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Abstract. We present the study of spin and charge transport in nanostructures in the presence of
spin-orbit (SO) interaction. Single band tight binding Hamiltonians for Elliot–Yafet and Rashba
SO interaction are derived. Using these tight binding Hamiltonians and spin resolved Landauer–
Büttiker formula, spin and charge transport is studied. Specifically numerical results are presented
for a new method to perform magnetic scanning tunneling microscopy with non-magnetic tip but
in the presence of Elliot–Yafet SO interaction. The spin relaxation phenomena in two-dimensional
electron gas in the presence of Rashba SO interaction are studied and contrary to naive expectation,
it is shown that disorder helps to reduce spin relaxation.
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1. Introduction

The usual electronic devices based on semiconductor relies on the electronic charge distri-
bution which are easily shaped and controlled to make logic gates. Since the gate switch-
ing and intercommunication rates limits the device speed, efforts to improve computational
power and speed have led researchers to explore the possibility to use electron spin, rather
than its charge as the basis of new electronic devices dubbed as ‘spintronics’ [1]. The new
field of spintronics exploits the ability of conduction electrons in metals and semiconduc-
tors to carry spin-polarized current. However, for the success of electronic devices based on
electron spin it is essential that electron remembers its spin polarization over the length of
the device. This is especially important for electronic applications, because if spin relaxes
too fast, the distance traversed by electron without losing its spin will be too short to serve
any practical purpose. In view of this a lot of effort went into identifying different mech-
anism of spin relaxation and reducing them. In semiconductor devices the most important
interaction which causes spin relaxation is spin-orbit (SO) interaction. The spin-orbit in-
teraction couples the spin degree of freedom to the spatial motion of the electron, which
significantly influences the transport properties of solids. Among important consequences
of spin-orbit interaction on electronic transport which have been widely investigated in
the past let us mention the anomalous Hall effect and anisotropic magnetoresistance of
ferromagnets, as well as weak antilocalization in disordered conductors.
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The spin-orbit interaction is responsible for various spin-relaxation mechanisms of con-
duction in metals and semi-conductors. In the Elliott–Yafet mechanism [2], spin-relaxation
is due to random spin-flip scattering due to spin-orbit interaction at impurities. In the
D’yakonov–Perel mechanism [3], spin-relaxation arises from spin-precession of electrons
due to the spin-orbit interaction between two scattering events. The Bir–Aronov–Pikus [4]
involves the exchange interaction with holes, which in turn rapidly relaxes their spin by
spin-orbit interaction. For a recent review see ref. [5].

The spin-orbit interaction is a relativistic correction to the non-relativistic Pauli equation,
which arises as a combination of two effects: (i) the effective magnetic field experienced
in its rest frame by an electron moving in an electric field and (ii) the Thomas precession
of the rest frame of an accelerated electron. It is derived from the Dirac equation and
expressed as

HSO =
~

4m2
0c2 (∇V (r)�σ) �P: (1)

Here m0 is the free electron mass, P is the momentum operator, e is the electronic charge,
σ=(σx;σy;σz) is the vector of Pauli matrices, V(r) is the potential energy and ∇ stands for
spatial gradient. In nanostructures depending on the origin of potential gradient,∇V(r),
the SO interaction in eq. (1) is known by various names. In semiconductor nanostructures
without structural asymmetry the most important contribution to the potential gradient is
due to the presence of impurities, as in metal films, we call this, impurity induced spin-
orbit interaction, also known as Elliot–Yafet SO interaction [2]. In a two-dimensional
electron gas, the combined effect of the impurity induced spin-orbit coupling and of a
structural asymmetry of the stack with respect to the plane parallel to the layers results in
an effective SO interaction known as Rashba effect [6]. This effect can be controlled by an
external gate voltage [7]. It is used in the spin transistor proposed by Datta and Das [8],
which is one of the paradigms of the field of spin-electronics [1].

