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Localization corrections to the anomalous Hall effect in a ferromagnet
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We calculate the localization corrections to the anomalous Hall conductivity related to the contribution of
spin-orbit scattering into the current vertéside-jump mechanismWe show that in contrast to the ordinary
Hall effect, there exists a nonvanishing localization correction to the anomalous Hall resistivity. The correction
to the anomalous Hall conductivity vanishes in the case of side-jump mechanism, but is nonzero for the skew
scattering. The total correction to the off-diagonal conductivity related to both mechanisms, does not compen-
sate the correction to the diagonal conductivity.
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The anomalous HallAH) effect can be observed in mag- 2m*
netically ordered metals or semiconductors without external
magnetic field:? The key point of any explanation of this V(1)
effect is the presence of spin-orgBO) interaction, which
breaks the symmetry to spin rotations.
The theory of AH effect has been developed in numerous
works3~8 More recently, the interest in this effect has beenwherem* is the electron effective mass, is a constant,
growing’** due to the importance of the spin polarization which measures the strength of the SO interactitm) is a
and spin-orbit interaction for transport properties of materialsandom potential created by impurities or defects,
and structures of spin electronits*® In addition, the mea- =(0y,0y,0,) are the Pauli matrices, anﬂTE(df{ ) is
surement of AH effect has been proven to be a useful tool téhe spinor field, corresponding to electrons with spin up and
determine the magnitude of magnetization in structures witljown orientations. The constaxg has the dimensionality of
magnetic layers’ length. For nonrelativistic electrons in vacuuig,is equal to
Usually, two relevant mechanisms are distinguished—a, /27, where \.=2#/m,c is the Compton wavelength of
skew scatterintf* and a side-jump effeé®*! It is com-  electron andn, is the free electron mass.
monly believed that the first mechanism prevails in low- \ve assume that the potenti(r) is short ranged, with
resistivity metals, whereas the other oséde-jump can be ;610 mean valuéV(r))=0, where the angle brackets mean
more  significant for n;etal alloys or semiconductors withthe configurational averaging over all realizatiorMgf). We
much larger resistivity:” _ _ . shall characterize this potential by its secandand thirdy;
The theory of localization corrections to the conductivity nomenta,  denoting (V(r)V(ry))=7y,8(r;—r,) and
and Hall conductivity has been developed in details for NONTV/(r )V(ro)V(r3)) = y38(r1—r3) 8(Fo—r3).
magnetic metals and heavily doped semiconductors,but It should be emphasized that the constapsand v, are
not for magnetically ordered materials. In our recent w%frks parameters, characterizing not only the strength of the disor-
we analyzed some effects related with localization and interger notential, but also the statistical properties of the random
action corrections in ferromagnets and in multilayer struc+aiq When the potentia¥(r) is created by impurities, dis-

tures with thin magnetic layers. o tributed randomly at some point®;, we have V(r)

The role of quantum correctiondoth localization and =S0(r—R)). It results iny,=N, v2 and y;=N; v, where
exchange interactiorto AH effect has been considered theo- "¢ 1. irrllp;urity concentrzatior; gmo isgthe Imgtrix cle-

; : i . i ,
e o oo om0, ment o the shorranged potntalof ane slted Iy

P L . . v(r—R))=vyd(r—R;). In the case of purely Gaussian po-
the framework of side-jump mechanism. Also, we revisit the, .. -
. o . . _“tential, we should take;=0.

calculation of localization corrections for the skew scattering Calculating the matrix elements of the Hamiltonidn in
in the model of itinerant magnetism and confirm the 'rééult momentum representation, we obtain
found in a model of impurities with ordered magnetic mo-
ments. We show that the results for the side-jump and skew
scattering are quite different.

