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Localization corrections to the anomalous Hall effect in a ferromagnet

V. K. Dugaev,1,2,* A. Crépieux,1 and P. Bruno1
1Max-Planck-Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
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~Received 8 March 2001; published 21 August 2001!

We calculate the localization corrections to the anomalous Hall conductivity related to the contribution of
spin-orbit scattering into the current vertex~side-jump mechanism!. We show that in contrast to the ordinary
Hall effect, there exists a nonvanishing localization correction to the anomalous Hall resistivity. The correction
to the anomalous Hall conductivity vanishes in the case of side-jump mechanism, but is nonzero for the skew
scattering. The total correction to the off-diagonal conductivity related to both mechanisms, does not compen-
sate the correction to the diagonal conductivity.
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I. INTRODUCTION

The anomalous Hall~AH! effect can be observed in mag
netically ordered metals or semiconductors without exter
magnetic field.1,2 The key point of any explanation of thi
effect is the presence of spin-orbit~SO! interaction, which
breaks the symmetry to spin rotations.

The theory of AH effect has been developed in numer
works.3–8 More recently, the interest in this effect has be
growing9–14 due to the importance of the spin polarizatio
and spin-orbit interaction for transport properties of mater
and structures of spin electronics.15–18 In addition, the mea-
surement of AH effect has been proven to be a useful too
determine the magnitude of magnetization in structures w
magnetic layers.18

Usually, two relevant mechanisms are distinguished
skew scattering19,4 and a side-jump effect.20,21 It is com-
monly believed that the first mechanism prevails in lo
resistivity metals, whereas the other one~side-jump! can be
more significant for metal alloys or semiconductors w
much larger resistivity.1,2

The theory of localization corrections to the conductiv
and Hall conductivity has been developed in details for n
magnetic metals and heavily doped semiconductors,22–25but
not for magnetically ordered materials. In our recent work26

we analyzed some effects related with localization and in
action corrections in ferromagnets and in multilayer str
tures with thin magnetic layers.

The role of quantum corrections~both localization and
exchange interaction! to AH effect has been considered the
retically in Ref. 27 but only in the case of skew scattering.
the present work we consider the localization corrections
the framework of side-jump mechanism. Also, we revisit t
calculation of localization corrections for the skew scatter
in the model of itinerant magnetism and confirm the resu27

found in a model of impurities with ordered magnetic m
ments. We show that the results for the side-jump and s
scattering are quite different.

II. THE MODEL

We consider a ferromagnet with a strong exchange m
netizationM oriented along thez axis, and a SO relativistic
term ~we put\51)
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H5E d3r c†~r !F2
¹2

2m*
2Msz2

il0
2

4
@s3“V~r !#•“

1V~r !Gc~r !, ~1!

where m* is the electron effective mass,l0 is a constant,
which measures the strength of the SO interaction,V(r ) is a
random potential created by impurities or defects,s
5(sx ,sy ,sz) are the Pauli matrices, andc†[(c↑

† ,c↓
†) is

the spinor field, corresponding to electrons with spin up a
down orientations. The constantl0 has the dimensionality o
length. For nonrelativistic electrons in vacuum,l0 is equal to
lc/2p, wherelc52p/m0c is the Compton wavelength o
electron andm0 is the free electron mass.

We assume that the potentialV(r ) is short ranged, with
zero mean valuêV(r )&50, where the angle brackets mea
the configurational averaging over all realization ofV(r ). We
shall characterize this potential by its secondg2 and thirdg3
momenta, denoting ^V(r1)V(r2)&5g2d(r12r2) and
^V(r1)V(r2)V(r3)&5g3d(r12r3)d(r22r3).

It should be emphasized that the constantsg2 andg3 are
parameters, characterizing not only the strength of the di
der potential, but also the statistical properties of the rand
field. When the potentialV(r ) is created by impurities, dis
tributed randomly at some pointsRi , we have V(r )
5( iv(r2Ri). It results ing25Ni v0

2 andg35Ni v0
3, where

Ni is the impurity concentration, andv0 is the matrix ele-
ment of the short-ranged potential of one isolated impur
v(r2Ri)5v0 d(r2Ri). In the case of purely Gaussian po
tential, we should takeg350.