The present paper is devoted to studying the influence of the Elliot–Yafet SO coupling
and Rashba SO coupling on various phenomena of spin-dependent transport.

In x2 we introduce the Hamiltonian and derive the corresponding tight-binding Hamil-
tonian for the impurity induced SO interaction (Elliot–Yafet) and Rashba SO interaction in
subsections 2.1 and 2.2 respectively [9,10]. Using the derived tight binding Hamiltonian
we study the effects of SO interaction on charge and spin transport. Section 3 presents
simulation results for a new method to image magnetic structures of surface with a non-
magnetic scanning tip, using the tight-binding model derived in section 2.1. This method
uses the spin-orbit interaction due to the presence of impurities. Section 4 is devoted to the
spin transport in the presence of Rashba SO interaction and x5 discusses the anisotropy of
conductance of a ferromagnetic-2DEG interface. Finally we conclude in x6.

2. Hamiltonian

2.1 Tight binding Hamiltonian in the presence of impurity induced spin-orbit interaction

In this section we derive the tight binding Hamiltonian for impurity induced spin-orbit
coupling for 3D systems, including exchange interaction. We begin with the following
single band Hamiltonian in continuum including spin-orbit and exchange coupling [9],
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H =
P̂2

2m�
+V (r)+

∆
2
~µ(r) �~σ +λ (∇V(r)�~σ) � P̂; (2)

where the first two terms are the usual kinetic and potential energies while the third and
fourth terms represent exchange and spin-orbit interaction, respectively, m � is the effec-
tive mass of electron, ∆ the exchange splitting (∆=0 for non-magnetic system), λ is the
spin-orbit interaction parameter, ~µ a unit vector in the direction of magnetization of FMs
and is given by (cosφ sin θ , sin φ sin θ , cos θ ), ~σ the Pauli operator and P̂ the momentum
operator. By discretizing the above Hamiltonian on a simple-cubic lattice with onsite dis-
order, we obtain the following tight binding Hamiltonian with spin-orbit interaction whose
strength is determined by disorder

H = ∑
r;σ ;σ 0

�
εrδσσ 0 +

∆r

2
~µr �~σσσ 0

�
c+r;σ cr;σ 0 + t ∑

hr;r0iσ
c+r;σ cr0

;σ +HSO; (3)

where HSO is expressed as

HSO =�iαSO ∑
r;σ ;σ 0

i; j;k;νγ

ν ;γ∆εr+γak ;r+νa j
c†

r;σ cr+νa j+γak
σ i

σσ 0εi jk: (4)

Here c+r;σ is the creation operator of an electron with spin σ at site r, εr the on-site en-
ergy and ∆εr+γak ;r+νa j

= εr+γak
� εr+νa j

, ai is the lattice basis vector along axis i, σ i
σσ 0

denotes the Pauli matrix elements, αSO is dimensionless spin-orbit parameter. The dummy
indices ν and γ takes the values�. The summation hr;r 0i runs over to the nearest neighbor
sites. The symbol εi jk is the Levi-Civita’s totally antisymmetric tensor, where ijk label the
three coordinate axes. The tight-binding parameters in eqs (3) and (4) are related with the
parameters in eq. (2) in the following way:

t =�
~

2

2m�a2 ; αSO =
λ~
a2 : (5)

The above tight binding model includes two factors: spin-dependent band structure and
spin-independent disorder. The band structure takes into account the difference in the den-
sity of states and the Fermi velocity between the two spin component in the ferromagnet.
The disorder represents the structural defects in the systems and is a source of spin-orbit
scattering and it takes the form of spin independent random variation in the atomic on-
site energies. In the presence of disorder, spin-orbit coupling term causes hopping along
the diagonal and is the source of spin-flip scattering. In this sense this model is equiva-
lent to next-nearest-neighbor (nnn) tight-binding model, except that in the usual nnn tight-
binding model, hopping amplitude to the next nearest neighbor is fixed while in our model
it depends on disorder strength and the spin of electron. Hence within this model spin-
relaxation length is determined by disorder strength . The relevant physical parameters are
mean-free-path, spin-relaxation length, Fermi energy and the spin polarization of the fer-
romagnet at the Fermi level. The model parameters are, on-site energy, hopping energy,
exchange splitting and spin-orbit coupling parameters. Physical parameters are related to
the model parameters in the following way:
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lm =
jtj
π

