ductivity of ferromagnetic systems in the presence of
scattering from defects and also in the presence of
Bychkov-Rashba term. It is well known that in nonmagne
materials the spin-orbit scattering is crucial for the localiz
tion correction. As was already mentioned above, the
scattering leads to weak antilocalization, i.e., to posit
magnetoresistance at small magnetic fields.19–21 The situa-
tion in ferromagnetic metals, however, is significantly diffe
ent. We show that the processes, leading to weak antilo
ization in nonmagnetic systems, are totally suppressed
ferromagnets, so in the presence of SO interaction we h
only a negative magnetoresistance.
©2001 The American Physical Society23-1
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In Secs. II and III we derive the formula for the Cooper
and quantum correction to conductivity in three-dimensio
~3D! ferromagnets. Two dimensional~2D! ferromagnets are
considered in Sec. IV, while quantum wells and the poss
crossover from the 2D to 3D case are discussed in Sec
The influence of SO interaction in the form of Bychko
Rashba term is studied in Sec. VI. In Sec. VII we discuss
effect of internal magnetization on the localization corre
tions. Finally, conclusions and summary are in Sec. VIII.

II. COOPERON IN A 3D FERROMAGNET

We consider the following model Hamiltonian of a ferr
magnet with SO scattering:

H5E d3rc†~r !F2
¹2

2m
2Msz1V~r !Gc~r !, ~1!

where the axisz is assumed to be along the magnetizat
M , c is a spinor field with the componentsc↑ andc↓ , and
we put \51. In the presence of a magnetic inductionB
5rotA, the gradient operator¹ is replaced by¹2 ieA/c.
Note that the exchange term2Msz acts only on the spin and
has therefore no direct effect on the orbital motion of t
electrons.

The random potentialV(r ) of impurities consists of two
statistically independent components—the component in
pendent of the electron spin, described by the random po
tial V0(r ), and the spin-orbit componentVso(r ). Matrix ele-
ments of the latter component have the form

~Vso!ka,k8b5 iV1~k3k8!•sab ~2!

for the transitions (k,a)→(k8,b), whereV1 is a constant,k
andk8 are the initial and final electron wave vectors,a and
b describe the corresponding spin states, ands
5(sx ,sy ,sz) are the Pauli matrices.

The key component of the weak localization theory is
Cooperon,6–9 which can be presented by a ladder in t
particle-particle channel with two propagators describ
electrons with almost vanishing total momentum and w
very close energy parameters~so-called Cooper channel!. In
the case of ferromagnets and as long asM@t↑

21 ,t↓
21 , where

t↑ andt↓ are the momentum relaxation times of the spin-
and -down electrons at the Fermi surface, this channel d
not include ladder elements with Green functions cor
sponding to the opposite spin orientations. Indeed, using
standard method of calculation of the Cooperon,6,8 one
should evaluate the integral

Pss85E d3k

~2p!3
Gs

R~«,k!Gs8
A

~«,2k!,

whereGs
R,A(«,k) are the retarded and advanced Green fu

tions of an electron with spins5↑,↓. This givesP↑↓ /P↑↑
.1/Mt↑!1 andP↑↓ /P↓↓.1/Mt↓!1, which corresponds
to vanishingly small contribution of the singlet channel. Th
result can also be understood as a suppression of singlet
by the exchange field.
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Validity of this approach is confirmed by the followin
estimations. If we assume parameters typical for pure F32

i.e., M52.5 eV and t↑.t↓.5310213 s, we obtain
(Mt↑,↓)21.531024. In dirty Fe, this value would be in-
creased by one or two orders of magnitude, but will s
remain small as compared to unity. The exclusion of
Cooperon in the singlet channel is the crucial point of o
description, which leads to the absence of weak antilocal
tion in ferromagnets. In the following, we will omit the spi
index in the inequalitiesM@t↑

21 ,t↓
21 , and will write simply

M@t21.
In the case of weak scattering potential and upon ave

ing over the random fieldV(r ), one finds the following bare
scattering amplitude~see Fig. 1!:

Gabgd
0 5adaddbg2b~sad

x sbg
x 1sad

y sbg
y !2tabgd , ~3!

where tabgd is a diagonal matrix in the space o
(↑↑),(↑↓),(↓↑),(↓↓) states,

t5diag~d1 ,d3 ,d3 ,d2!, ~4!

and we introduced the following definitions:

a5NiV0
25

1

2pn↑t0↑
5

1

2pn↓t0↓
, ~5!

b5NiV1
2l0kF↑

2 kF↓
2 , ~6!

d15NiV1
2l0kF↑

4 5
1

2pn↑tso↑
z

, ~7!

d25NiV1
2l0kF↓

4 5
1

2pn↓tso↓
z

, ~8!

d352NiV1
2l0kF↑

2 kF↓
2 , ~9!

with l0 defined as

FIG. 1. The bare scattering amplitude.
3-2
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WEAK LOCALIZATION IN FERROMAGNETS WITH . . . PHYSICAL REVIEW B64 144423
l05~nk3nk8!x
25

2

9
. ~10!

In the above equationsNi is the concentration of scatterin
centers, andn↑ andn↓ are the densities of states at the Fer
level for spin-up~majority! and spin-down~minority! elec-
trons, while kF↑ and kF↓ are the Fermi wave vectors fo
spin-up and spin-down electrons. The relaxation timest0↑
and t0↓ , defined by Eq.~5!, are the momentum relaxatio
times in the absence of SO scattering, whereas the relaxa
timestso↑

z andtso↓
z , defined by Eqs.~7! and ~8!, are due to

the SO scattering. The averaging in Eq.~10! is over all ori-
entations of the unit vectorsnk andnk8 , wherenk5k/k and
nk85k8/k8.