Calculating the matrix elements of the Hamiltonian~1! in
momentum representation, we obtain

H5(
k

ck
†S k2

2m*
2MszD ck

1(
kk8

ck
†Vk2k8F11

il0
2

4
~k3k8!•sGck8 , ~2!
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whereVk is the Fourier transform of the potentialV(r ). The
second term in Eq.~2! describes the SO scattering from im
purities.

To find the expression for current density operatorj (t),
we switch on an electromagnetic fieldA(t) in a gauge-
invariant way,k→(k2eA/c), and calculate the derivative

j a52c
dH

dAa
, ~3!

which gives us

j a5(
kk8

ck
†F e

m*
S ka2

eAa

c D dkk8

1
iel0

2

4
Vk2k8eabg~kb82kb! sgGck8 , ~4!

whereeabg is the unit antisymmetric tensor.
According to Eq.~4!, the SO interaction contributes to th

current vertex in the Feynman diagrams of the conductiv
tensor.28 The additional anomalous vertex@second term in
Eq. ~4!# can be presented by a three-leg vertex, Fig. 1, wh
the dashed line corresponds to the interactionVk2k8 with
impurities, and the black point implies the coupling to t
external electromagnetic field.

III. LOCALIZATION CORRECTIONS IN FRAME OF THE
SIDE-JUMP MECHANISM

Calculating the Feynman diagrams for the off-diago
~Hall! conductivity, Fig. 2, we find~an additional factor 2
comes from the contributions of right vertices!

sxy
(s j)52

ie2l0
2g2

4pm*
Tr (

kk8
szky

2Gk
RGk

A~Gk8
R

2Gk8
A

!, ~5!

where the retarded~R! and advanced~A! Green functions at
the Fermi surface are diagonal matrices

FIG. 1. Anomalous vertex for the coupling to electromagne
field with SO interaction. The dashed line is for the impirity sc
tering and the filled black circle is for the external electromagne
field.
10441
y

re

l

Gk
R,A5diagS 1

m2«↑~k!6 i /~2t↑!
,

1

m2«↓~k!6 i /~2t↓! D .

~6!

Here «↑,↓(k)5k2/(2m* )7M are the energy spectra o
spin-up and spin-down electrons, respectively,m is the
chemical potential, andt↑,↓ are the corresponding relaxatio
times. The relaxation times are determined by the scatte
from the random potential, and they are equal tot↑,↓
5(2pn↑,↓g2)21, wheren↑ andn↓ are the densities of state
for spin-up~majority! and spin-down~minority! electrons at
the Fermi level.

After calculating the integrals in Eq.~5!, we find the side-
jump AH conductivity14 ~in final formulas we restore\ and
use the electron parameters at the Fermi surfaces!

sxy
(s j)5

e2

6\
l0

2~n↓\kF↓vF↓2n↑\kF↑vF↑!, ~7!

where kF↑,↓ and vF↑,↓ are the momenta and velocities o
majority and minority electrons at the Fermi surfaces,
spectively.

Now we consider the localization corrections tosxy
(s j) .

They can be presented by the loop diagrams with diffus
and Cooperons.22–24Assuming the exchange energyM larger
than 1/t, we can restrict ourselves by considering only trip
Cooperons and diffusons, with the same orientation of sp
in the particle-particle~Cooperon! or particle-hole~diffuson!
channels. There are eight diagrams containing such Coo
ons and four diagrams with Diffusons, presented in Figs
and 4, respectively~the figures show only diagrams with le
anomalous vertices!.

We calculate first the quantum corrections due to
Cooperons. Calculating the first two diagrams of Fig. 3@~a!
and ~b!#, we find

c

FIG. 2. Feynman diagrams for AH conductivitysxy
(SJ) ~side-jump

mechanism!.
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Dsxy
(1)5

ie2l0
2g2

8pm*
Tr (

kk8q
szky

2~Gk8
R

2Gk8
A

!

3~Gk
R!2~Gk

A!2C~0,q!, ~8!

where the spin components of the Cooperon22–24are equal to

Cs~v,q!5
1

2pnsts
2

1

2 iv1Dsq211/tso,s11/tw,s

. ~9!

HereDs5vFs
2 ts /d is the diffusion constant of electrons (d

the effective dimensionality24!, tso,s and tw,s are the spin-
orbit and phase relaxation times, respectively. In Eq.~8! we
neglected small momentumq!k;kF in the arguments of
Green’s functions.