W(r), (1)

k2
_ T _
Il. THE MODEL H_; [y M"Z) Y
We consider a ferromagnet with a strong exchange mag- in2
netizationM oriented along the axis, and a SO relativistic +2 iViw| 1+ To(kx kr).g} b, (2

term (we puti=1) Kk’
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FIG. 1. Anomalous vertex for the coupling to electromagnetic !
field with SO interaction. The dashed line is for the impirity scat- ‘\ ~
tering and the filled black circle is for the external electromagnetic S’ k

field.
FIG. 2. Feynman diagrams for AH conductivitf” (side-jump

whereV, is the Fourier transform of the potentM(r). The  Mechanism

second term in Eq(2) describes the SO scattering from im-

purities.

To find the expression for current density opergtd), GE’A=dia%

we switch on an electromagnetic field(t) in a gauge-

invariant way,k— (k—eA/c), and calculate the derivative

1 1
mw—e(K)xil(27)) 'nu—e (K)xil(27)))
(6)

i SH Here sm(k)=k2/(2m*)i M are the energy spectra of
Ja= _C_éAa' ) spin-up and spin-down electrons, respectively, is the
chemical potential, and, | are the corresponding relaxation
which gives us times. The relaxation times are determined by the scattering

from the random potential, and they are equal #p,
e eA, = (2771/7,172)*1, wherev; andv| are the densities of states
m* Ka™ T Sk for spin-up(majority) and spin-dowr(minority) electrons at
the Fermi level.

o= WL

kk

ie)\é After calculating the integrals in E@5), we find the side-
+ TVk—k’faM(kb_kﬁ) o | (4)  jump AH conductivity* (in final formulas we restoré and
use the electron parameters at the Fermi surjaces

wheree, s, is the unit antisymmetric tensor.

According to Eq(4), the SO interaction contributes to the e
current vertex in the Feynman diagrams of the conductivity a§<§,’)=6—h)\g(vlﬁkﬂvﬂ— vihKever), @)
tensor’® The additional anomalous vertdsecond term in
Eq. (4)] can be presented by a three-leg vertex, Fig. 1, where
the dashed line corresponds to the interactign . with wherekg; | andvg, | are the momenta and velocities of
impurities, and the black point implies the coupling to themajority and minority electrons at the Fermi surfaces, re-

external electromagnetic field. spectively.
Now we consider the localization corrections Mf‘/’).
I1l. LOCALIZATION CORRECTIONS IN FRAME OF THE They can be presented by the loop diagrams with diffusons
SIDE-JUMP MECHANISM and Cooperon&-2*Assuming the exchange eneryylarger

) . . than 14, we can restrict ourselves by considering only triplet
Calculating the Feynman diagrams for the off-diagonalcqgnerons and diffusons, with the same orientation of spins
(Hall) conductivity, Fig. 2, we findan additional factor 2 i, the particle-particléCooperop or particle-hole(diffuson)
comes from the contributions of right vertiges channels. There are eight diagrams containing such Cooper-
6222 ons and four diag;tams with Diffusons, presented in Figs. 3
072 2 ~R~A, ~R A and 4, respectivelfthe figures show only diagrams with left
- i % 7dGGkCL(G=C) O anomalous vertices
We calculate first the quantum corrections due to the
where the retarde(R) and advancedA) Green functions at Cooperons. Calculating the first two diagrams of FigaB
the Fermi surface are diagonal matrices and(b)], we find

)= —
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FIG. 3. Localization corrections to&fﬂ) due to the Cooperons.

iez7\2’)/2

AcW=—"2Z1> ;KGR -G")

Y gam* kkE’q #5(Gy k
X(GR2A(GR)?C(09), ®

where the spin components of the Coopéfoff'are equal to

1
2771/(,7(2, —iw+ DUq2+ Urgo st 1/7'%0.

Colw,q)= 9

HereD,=vZ, 7, /d is the diffusion constant of electrond (
the effective dimensionalify), Tso,e anNd 7, , are the spin-
orbit and phase relaxation times, respectively. In @j.we
neglected small momentum<<k~kg in the arguments of
Green’s functions.