Using Eq.~3!, we find the following bare scattering am
plitudes for the spin-up and spin-down electrons:

G↑
0[G↑↑↑↑

0 5a2d15
1

2pn↑t0↑
2

1

2pn↑tso↑
z

, ~11!

G↓
0[G↓↓↓↓

0 5a2d25
1

2pn↓t0↓
2

1

2pn↓tso↓
z

. ~12!

One should note at this point that the bare elementsG↑↓↑↓
0

andG↓↑↓↑
0 do not contribute to the Cooper-channel diagra

in the case of ferromagnetic systems as long asM@1/t, as
we already stated before. Apart from this, in a 3D caseG0

does not contain the componentsG↑↑↓↓
0 and G↓↓↑↑

0 , which
vanish due to the rotational symmetry in thex-y plane, as
can also be concluded from Eq.~3!.

Summing up the ladder diagrams contributing to t
renormalized scattering amplitudeG↑(v,q)[G↑↑↑↑(v,q) in
the Cooper channel with small transferred energyv and mo-
mentumq ~Refs. 6 and 7! ~see Fig. 2!, one obtains the equa
tion

G↑~v,q!5G↑
01G↑

0P↑~v,q!G↑~v,q!, ~13!

where

P↑~v,q!5E d3k

~2p!3
G↑

R~v,k1q!G↑
A~0,2k!

.2pn↑t↑~12D↑q2t↑1 ivt↑!. ~14!

Here, D↑5 1
3 vF↑

2 t↑ is the diffusion coefficient,vF↑ is the
Fermi velocity, andt↑ is the momentum relaxation time o

FIG. 2. Ladder diagram for the Copperon in the 3D case
14442
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spin up electrons. Equation~14! was derived in the diffusion
limit, i.e., whenv!1/t↑ andq!(D↑t↑)21/2.

The relaxation timet↑ can be found by calculating th
self-energy, presented by the diagrams of Fig. 3. The s
energy contains nonzero spin-flip vertices of the singlet ty
as shown in Fig. 4. After calculating the imaginary part
the self-energy, we find

1

t↑
52pn↑S a1d11

2n↓
n↑

bD . ~15!

Using Eqs.~5!–~14!, we finally obtain the following for-
mula for the renormalized scattering amplitude in the Coo
channel~Cooperon!:

G↑~v,q!5
1

t↑

a1d11~2n↓ /n↑!b

2 iv1D↑q211/t̃so↑
, ~16!

where the effective SO relaxation time of the Coopero
t̃so↑ , is introduced,

1

t̃so↑
5

2

t↑

d11~n↓ /n↑!b

a2d1
. ~17!

Let us now definetso↑
x and tso↓

x as 1/tso↑
x 52pn↑b and

1/tso↓
x 52pn↓b. In the limit of weak SO scattering,tso↑

z

@t↑ , one may then write

FIG. 3. Self-energy diagrams.

FIG. 4. Spin-flip vertex.
3-3
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G↑~v,q!5
1

2pn↑t↑
2

1

2 iv1D↑q211/t̃so↑11/tw↑
,

~18!

where

1

t̃so↑
52S 1

tso↑
z

1
n↓
n↑

1

tso↑
x D , ~19!

and a phase relaxation timetw↑ , related to some inelasti
scattering processes of electrons,6–8 is added into Eq.~18!.

The analogous formulas can also be derived for the s
down CooperonG↓(v,q)[G↓↓↓↓(v,q). This formula can be
obtained from Eqs.~18! and ~19! by inverting the direction
of the arrows.

III. CONDUCTIVITY AND MAGNETOCONDUCTIVITY IN
THE 3D CASE

The localization correctionDs to the static conductivity
is determined by the diagrams6,7 shown in Fig. 5. Upon cal-
culating the corresponding contributions, one finds the
lowing formula forDs:

Ds52
e2

p S 2pn↑t↑
2D↑E d3q

~2p!3
G↑~0,q!

12pn↓t↓
2D↓E d3q

~2p!3
2pn↓G↓~0,q!D , ~20!

which is a straightforward generalization of the localizati
correction in a nonmagnetic case. Using Eqs.~18! and ~20!,
we obtain

Ds5const1
e2

4p2 F 1

D↑
1/2S 1

t̃so↑
1

1

tw↑
D 1/2

1
1

D↓
1/2S 1

t̃so↓
1

1

tw↓
D 1/2G , ~21!

where the constant part is related to the contribution from
largest momenta of the Cooperon,q;(Dt)21/2, and cannot
be calculated exactly within the diffusion approximation.6,8 It
can be estimated as

const.2
e2

4p2
@~D↑t↑!21/21~D↓t↓!21/2#.

FIG. 5. Localization corrections to conductivity.
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Thus, the constant term is negative and, sincet↑,↓
, t̃so ,tw , it is larger in magnitude than the second term
Eq. ~21!. Therefore, the total correction~21! is negative. By
decreasingt̃so and/ortw , we suppress the localization co
rection to conductivity.

The magnetic induction~both external and internal! sup-
presses the localization corrections. If the magnitude of
total magnetic induction isB, then, following the method
developed by Kawabata,33 we find

Ds~B!52
e2

p S D↑
eB

2pc (
n50

n0↑ E
2`

` dq

2p FD↑q21
4eBD↑

c

3S n1
1

2D1
1

t̃so↑
1

1

tw↑
G21

1D↓
eB

2pc (
n50

n0↓ E
2`

` dq

2p

3FD↓q21
4eBD↓

c S n1
1

2D1
1

t̃so↓
1

1

tw↓
G21D ,

~22!

where l B5(c/eB)1/2 is the magnetic length,c is the light
velocity, and the sums over the Landau levels are cut of
n0↑(↓). l B

2/(D↑(↓)t↑(↓)).
After eliminating theDs(B50) part,33 we find a formula

which is a generalization of the Kawabata’s low-field ma
netoresistance to the ferromagnetic case,

Ds~B!2Ds~0!