The calculation of two other diagrams of Fig. 3@~c! and
~d!# gives us

FIG. 3. Localization corrections tosxy
(SJ) due to the Cooperons

FIG. 4. Localization corrections tosxy
(sj) due to the diffusons.
10441
Dsxy
(2)52

ie2l0
2g2

8pm*
Tr (

kk8q
sz~ky8!2~Gk8

R

2Gk8
A

!Gk8
R Gk8

A Gk
RGk

AC~0,q!. ~10!

After integrating overk andk8, we find that the contribu-
tions of all diagrams with Cooperons, Eqs.~8! and~10!, can-
cel each other exactly. This result can also be seen by c
paring directly Eqs.~8! and~10! and by using the property o
Green’s functionsGk

R2Gk
A5(2 i /t)Gk

R Gk
A .

The diagrams with diffusons~Fig. 4! can be taken into
account as a renormalization of the anomalous vertex by
purities. As is known, the normal electromagnetic vert
without SO correction@first term in Eq.~4!# can be renormal-
ized only for nonpointlike defect.28 Here we show that the
anomalous vertex is renormalized in the case pointlike
fects too.

The equation for the three-leg vertex has the followi
form ~Fig. 5!:

G~k,k8!5G0~k,k8!1g2 (
k1

Gk1

A G~k1 ,k1

1k82k! Gk82k1k1

R , ~11!

where

Ga
0~k,k8!5

iel0
2

4
Vk2k8eabg~kb82kb!sg . ~12!

In view of Eq.~12!, we can look for a solution of Eq.~11!
in the form of matrix in the spin space that depends only
the difference of momenta,Ga(k,k8)5Ga(k82k). Hence,
the solution can be presented as

Ga~q!5Ga
0~q!@12g2P~q!#21, ~13!

whereP(q) is the diagonal matrix

P~q!5(
k

Gk1q
R Gk

A . ~14!

According to Eqs.~11! and ~12!, we can present thex
component of the vertexG(q) as

Gx~q!5qy Gx
y~q!1qz Gx

z~q!, ~15!

where

FIG. 5. The equation for the renormalized anomalous ver
G(k,k8).
1-3
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Gx
y~q!5

ie l0
2

4
Vq diagS 1

D↑q2t↑
, 2

1

D↓q2t↓
D , ~16!

and only theGx
y(q) component is needed, since the seco

term in Eq.~15! gives the vanishing contribution toDsxy
(s j) .

Using Eqs.~15! and~16!, we find the localization correc
tions tosxy

(s j)

Dsxy
(s j)5

ie2l0
2 g2

8pm*
Tr (

kq
sz

qy ky

Dsq2ts

~Gk1q
R 1Gk2q

A !Gk
R Gk

A .

~17!

Taking into account that very small momentaq can be essen
tial for the diffuson,q,(Dt)21/2!k;kF , we can presen
Eq. ~17! in the form

Dsxy
(s j)52

ie2l0
2 g2

8pm*
Tr(

kq
sz

qy
2

Dsq2ts

3~Gk
R2Gk

A!Gk
R Gk

A , ~18!

and, after calculating the integral overk, we find

Dsxy
(s j)52

e2l0
2

4pm*
Tr (

q
sz P~q!, ~19!

whereP(q) is a diagonal matrix with the elements

Ps~q!.
qy

2

Dsq2
. ~20!

The integral overq in Eq. ~19! is mainly determined by the
diffuson at the upper limit,q;(Dt)21/2, for which the ver-
tex Gx

y(q), Eq. ~16!, was not found correctly.
In the three-dimensional case we can estimate the inte

as

E d3q

~2p!3
Ps~q!.

m* kFs
3

~«Fsts!4
. ~21!

Combining Eqs.~19!,~20! with Eq. ~6!, we find the relative
value of the quantum correctionDsxy

(s j)/sxy
(s j).(«Ft)24.

Since the usual correction to the conductivitysxx has the
relative magnitude of («Ft)22, the localization correction to
the off-diagonal conductivitysxy

(s j) turns out to be very small
In the case of effective two dimensionality of quantu

corrections~when the thickness of magnetic filmd obeys
inequalities d!Lw ,LSO, where Lw is the phase-breaking
length andLSO is the SO scattering length!, using Eq.~19!,
we get Dsxy

(s j)/sxy
(s j);(«Ft)23, whereas Dsxx /sxx

;(«Ft)21. Thus, the correction tosxy
(s j) can be neglected fo

any effective dimensionality.