The calculation of two other diagrams of Fig.(® and
(d)] gives us
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FIG. 4. Localization corrections oS due to the diffusons.
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FIG. 5. The equation for the renormalized anomalous vertex
r'(k,k").

)\(2)72
— 221> o (k)AGR
8m* Kk'q Z\y k

—Gp)GE G, GRGRC(09). (10)

After integrating ovek andk’, we find that the contribu-
tions of all diagrams with Cooperons, E@8) and(10), can-
cel each other exactly. This result can also be seen by com-
paring directly Eqs(8) and(10) and by using the property of
Green’s functionssR— Gp=(—i/7)GL G .

The diagrams with diffusongFig. 4) can be taken into
account as a renormalization of the anomalous vertex by im-
purities. As is known, the normal electromagnetic vertex
without SO correctioffifirst term in Eq.(4)] can be renormal-
ized only for nonpointlike defec® Here we show that the
anomalous vertex is renormalized in the case pointlike de-
fects too.

The equation for the three-leg vertex has the following
form (Fig. 5):

T (k,k)=TOKKk" )+ v, 2 G T(ky kg
Ky

+k,_k) GE’*k+k1’ (11)

where

0 ! Ie)\g !
Fa(k,k )ZTVk*k’eaﬁy(kﬁ_kﬂ)U‘y' (12)
In view of Eq.(12), we can look for a solution of Eq11)
in the form of matrix in the spin space that depends only on
the difference of momentd, ,(k,k')=T,(k'—k). Hence,
the solution can be presented as

T o(@)=To()[ 1 yol(a)] ™, (13
wherell(q) is the diagonal matrix
M(e)= 2 GGk (14)

According to Egs.(11) and (12), we can present the
component of the verteK(q) as

I'(@)=ayI'Y(a)+a. i), (15

where
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oy d-g( ! ! ) (16
la y ’
! D.g’r;  D,q%7,

ieg
a=—

PHYSICAL REVIEW B64 104411

and only thel'Y(q) component is needed, since the second X y

term in Eq.(15) gives the vanishing contribution o).
Using Egs.(15) and(16), we find the localization correc-
tions to oy

02y 2
- ay ky
$=———Tr > 0,——(G}, o+ G )GE Gi.

8mm* kq
(17)

Taking into account that very small momeitaan be essen-
tial for the diffuson,q<(D7) Y><k~kg, we can present
Eqg. (17) in the form

Ao

[oa TU’

a2y 2 2
ie“Ng vy q
— 0z 2Tr§ O'Z—y

AolSh=
xy SRR P

8mm

X (GR—GR)GRGY, (18)
and, after calculating the integral ovier we find
2y 2
(s)) Ao
Aoy=- T > 0, P(9), (19
Tm q
whereP(q) is a diagonal matrix with the elements
2
Ay
P,(q) = . 20
=5 5 (20)

The integral oveq in Eq. (19) is mainly determined by the
diffuson at the upper limitg~ (D7)~ %2, for which the ver-
texI'Y(q), Eqg. (16), was not found correctly.

In the three-dimensional case we can estimate the integral

as
d*q m* kg,
J P ()= ——.
(277) (8F(rT(r)
Combining Eqs(19),(20) with Eq. (6), we find the relative
value of the quantum correctiono$P/olS)=(ep7) "%
Since the usual correction to the conductivity, has the
relative magnitude ofgg7) "2, the localization correction to
the off-diagonal conductivityr@') turns out to be very small.

(21)

FIG. 6. Diagrams foro(s> (skew scattering mechanigniThe

impurity scattering is in the third order, and the spin-orbit scattering
amplitude is denoted by unfilled circle.

without spin polarization of electron gas due to the Stoner-
like itinerant field M [the second term in the Hamiltonian
(1)] but with a partial polarization of spin-orbit scatterers. To
avoid possible differences related with the choice of model,
we have calculated the localization corrections to the AH
effect due to the skew scattering from the Hamiltonian of Eq.
(2).