52
e2

16p2l B
(
n50

` F 1

~n11/21d↑!1/2

22~n111d↑!1/212~n1d↑!1/21
1

~n11/21d↓!1/2

22~n111d↓!1/212~n1d↓!1/2G , ~23!

where

d↑(↓)5
l B
2

4D↑(↓)
S 1

t̃so↑(↓)

1
1

tw↑(↓)
D . ~24!

In accordance with Eq.~22!, the magnetic induction sup
presses the negative correction to the conductivity. Thus,
resulting sign of Eq.~23! is positive, and its magnitude
Ds(B)2Ds(0) increases with increasing magnetic fiel
This means that one finds a negative magnetoresistance
spite the presence of the spin-orbit interaction. The rea
for this is the fact that we have excluded the singlet Co
eron, which contributes to the localization correction w
the opposite sign and usually gives rise to a positive mag
toresistance~weak antilocalization! in weak magnetic fields
in nonmagnetic materials.6,7,9
3-4
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The obtained result is in agreement with the results
magnetoconductivity of nonmagnetic metals in a magn
field if both Zeeman splitting and spin-orbit scattering a
taken into account.21,8 Indeed, the exchange field of a ferro
magnet enters the Hamiltonian, Eq.~1!, like the Zeeman
term. Thus, the strong-exchange-field limit of a ferromag
corresponds to the case of a large magnetic field in the Z
man term. At these conditions, the effect of a magnetic fi
is associated with a negative magnetoresistance due to
suppression of the singlet Cooperon by magnetic fi
through the Zeeman splitting.

IV. TWO-DIMENSIONAL FERROMAGNETS

In this section we consider a two-dimensional ferroma
net. In such a case there is no electron motion in the direc
perpendicular to the plane, and consequently the elec
wave vectors are in the plane of the ferromagnet. We c
sider first the case of in-plane magnetization, as shown s
matically in Fig. 6. The bare scattering amplitude has th
the form

Gabgd
0 5adaddbg2bsad

x sbg
x , ~25!

where

a5
1

2pnt0
~26!

and

b5
1

2pntso
x

. ~27!

FIG. 6. Two-dimensional ferromagnet with in-plane magneti
tion.
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In a strictly 2D case and when both spin subbands are po
lated with electrons, the density of states is independen
the spin orientation,n↑5n↓[n. This follows from the model
assumed in Eq.~2!. In that case also the relaxation times
the absence and/or presence of the SO scattering are
pendent of the electron spin,t0↑5t0↓[t0 and tso↑

x 5tso↓
x

[tso
x .
Contrary to the 3D case considered above, we have n

to include the spin-flip processes in the Cooperon ladd
This is due to the fact that now we do not have the rotatio
symmetry in thex-y plane. According to Eqs.~25!–~27!, the
bare amplitudes are now

G↑
05G↓

0[G05
1

2pnt0
, ~28!

G↑↑↓↓
0 5G↓↓↑↑

0 [Gs f
0 52

1

2pntso
x

. ~29!

The equations for the renormalized vertices can be w
ten as two coupled ladders forG↑↑↑↑(v,q)5G↓↓↓↓(v,q)
[G(v,q) and G↑↑↓↓(v,q)5G↓↓↑↑(v,q)[Gs f(v,q), as
shown in Fig. 7. From these equations we find

G~v,q!5
1

4pnt2

1

2 iv1D̄q211/tw

, ~30!

where D̄5 1
2 (D↑1D↓), and the diffusion constantsD↑ and

D↓ are defined asD↑(↓)5
1
2 vF↑(↓)

2 t. The electron relaxation
time t in Eq. ~30! is independent of the electron spin,t↑
5t↓[t, and can be calculated in the same way as in the
case, which gives

-

FIG. 7. Equation for the Cooperon in a 2D ferromagnet w
in-plane magnetization.
3-5
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1

t↑
5

1

t↓
[

1

t
5

1

t0
1

1

tso
x

. ~31!

It is worth noting that the spin-orbit scattering enters t
Cooperon only through the one-particle relaxation timet and
has no influence on the pole of the Cooperon.

Consider now the case when the magnetization fieldM is
perpendicular to the plane of the ferromagnet, as sho
schematically in Fig. 8. The calculations are similar to tho
in the case of in-plane magnetization, so we write down o
the results. The only bare scattering amplitudes are nowG↑

0

andG↓
0 , which generally are different and have the form

G↑(↓)
0 5

1

2pnt0
2

1

2pntso↑(↓)
z

. ~32!