IV. LOCALIZATION CORRECTIONS IN CASE OF THE
SKEW SCATTERING

The localization corrections for the skew scattering h
been calculated earlier.27 It should be noted, however, tha
the result of Ref. 27 was obtained in a different mode
10441
d

ral

s

without spin polarization of electron gas due to the Ston
like itinerant field M @the second term in the Hamiltonia
~1!# but with a partial polarization of spin-orbit scatterers.
avoid possible differences related with the choice of mod
we have calculated the localization corrections to the A
effect due to the skew scattering from the Hamiltonian of E
~1!.

In frame of the skew scattering, we take into account
diagrams with the third-order corrections due to scatter
from impurities, keeping the first order of SO-depending m
trix elements. Without quantum corrections, the relevant d
grams for the skew scattering mechanism are presente
Fig. 6.14 Calculating these diagrams, we find

sxy
(SS)5

pe2l0
2

18\ S kF↓
2 n↓ vF↓

2 t↓
n↓g3

g2
2kF↑

2 n↑ vF↑
2 t↑

n↑g3

g2
D .

~22!

In this formula, the dimensionless factorng3 /g2 contains
the information about both the strength of the random pot
tial and its statistical properties. To make it more physica
sound, we introduce the average values of the second
third powers of the mean potential at an elementary cell^V2&
and ^V3&.

Taking into account that̂V2&5g2 /a0
3 and ^V3&5g3 /a0

6

~wherea0 is the lattice parameter!, we obtain

sxy
(SS)5

p

6

^V3&

^V2&3/2
@sxx,↓~l0 kF↓!2~n↓ a0

3 ^V2&1/2!

2sxx,↑~l0 kF↑!2~n↑a0
3^V2&1/2!#. ~23!

Here the dimensionless factor^V3&/^V2&3/2 depends only on
statistical properties of the random fieldV(r ), whereas the
dimensionless combinationn a0

3^V2&1/2 characterizes the
relative strength of the potential.

Now we consider the diagrams with one Cooperon a
three-leg impurity vertices. There are twelve nonvanish
diagrams of the type similar to that presented in Fig. 7. H

FIG. 6. Diagrams forsxy
(SS) ~skew scattering mechanism!. The

impurity scattering is in the third order, and the spin-orbit scatter
amplitude is denoted by unfilled circle.
1-4
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FIG. 7. First three diagrams describing loca
ization corrections tosxy

(SS). Other diagrams dif-
fer by locations of the spin-orbit vertex~unfilled
circle!.
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the SO-dependent vertex~indicated by the white circle! lies
on one of four possible Green function lines. The other n
diagrams are similar to those of Fig. 7, but differ by t
location of the SO vertex. The corrections from diagra
with diffusons vanish.

After calculating all the diagrams, we find for the ske
scattering

Dsxy
(SS)5

pe2g3

9g2
l0

2S kF↑
2 n↑

2 vF↑
2 t↑

3(
q

C↑~0,q!

2kF↓
2 n↓

2 vF↓
2 t↓

3(
q

C↓~0,q! D . ~24!

Using Eq.~9! and calculating the integral overq, the skew-
scattering correction can be presented in the thr
dimensional case as

Dsxy
(SS)5

e2

8A3 p \
l0

2H kF↑
2 n↑ g3

g2

1

vF↑ t↑
1/2

3F 1

t0↑
1/2

2S 1

tso↑
1

1

tw↑
D 1/2G2kF↓

2 n↓ g3

g2

1

vF↓ t↓
1/2

3F 1

t0↓
1/2

2S 1

tso↓
1

1

tw↓
D 1/2G J , ~25!

wheret0s are some constants (t0s.ts), which cannot be
calculated exactly in the diffusion approximation of Eq.~9!.

In the effectively two-dimensional case, similar calcu
tions give us

Dsxy
(SS)52

e2

36p \
l0

2H kF↑
2 n↑g3

g2
lnFt↑S 1

tso↑
1

1

tw↑
D G

2kF↓
2 n↓g3

g2
lnFt↓S 1

tso↓
1

1

tw↓
D G J . ~26!