In frame of the skew scattering, we take into account the
diagrams with the third-order corrections due to scattering
from impurities, keeping the first order of SO-depending ma-
trix elements. Without quantum corrections, the relevant dia-
grams for the skew scattering mechanism are presented in
Fig. 614 Calculating these diagrams, we find

'n'ez)\(z)
184

VY3 V1Y3

(SS)— K2 v v 7——=—K2 v, 02, T——].
FllFll,yZ FTTFTT,),Z

O'Xy

(22)

In this formula, the dimensionless facterys;/y, contains
the information about both the strength of the random poten-
tial and its statistical properties. To make it more physically
sound, we introduce the average values of the second and
third powers of the mean potential at an elementary(6&)
and(V3).

Taking into account thatV?) =y, /a3 and (V3)= y;/a$

In the case of effective two dimensionality of quantum (wherea, is the lattice parametgrwe obtain

corrections(when the thickness of magnetic filah obeys
inequalitesd<L,,Lso, wherelL,,
length andLgg is the SO scattering lengthusing Eq.(19),
we get Ac(PIol)~(err) "% whereas Ao/
~(eg7) L. Thus, the correction to) can be neglected for
any effective dimensionality.

IV. LOCALIZATION CORRECTIONS IN CASE OF THE
SKEW SCATTERING

is the phase-breaking

3
so_ T V)
YT (y2)92

—0yx,1(No kFT)Z( vTa3<V2>1’2)]-

Here the dimensionless factgv)/(\V2)*? depends only on
statistical properties of the random field(r), whereas the
dimensionless combination a3(V?)¥? characterizes the
relative strength of the potential.

[O'XX,L()\O kFi)z( v, ag <V2>l/2)

(23

The localization corrections for the skew scattering has Now we consider the diagrams with one Cooperon and
been calculated earliéf. It should be noted, however, that three-leg impurity vertices. There are twelve nonvanishing
the result of Ref. 27 was obtained in a different model—diagrams of the type similar to that presented in Fig. 7. Here
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FIG. 7. First three diagrams describing local-
ization corrections tar{S%. Other diagrams dif-
fer by locations of the spin-orbit vertexinfilled

circle).
the SO-dependent vertdindicated by the white circ)elies
. 4 . . ARAH AO’Xy AO’XX
on one of four possible Green function lines. The other nine T o 5 (28
diagrams are similar to those of Fig. 7, but differ by the Ra Oxy Oxx

location of the SO vertex. The corrections from diagrams ) ) S
with diffusons vanish. Since the correction to AH conductivity in frame of the

After calculating all the diagrams, we find for the skew side-jump mechanism is zero, the total localization correc-
tion Aoy, is given by Eqs(25) or (26). The relative magni-

scattering . : a )
tude of this correction depends on the prevailing mechanism
ey of AH effect. Using Eqs(7) and (22), we can find that the
AoSY= 3)\3( kg, v2vd, 7> C,(09) relative order of the AH conductivity due to the skew scat-
972 a tering or side-jump is
~Kk 02, 7S c,(00)| (24 o9 vy,
q )= (egT). (29

Oyy Y2

Using Eq.(9) and calculating the integral ovey, the skew- o ) _

scattering correction can be presented in the three- The weak-localization approach is valid as long as

dimensional case as (ep7)>1. Thus, forvyz/y,>1, the skew scattering mecha-
nism is more important, and the localization correction is
determined by Eq925) or (26). In the case obvy;/y,<1,