The CooperonsG↑(v,q) andG↓(v,q) can be written as

G↑(↓)~v,q!5
1

2pnt↑(↓)
2

3
1

2 iv1D↑(↓)q
211/t̃so↑(↓)11/tw↑(↓)

,

~33!

where the relaxation timest↑ andt↓ are given by

1

t↑(↓)
5

1

t0
1

1

tso↑(↓)
z

~34!

and

FIG. 8. Two-dimensional ferromagnet with magnetization p
pendicular to its plane.
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1

t̃so↑(↓)

5
2

tso↑(↓)
z 22t↑(↓)

.
2

tso↑(↓)
z

, ~35!

provided thattso↑(↓)
z @t↑(↓) . By comparing the results~30!

and~33!, both obtained for a 2D case but for different ma
netic configurations, we see that the effect of the SO in
action significantly depends on the orientation of the mag
tization fieldM with respect to the plane of the ferromagne

The quantum correction to the conductivity of a 2D fe
romagnet takes the form

Ds5
e2

4p2 H lnF t↑S 1

tw↑
1

1

t̃so↑
D G1 lnF t↓S 1

tw↓
1

1

t̃so↓
D G J ,

~36a!

which is a direct generalization of the corresponding form
in the 2D nonmagnetic case.6,7,9 Here,t↑(↓) and t̃so↑(↓) are
defined, respectively, by Eq.~31! and t̃so↑(↓)50 for the in-
plane magnetization and by Eqs.~34! and~35! for the case of
perpendicular magnetization.

The 2D localization correction, described by Eq.~36a!, is
negative sincet, t̃so ,tw , and, in addition, we take heret
! t̃so ,tw . The latter inequality means that the momentu
relaxation time of electrons,t, is mainly due to the potentia
scattering.

We can also present an expression for the conductivity
the case of nonzero magnetic inductionB, perpendicular to
the plane, by generalizing the result for a nonmagnetic tw
dimensional system20

Ds~B!52
e2

4p2 FcS 1

2
1

1

t↑a↑
D2cS 1

2
1

1

t̃so↑a↑
1

1

tw↑a↑
D

1cS 1

2
1

1

t↓a↓
D2cS 1

2
1

1

t̃so↓a↓
1

1

tw↓a↓
D G ,

~36b!

where a↑,↓54eBD↑,↓ /c, and c(x) is the digamma
function,34 which has the propertyc(x). ln(x) for x@1.

The magnetic induction suppresses the negative cor
tion to the conductivity, which leads to the negative magn
toresistance. It should be noted that in the strongly 2D ca
the in-plane magnetic induction does not affect the locali
tion correction to conductivity. The reason is that in the tw
dimensional case, the flux of magnetic induction does
penetrate through any closed electron paths. Corresp
ingly, the in-plane induction does not break the interferen
of closed trajectories of electrons moving in opposite dir
tions, responsible for the weak-localization effect.6–9

V. QUANTUM WELLS

In the quasi-2D case the electrons are confined withi
quantum well and the numberNF of 2D subbands populate
with electrons is larger than 1,NF.1. The situation with a
large number of occupied subbands is typical for meta
whereas the situation with only a few populated subband

-

3-6
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characteristic of semiconductor quantum wells. The effec
SO scattering on the magnetoresistance of nonmagnetic
terials at such conditions has been studied by Hikamiet al.20

We consider here a ferromagnetic quantum well in
geometry shown in Fig. 6, i.e., when the magnetization fi
M is in the film plane. The scattering amplitude has then
following form:

Gabgd
0 5adaddbg2bsad

x sbg
x 2csad

y sbg
y 2tabgd , ~37!

with a, b, andtabgd defined by Eqs.~4!–~6! and

c5NiV1
2~k3k8!y

2(↑,↓)5
1

2pn↑tso↑
y

5
1

2pn↓tso↓
y

, ~38!

d15NiV1
2~k3k8!z

2(↑)5
1

2pn↑tso↑
z

, ~39!
e

ts
q

q
,
ry

14442
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d25NiV1
2~k3k8!z

2(↓)5
2pn↓tso↓

z
, ~40!

d352NiV1
2~k3k8!z

2(↑,↓). ~41!

The averages in Eqs.~38!–~41! include averaging over dis
crete subbands due to quantization of the electron mo
along the axisx ~normal to the film plane!. In this notation,
the expressions for bare verticesG↑

0 and G↓
0 coincide with

Eqs. ~11! and ~12!, whereas for the spin-flip vertexGs f
0 we

have

Gs f
0 52

1

2pn↑tso↑
x

1
1

2pn↑tso↑
y

. ~42!

The ladder equations forG↑(v,q), G↓(v,q), and
Gs f(v,q) have the form shown in Fig. 7. From these equ
tions one finds the following solution forG↑(v,q):
G↑~v,q!5
~Gs f

0 !2P↓~v,q!1G↑
0@12G↓

0P↓~v,q!#

@12G↑
0P↑~v,q!#@12G↓

0P↓~v,q!#2~Gs f
0 !2P↑~v,q!P↓~v,q!

. ~43!

In the case of a weak SO interaction, the final expression forG↑(v,q) takes the form

G↑~v,q!5
1

2pn↑t↑
2

A↑
2 iv1D̃↑q211/t̃so↑11/tw↑

, ~44!

where

A↑5
2/tso↓

z 11/tso↑
x 11/tso↑

y

2/tso↑
z 12/tso↓

z 1~1/tso↑
x 11/tso↑

y !~11n↓ /n↑!
, ~45!

D̃↑5
D↑~2/tso↓

z 11/tso↑
x 11/tso↑

y !1D↓~2/tso↑
z 11/tso↓

x 11/tso↓
y !

2/tso↑
z 12/tso↓

z 1~1/tso↑
x 11/tso↑

y !~11n↓ /n↑!
, ~46!

1

t̃so↑
52

2/~tso↑
z tso↓

z !1~1/tso↑
x 11/tso↑

y !@1/tso↑
z 1n↓ /~n↑tso↓

y !#12/~tso↑
x tso↓

y !

2/tso↑
z 12/tso↓

z 1~1/tso↑
x 11/tso↑

y !~11n↓ /n↑!
, ~47!
is
d a

il-
spe-
m
ba
and the spin-up relaxation timet↑ is

1

t↑
5

1

t0↑
1

1

tso↑
z

1
1

tso↓
x

1
1

tso↓
y

. ~48!