Thus, the localization correction to the AH conductivity d
to the skew scattering is nonzero, in agreement with Ref.

V. DISCUSSION AND CONCLUSION

The anomalous Hall resistivity, determined as

RAH5
sxy

sxx
2

, ~27!

acquires the corrections from both diagonal and off-diago
conductivities
10441
e

s
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al

DRAH

RAH
0

5
Dsxy

sxy
0

22
Dsxx

sxx
0

. ~28!

Since the correction to AH conductivity in frame of th
side-jump mechanism is zero, the total localization corr
tion Dsxy is given by Eqs.~25! or ~26!. The relative magni-
tude of this correction depends on the prevailing mechan
of AH effect. Using Eqs.~7! and ~22!, we can find that the
relative order of the AH conductivity due to the skew sc
tering or side-jump is

sxy
(SS)

sxy
(SJ)

.
n g3

g2
~«Ft!. ~29!

The weak-localization approach is valid as long
(«Ft)@1. Thus, forng3 /g2.1, the skew scattering mecha
nism is more important, and the localization correction
determined by Eqs.~25! or ~26!. In the case ofng3 /g2!1,
the prevailing mechanism is side-jump. Since the side-ju
correction is zero, the total localization correctio
determined by Eqs.~25! or ~26!, turns out to be negligibly
small: (Dsxy

(SS)/sxy
(SJ)).(Dsxy

(SS)/sxy
(SS))@(ng3 /g2) («Ft)#1/2

!(Dsxy
(SS)/sxy

(SS)).
Collecting all together, we can formulate our final res

as follows.
~i! For the low-resistivity metals with prevailing skew

scattering, the localization correction to AH resistivity~28!
contains both parts withDsxy @described by Eq.~25! or ~26!#
andDsxx . No cancellation between them is possible due
the separation of contributions from the different spin cha
nels.

~ii ! For the high-resistivity metals or doped semicondu
tors with prevailing side-jump mechanism, the correction
Dsxy is negligibly small, so that the localization correctio
to AH resistivity, Eq.~28!, is exactly twice the relative cor
rection to the diagonal conductivity~with the opposite sign!.

These results, concerning the AH effect, differ signi
cantly from what is known for the usual Hall effect, de
scribed by a Hall constantRH . It has been shown29–31 that
the localization correction toRH , determined by an analo
gous formula~28!, is identically zero due to the mutual can
cellation of contributions from the diagonalDsxx

(loc) and off-
diagonal Dsxy

(loc) , conductivities. On the other hand
considering the interaction corrections toRH , it has been
found thatDsxy

(int)50. Thus, the total quantum correction
to the Hall constant are reduced toDRH /RH

0

522 (Dsxx
(int)/sxx).

The experiments on amorphous ferromagnetic Fe film32

have shown that the quantum correction to the AH resistiv
~28! is double the correction to the diagonal conductivi
This is in accordance with our result for the localization co
1-5
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rections under condition that the side-jump mechanism p
vails. The latter is in agreement with the comparatively h
resistivity of amorphous Fe films studied in Ref. 32.

But our main argument in favor of the prevailing sid
jump mechanism20 is that the random field experienced b
the electrons in amorphous films is more naturally descri
by a distributionP$V(r )% with nearly equal probabilities o
positive and negative deviations of the random poten
V(r ) from zero. In such a case the parameterng3 /g2 in Eq.
~29! is small thanks tôV3&/^V2&3/2!1.

The authors of Refs. 27,32 have given another expla
tion of the measurements: suppression of localization cor
tions to the off-diagonal conductivity due to very stron
spin-orbit scattering (tso.t), upon the prevailing skew sca
tering mechanism. In addition, the quantum corrections
the AH conductivity due to electron-electron interaction ha
been also calculated for the skew scattering in Ref. 27,
10441
e-
h

d

l

a-
c-

o
e
d

the cancellation of interaction corrections inDsxy
(SS, int) has

been proved. It should be noted, however, that the Har
diagrams were not taken into account in this calculation.

In conclusion, we have shown that the role of localizati
corrections is quite different for the skew scattering and si
jump mechanisms of AH effect. We suggest that the exp
mental results of Ref. 32 can be interpreted as a rela
smallness of the localization correction to the off-diago
conductivity upon the prevailing side-jump mechanism.
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