2
Aag@:e—xé[ ETM the prevailing mechanism is side-jump. Since the side-jump
8\3mh Y2 vgy r%’z correction is zero, the total localization correction,
determined by Eqs(25) or (26), turns out to be negligibly
o L _( 1 1 ) Pl s 1 smal Qoo =(Aa5 oS (vyal o) (sr)]2
T(l)/Tz Tsol Tl F Y2 vg T}/Z <(Ao S(?/S)/_ 0'§<ys))- _
Collecting all together, we can formulate our final result
1 1 1\1? as follows.
X T/z_(T_+T_> : (25) (i) For the low-resistivity metals with prevailing skew
7o, sol el scattering, the localization correction to AH resistivi88)

contains both parts with o, [described by Eq(25) or (26)]
andAay,. No cancellation between them is possible due to
the separation of contributions from the different spin chan-
nels.

where 7, are some constants{,= r,), which cannot be
calculated exactly in the diffusion approximation of E§).
In the effectively two-dimensional case, similar calcula-

tions give us (i) For the high-resistivity metals or doped semiconduc-
2 1 1 tors with prevailing side-jump mechanism, the correction to
(SS)— _ 2|12 V173 = = Aoy, is negligibly small, so that the localization correction
AO'Xy \g kFT In| 7 + Xy L > o :
36 Y2 Tso  Tol to AH resistivity, Eq.(28), is exactly twice the relative cor-
1 1 rection to the diagonal conductivityvith the opposite sign
K2, YIYs Ti<_+_ ] (26) These results, concerning the AH effect, differ signifi-
Y2 Tso, To| cantly from what is known for the usual Hall effect, de-

o _ o scribed by a Hall constariRy . It has been showi 3! that
Thus, the localization correction to the AH conductivity d“ethe localization correction t&,,, determined by an analo-

to the skew scattering is nonzero, in agreement with Ref. 27gous formula(28), is identically zero due to the mutual can-
cellation of contributions from the diagonalo{°® and off-

V. DISCUSSION AND CONCLUSION diagonal Ac(9?, conductivities. On the other hand,
considering the interaction corrections Ry, it has been
found thatAc{}?=0. Thus, the total quantum corrections
to the Hall constant are reduced tAARy/RY

RAH:ﬁlv (27) =-2(A U’(‘igt)((TXX)' . ’
o The experiments on amorphous ferromagnetic Fe ffims
have shown that the quantum correction to the AH resistivity
acquires the corrections from both diagonal and off-diagona{28) is double the correction to the diagonal conductivity.
conductivities This is in accordance with our result for the localization cor-

The anomalous Hall resistivity, determined as

XX
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rections under condition that the side-jump mechanism prethe cancellation of interaction corrections mTS(f,S i) has
vails. The latter is in agreement with the comparatively highpeen proved. It should be noted, however, that the Hartree
resistivity of amorphous Fe films studied in Ref. 32. diagrams were not taken into account in this calculation.
But our main argument in favor of the prevailing side- |y conclusion, we have shown that the role of localization
jump mechanisAf is that the random field experienced by corrections is quite different for the skew scattering and side-
the electrons in amorphous films is more naturally describeﬂ,mp mechanisms of AH effect. We suggest that the experi-
by a distributionP{V(r)} with nearly equal probabilities of mental results of Ref. 32 can be interpreted as a relative
positive and negative deviations of the random potentiakmaliness of the localization correction to the off-diagonal

V(r) from zero. In such a case the parametgg/y, in EQ.  conductivity upon the prevailing side-jump mechanism.
(29) is small thanks tqV3)/(V?)32<1.

The authors of Refs. 27,32 have given another explana-
tion of the measurements: suppression of localization correc-
tions to the off-diagonal conductivity due to very strong We are thankful to J. Barna®r numerous discussions
spin-orbit scattering4;,= 7), upon the prevailing skew scat- and a critical reading of the manuscript. This work was par-
tering mechanism. In addition, the quantum corrections tdially supported by the Polish State Committee for Scientific
the AH conductivity due to electron-electron interaction haveResearch through the Research Project No. 5 PO3B 091 20
been also calculated for the skew scattering in Ref. 27, andnd by the NATO Linkage Grant No. 977615.
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