The corresponding expression forG↓(v,q) can be obtained
from Eqs.~44!–~48! by changing the arrow direction in thes
formulas. It is worth noting, that according to Eq.~46!, the
spin-orbit interaction renormalizes the diffusion coefficien

The correction to conductivity is described either by E
~21! or by Eq. ~36!, in dependence on the ratio ofLe f f

5@D̃/( t̃so
211tw

21)#1/2 to the width of the quantum wellL.
For Le f f,L we have effectively a 3D case described by E
~21!, whereas forLe f f@L one finds effectively 2D behavior
Eq. ~36a!. It is worth noting that due to a strong asymmet
.

.

.

between spin-up and spin-down states, a ‘‘mixed’’ case
possible, with a 3D correction for one spin orientation an
2D correction for the opposite spin orientation.

VI. SPIN-ORBIT INTERACTION OF THE BYCHKOV-
RASHBA TYPE

The case when the spin-orbit coupling enters the Ham
tonian also in the absence of scattering defects needs a
cial treatment. In the following we will consider a syste
described by the Hamiltonian including the Bychkov-Rash
interaction term:23

H5E d3k

~2p!3
ck

†F k2

2m
2Msz1g~kysz2kzsy!Gck ,

~49!
3-7
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FIG. 9. The energy spectrum
E(k) of a ferromagnet with the
Bychkov-Rashba SO coupling
shown as a function ofkz at kx

5ky50 ~a! and as a function of
ky at kx5kz50 ~b!.
of

ib
s

b
rr

-

-
pe
ge

le

f-
re

x

ia-
he
ting,
eter

SO
where the magnetizationM is assumed to be in the plane
the system~the geometry of Fig. 6! andg[g(k) is the spin-
orbit coupling parameter. This Hamiltonian can descr
electrons in low-dimensional structures close to interface
electrons in a quantum well with variable doping.

The energy spectrum of the Hamiltonian~49! has two
branches

«1(2)~k!5
k2

2m
6@~M2gky!21g2kz

2#1/2, ~50!

which are no longer pure spin-up and spin-down states,
correspond to spin-mixed states. The eigenfunctions co
sponding to the eigenvalues~50! can be written as

u1k&5~4M21g2kz
2!21/2~2 igkzuk↑&12M uk↓&), ~51!

u2k&5~4M21g2kz
2!21/2~2M uk↑&1 igkzuk↓&). ~52!

Due to the terms linear inky and forMÞ0, the energy spec
trum ~50! is not symmetrical with respect to thek→2k
transformation, as can also be seen in Figs. 9~a! and 9~b!. In
the absence of an external electric fieldE, there are nonvan
ishing spin currents, associated with each branch of the s
trum «1,2(k). However, it can be verified that the total char
current is zero ifE50.

In the basis of the spin-up and spin-down states, the e
tron Green function has the matrix form

G0~«,k!

5
«2k2/2m1m2Msz1gkysz2gkzsy

@«2«1~k!1m1 idsgn«#@«2«2~k!1m1 idsgn«#
,

~53!
14442
e
or

ut
e-

c-

c-

where m is the chemical potential. Accordingly, the sel
energy is also a matrix in this basis. It is, however, mo
convenient to consider the electron self-energyS(«,k) in the
basis of the eigenfunctions~51! and ~52!. The self-energy is
then diagonal and the imaginary parts ofS1(0,kF1) and
S2(0,kF2) give the relaxation timest1 andt2 in the presence
of defects.

Using Eqs.~51! and ~52!, one can calculate the matri
elements of the impurity potentialV0(r ),

V1k,1k85V2k,2k85
V0~4M21gg8kzkz8!

~4M21g2kz
2!1/2~4M21g82kz8

2!1/2
,

~54!

V1k,2k852V2k,1k85
2iV0M ~gkz1g8kz8!

~4M21g2kz
2!1/2~4M21g82kz8

2!1/2
,

~55!

whereg85g(k8).
To find the self-energy one needs to calculate the d

grams shown in Fig. 10. In what follows we consider t
case when SO is small as compared to the magnetic split
so we can expand the self-energy in a small param
gkF /M!1. Then, we find

FIG. 10. Self-energy in the case of the Bychkov-Rashba
interaction.
3-8
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S1
R~«,k!.NiV0

2S 11
g2kz

2

4M2D E d3k8

~2p!3 S 12
g82kz8

2

4M2 D
3

1

«2«1~k8!1m1 id
1NiV0

2

3E d3k8

~2p!3

g82kz8
2

4M2

1

«2«2~k8!1m1 id
,

~56!

and a similar expression forS2
R(«,k). In these formulas we

can put«50, k5kF↓(↑) and average over the Fermi su
faces. This leads to the relaxation times for electrons co
sponding to bands 1 and 2,

t15
1

2pn1NiV0
2 S 12

n↑
n↓

g↑
2kF↑

2

12M2D , ~57!

t25
1

2pn2NiV0
2 S 12

n↓
n↑

g↓
2kF↓

2

12M2D , ~58!

whereg↑5g(kF↑) andg↓5g(kF↓). The above formulas ex
plicitly show the contribution of SO interaction to the rela
ation time.

We also need to calculate the densities of statesn1 andn2
at the Fermi surfaces and to relate them to the ones in
absence of the spin-orbit interaction,n↓ andn↑ . To do this
we write

n1(2)5E d3k

~2p!3
d„m2«1(2)~k!…, ~59!

and then, upon integrating overkx , we obtain

n1(2)5
~2m!1/2

~2p!3 E«1(2)
l (k),m

dkydkz

@m2«1(2)
l ~k!#1/2

, ~60!

where

«1(2)
l ~k!5

ky
21kz

2

2m
6sk , ~61!
lt

14442
e-

he

sk5@~M2gky!21g2kz
2#1/2. ~62!

Expanding in powers ofgkF /M!1 and calculating the inte
grals in Eq.~60!, we find

n15n↓S 11
m2g↓

2

2kF↓
2

2
mg↓

2

2M D ~63!

and

n25n↑S 11
m2g↑

2

2kF↑
2

2
mg↑

2

2M D . ~64!

The relaxation timest1 and t2 enter the expressions fo
the renormalized retarded (GR) and advanced (GA) Green
functions:

GR,A~«,k!5
«2k2/2m1m2Msz1gkysz2gkzsy

@«2«1~k!1m6 i /2t1#@«2«2~k!1m6 i /2t2#
.

~65!

Now we have already all quantities necessary to calculate
renormalized vertexGabgd . The general ladder-type equa
tion for such a vertex reads

Gabgd~v,q!

5NiV0
2daddbg1NiV0

2(
ns

Panbs~v,q!Gnsgd~v,q!, ~66!

whereV0 is the matrix element of the short-range impuri
potential and

Panbs~v,q!5E d3k

~2p!3
Gan

R ~v,k1q!Gbs
A ~0,2k!.

~67!

As before, we will restrict ourselves by considering the co
pling constantg to be small as compared to the spin splittin
gkF /M!1.

Using Eqs.~66! and~67!, and integrating overkx , we find
for q,v50
Panbs~0,0!5
i ~2m!1/2

8p2 F E
«1

l (k),m
dkydkz

@sk2Msz1g~kysz2kzsy!#an@sk2Msz2g~kysz2kzsy!#bs

sk~sk1s2k!~s2k2sk1 i /t1!@m2~ky
21kz

2!/2m2sk#1/2

1E
«2

l (k),m
dkydkz

@2sk2Msz1g~kysz2kzsy!#an@2sk2Msz2g~kysz2kzsy!#bs

sk~sk1s2k!~sk2s2k1 i /t2!@m2~ky
21kz

2!/2m1sk#1/2 G . ~68!
If we put g50 in Eq. ~68!, we find that only two matrix
elements are nonzero: namely,P↑↑↑↑(0,0) andP↓↓↓↓(0,0).
AssumingDq2t,vt!1, we can just supplement this resu
by the terms of the expansion in smallq andv,

P↑↑↑↑~v,q!52pn↑t↑~12D↑q2t↑1 ivt↑!, ~69!
3-9
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and a similar one forP↓↓↓↓(v,q).
Let us consider now the limit of weak SO coupling a

expandPanbs(q,v) in powers ofgkF /M . The first nonvan-
ishing term of this expansion is quadratic in this parame
According to Eq.~68!, the other small parameter in the lim
of g→0 is gkFt. Thus, if we assumeMt!1, we can neglect
the terms;(gkFt)2 and keep the terms;gkF /M . In the
opposite limit,Mt@1 ~clean ferromagnet!, we should keep
terms;(gkFt)2 and neglect terms;gkF /M . Since our con-
siderations of the localization corrections are limited
«Ft@1, the dirty case is possible only for some weak fer
magnets, whenM!«F ~in other words, for ferromagnet
with very low polarization!.

In view of Eq. ~49!, gkF is the amplitude of the spin-flip
process. In the classical picturegkF is the angle of spin
rotation in the unit time. Hence,gkFt is just the angle of the
classical spin rotation due to the Bychkov-Rashba pertu
tion at the mean free pathl of the electron. Thus, the smal
ness of the parametergkFt corresponds to a small spin ro
tation angle at the lengthl.

Since considerations in this paper are restricted to the
Mt@1, we will not discuss here the opposite limitMt!1.
Such a case needs a special treatment. Indeed, as we po
out in Sec. I, only the conditionMt@1 allows us to restrict
ourselves to the triplet Cooper channel. The result on
only nonvanishing matrix elementsP↑↑↑↑(0,0) and
P↓↓↓↓(0,0) for g50 @see Eqs.~68! and ~69!# also refers to
the caseMt@1 since in Eqs.~65! and ~68! we account for
the self-energy as a small shift of poles of the Green func
from the real axis.
ts
7

th
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an
c-
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In the limit of small SO interaction,gkFt!1, and for
Mt@1, we can neglect in Eq.~68! all terms of the order of
gkF /M . As a result, we find only two nonvanishing matr
elements

P↑↑↑↑~v,q![P↑~v,q!

52pn↑t↑~12D↑q2t↑1 ivt↑2 4
3 g↑

2t↑
2kF↑

2 !,

~70!

P↓↓↓↓~v,q![P↓~v,q!

52pn↓t↓~12D↓q2t↓1 ivt↓2 4
3 g↓

2t↓
2kF↓

2 !,

~71!

which give rise to the CooperonG↑(v,q) in the form of Eq.
~18!, with the effective spin-orbit relaxation time

1

t̃so↑
5

4

3
g↑

2kF↑
2 t↑ . ~72!

Similar expressions can be obtained forG↓(v,q) and t̃so↓ .
If we take the limitgkFt@1, then forMt@1 we still can

consider the SO interaction as a small perturbation,gkF /M
!1. Calculating the integral~68! up to the second order in
this parameter, we find
Panbs~v,q!5
3pn↓t1

8~g↓kF↓t1!2 F S 12D↓q2t11 ivt12
mg↓

2

2M
2

g↓
2kF↓

2

3M2
1

m2g↓
2

2kF↓
2 D ~12sz!an~12sz!bs2

g↓
2kF↓

2

3M2
san

y sbs
y

1
g↓

2kF↓
2

6M2
dan~12sz!bs1

g↓
2kF↓

2

6M2
~12sz!andbs2

mg↓
2

M
~12sz!an~11sz!bsG

1
3pn↑t2

8~g↑kF↑t2!2 F S 12D↑q2t21 ivt21
mg↑

2

2M
2

g↑
2kF↑

2

3M2
1

m2g↑
2

2kF↑
2 D ~11sz!an~11sz!bs

2
g↑

2kF↑
2

3M2
san

y sbs
y 1

g↑
2kF↑

2

6M2
dan~11sz!bs1

g↑
2kF↑

2

6M2
~11sz!andbs1

mg↑
2

M
~11sz!an~12sz!bsG . ~73!
iza-
h

Using Eq.~73!, we can find all nonvanishing matrix elemen
of Panbs(v,q) and then solve the ladder equations of Fig.
We do not make this calculation since we notice that
presence of the small factor 1/(gkFt)2 leads to complete
suppression of the Cooperon. Thus, the localization cor
tions exist only forgkFt,1.

Finally, we present the calculation of a classical correct
to the conductivity due to the SO interaction in Hamiltoni
~49!. After calculating the loop diagram with the Green fun
tions ~65!, and using Eqs.~57!, ~58!, ~63!, and~64!, we find
.
e

c-

n

szz
(0)5

e2n↑t↑
m S 11

m2g↑
2

kF↑
2

2
mg↑

2

M
2

n↓
n↑

g↓
2kF↓

2

12M2D
1

e2n↓t↓
m S 11

m2g↓
2

kF↓
2

2
mg↓

2

M
2

n↑
n↓

g↑
2kF↑

2

12M2D . ~74!

This expression contains corrections related to renormal
tion of the density of states~second and third terms in eac
set of brackets! and of the scattering time~fourth terms!.
3-10
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We should also take into account a renormalization of
chemical potentialm. For this purpose we calculate the tot
number of spin-up and -down electrons and impose the c
dition of constant particle number. After simple calculatio
we find the correction to the chemical potential

Dm5
g↑

2kF↑
3 1g↓

2kF↓
3

6M ~kF↑1kF↓!
2

m~g↑
2kF↑1g↓

2kF↓!

2~kF↑1kF↓!
. ~75!

Calculating the corresponding corrections to Fermi m
menta,kF↑,↓ , we find the corrections to spin-up and -dow
classical conductivities connected with renormalization
the chemical potential:

Dszz↑
(0)

szz
(0)

5
m~g↑

2kF↑
3 1g↓

2kF↓
3 !

2MkF↑
2 ~kF↑1kF↓!

2
3m2~g↑

2kF↑1g↓
2kF↓!

2kF↑
2 ~kF↑1kF↓!

,

~76!

Dszz↓
(0)

szz
(0)

5
m~g↑

2kF↑
3 1g↓

2kF↓
3 !

2MkF↓
2 ~kF↑1kF↓!

2
3m2~g↑

2kF↑1g↓
2kF↓!

2kF↓
2 ~kF↑1kF↓!

.

~77!

It should be noted that the classical corrections~76! and~77!
can be of any sign since the inequalityM@1/t does not
necessarily imply any relations between the magnitude oM
and the Fermi energies of majority and minority electron

The total correction to conductivity includes all corre
tions to the classical part, Eqs.~74!, ~76!, and~77!, as well as
the quantum correction in the form of Eqs.~21! or ~36a! and
~36b! with t̃so , given by Eq.~72! for gkFt,1.

VII. EFFECT OF INTERNAL MAGNETIC INDUCTION IN
A FERROMAGNET

In our model we have taken into account the effect
magnetic inductionB, which enters the kinetic energy o
electrons through a vector potentialA and leads to the sup
pression of localization corrections, Eqs.~22! and~36b!. The
total magnetic inductionB inside a ferromagnet includes th
external magnetic fieldHext and the internal magnetic induc
tion Bint, B5Hext1Bint, whereBi

int54p(d i j 2ni j )M0 j , M0

is the magnetization vector, andni j is the demagnetizing
factor tensor.35 The magnitude of the internal magnet
induction may be rather high in strong ferromagne
Nevertheless, weak localization corrections were obser
e.g., in Ni films.15

We can present some numerical estimations of the m
nitude of Bint. For example, in the case of Fe we take39

4pM0.2 T. Thus, for the bulk Fe, when the demagnetizi
field is negligibly small, we haveBint.2 T. The critical
magnetic inductionBcrit , which can totally suppress the lo
calizations correction, is determined differently in the 3
and 2D cases. In the 3D case we can estimate it by6,8 l B. l
( l is the electron mean free path!. For the parameters of ver
pure bulk Fe (m.4m0 andt.5310213 s!,32 we find l .4
31025 cm and, consequently,Bcrit.50 Oe. This estimation
shows that the localization corrections in pure bulk Fe
totally suppressed by the internal magnetic induction. On
other hand, in not so pure metals or in magnetic alloys
14442
e

n-

-

f

f

.
d,

g-

e
e
d

amorphous materials, one can expect a much shorter m
free path, likel .1026 cm, which is still large enough for the
localization corrections to be small (kFl @1). In the case of
l 51026 cm, one findsBcrit.7 T, which is significantly
larger than the internal induction of 2 T and, therefo
makes the localization corrections observable.

In the case of thin magnetic films, the demagnetizing f
tor is of crucial importance. For example, when the mag
tization vectorM0 is perpendicular to the interface, the d
magnetizing factor is unity,nzz51 (z axis is perpendicular to
the plane; other components of demagnetizing tensor
very small!, and we haveBint50. In this case, the results o
Sec. IV can be applied with the magnetic inductionB equal
to the external magnetic fieldHext. The critical magnetic
field, oriented perpendicular to the plane, which suppres
the localization correction, can be estimated as in the
case.

On the other hand, in the case of in-plane magnetizat
the demagnetizing factor is much smaller than unity, and
nonvanishing internal magnetic inductionBint54pM0 is di-
rected along the film. However, the effect of parallel ma
netic induction on the localization corrections in a strong
two-dimensional system is absent~Sec. IV!. For a quasi-2D
system like a quantum well, the effect of parallel induction
nonvanishing but weak. We can write the corresponding
pressions for localization corrections in the presence of
plane magnetic induction by simply generalizing the resu
of Refs. 36 and 37.

If the film thicknessL is large with respect to the electro
mean free pathl, but still small enough to consider the film
as a 2D system,6,8 l !L!@(D t̃so)

211(Dtw)21#21/2, we can
obtain, using Ref. 36, the dependence of the localizat
correction on magnetic induction in the limit of smallB,
i.e., for l B@L:

Ds~B!2Ds~0!5
e2

4p2 F lnS 11
L2D↑~ t̃so↑

21 1tw↑
21!21

12l B
4 D

1 lnS 11
L2D↓~ t̃so↓

21 1tw↓
21!21

12l B
4 D G .

~78!

It shows a weaker dependence on the magnetic induction
compared to the 3D case. For larger values ofB, when l B
,L, the dependence on magnetic induction is as for the
case, Eq.~22!. The critical valueBcrit can also be estimate
as for the 3D case. Thus, for thick clean magnetic films, s
that L@ l , and l . l 0[@c/(4epM0)#1/2, the in-plane internal
magnetic induction suppresses the localization correcti
completely. But in dirty or amorphous thick films withl
, l 0, they can be observed. Using the parameters of Fe,
find l 0.1.831026 cm.

If the film thicknessL is smaller than the mean free pa
l ~ballistic regime!, we use the result of Ref. 37, which ca
be presented in a simple form for some intervals ofB.38

To avoid cumbersome formulas, we introduce the followi
notation:
3-11
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1

tc↑,↓
5

1

t̃so↑,↓
1

1

tw↑,↓
, Lc↑,↓5~D↑,↓tc↑,↓!1/2. ~79!

WhenLc ,l B
2/L@ l , we obtain

Ds~B!2Ds~0!

5
e2

4p2 F lnS 11
l ↑L3

16l B
4

tc↑
t↑ D 1 lnS 11

l ↓L3

16l B
4

tc↓
t↓ D G , ~80!

whenLc ,l @ l B
2/L,

Ds~B!2Ds~0!

5
e2

4p2 F lnS 11
L2

3l B
2

tc↑
t↑ D 1 lnS 11

L2

3l B
2

tc↓
t↓ D G , ~81!

and whenl ,l B
2/L@Lc ,

Ds~B!2Ds~0!5
e2

4p2

p

48S Lc↑L3

l B
4

tc↑
t↑

1
Lc↓L3

l B
4

tc↓
t↓ D .

~82!

We also find that the critical in-plane magnetic inducti
in the case ofL! l can be estimated froml B.L, which gives
rise to a much larger critical value of magnetic inductio
Bthin f i lm

crit /B3D
crit.( l /L)2@1. In other words, even for clea

magnetic films, the in-plane magnetic induction does
suppress completely the localization corrections if the fi
width is sufficiently small.

In view of the above considerations, the best configu
tion for observing weak-localization effects in a ferromagn
is to use a thin film with perpendicular easy axis and appl
perpendicular magnetic field.

VIII. SUMMARY AND CONCLUSIONS

We have analyzed the localization corrections to electr
conductivity in magnetically polarized materials with spi
orbit interactions. The strong magnetic polarization exclu
processes with the singlet Cooperon, which are respons
for the antilocalization in nonmagnetic materials with S
.
la

v

A

o

.
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,

t

-
t
a

al

s
le

scattering. As a result, the quantum correction to conduc
ity is always negative in ferromagnets and leads to nega
magnetoresistance.

The strength of SO interaction, together with the pha
relaxation time due to inelastic processes, determines
magnitude of these corrections. In the case when the
interaction is associated with scattering from impuriti
and/or other defects, the effective SO scattering timet̃so en-
tering the Cooperon depends on the dimensionality of
system and on the magnetization orientation with respec
the plane of the system~in the case of two-dimensional o
quasi-two-dimensional systems!. In the case of strongly two
dimensional ferromagnets with in-plane magnetization,
inverse time 1/t̃so is zero. This increases the magnitude
the localization correction. The vanishing value of 1/t̃so is
essentially related to the spin-flip scattering of the Cooper
the usual contribution from the spin-conserving scattering
canceled by the spin-flip contribution, which enters t
Cooperon with an opposite sign. In the quasi-tw
dimensional case both contributions are present, but the
not cancel each other.

We have also found the effective spin relaxation time
the case of Bychkov-Rashba SO interaction. It contains c
tributions from both spin-flip and spin-conserving scatter
processes.

We think that good candidates for observations of the
calization corrections are also semiconducting ferromag
like GaMnAs,18 which are recently extensively studied
view of their possible applications in spintronics. Anoth
example is a new ferromagnetic semiconductor CaB6, where
a very small magnetization can be combined with a sm
electron density.40
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