s
ε f

jtj
1

N3D(ε f )h(V � V̄ )2ic
a; (6)

lSO = lm

r
τSO

τm
�

3lmjtj
2jαSOjε f

; (7)

P =
N"(ε f )�N#(ε f )

N"(ε f )+N#(ε f )
�

q
ε f +∆�

q
ε f �∆q

ε f +∆+
q

ε f �∆
; (8)

where lm, lSO, P and ε f are elastic mean free path, spin relaxation length, spin polarization
of the ferromagnet and Fermi energy respectively. Here a is the lattice spacing and h:::i c
represents the configuration averaging (V is a disorder potential), other symbols have the
same meaning as defined in the x3. In x3, using the above tight binding Hamiltonian,
we present quantitative results to perform magnetic scanning tunneling microscopy with a
two-terminal non-magnetic tip in the presence of spin-orbit coupling [9,11]. However, the
model presented above is general and can be used to study any general system.

2.2 Tight binding Hamiltonian for 2DEG in the presence of the Rashba
spin-orbit interaction

To obtain an appropriate Hamiltonian for 2DEG including Rashba SO interaction, we con-
sider that 2DEG is lying in the xy plane, therefore the momentum operator in eq. (2) is
restricted to the 2d xy plane, with this condition the continuum Hamiltonian of eq. (2)
reduces to [10,12]

H =
~k2

2m�
+V (x;y)+

∆
2
~µ(r) �~σ +λR � (σxky �σykx); (9)

where λR= λ (∇Vz) is the Rashba SO parameter and is determined by the interfacial electric
field perpendicular to the 2DEG plane, k is the momentum in the xy plane; σ x,σy are the
Pauli matrices. Tight binding model corresponding to the above Hamiltonian is obtained
by discretizing eq. (9) on a square two-dimensional lattice of lattice spacing a with N x sites
in the longitudinal direction (current direction) and Ny lattice sites (will be also referred as
the width of the channel) along the transverse direction [9,10,13]

H = ∑
i; j;σ ;σ 0

�
(εi; jδσσ 0 +

∆i; j

2
~µi; j �~σσσ 0)c

+

i; j;σ ci; j;σ 0 +h:c:

�

+t ∑
i; j;σ

n
c†

i+1; j;σ ci; j;σ + c†
i; j+1;σ ci; j;σ +h:c:

o

� λSO ∑
i; j;σ ;σ 0

n
�c†

i+1; j;σ ci; j;σ 0(iσy)
σσ 0

+c†
i; j+1;σ ci; j;σ 0(iσx)

σσ 0

+h:c:
o
; (10)

where i and j enumerates the sites along the x and y axis respectively. The λ SO = λR=2a
is the Rashba spin-orbit coupling parameter having dimensions of energy, and can be con-
trolled by an external applied gate voltage [7,14]. The other symbols in eq. (10) has
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the same meaning as in eqs (3) and (4), except that now they are restricted to the two-
dimensional space. The Rashba spin-orbit coupling, λ SO, causes spin splitting for k 6= 0,
∆E = 2αk, which is linear in momentum and at the same time causes the spin to precess
around the Rashba field, BR(k) = λR(kyx̂� kxŷ), with frequency ω = ∆E=2~. The length
over which spin precesses by an angle π is known as spin precession length (L sp) and is
given by

Lsp =
πt

λSO
a: (11)

Scattering from boundary or impurity changes the direction of Rashba field B R(k) which
depends on the electron wave vector and causes the electron to precess around a new direc-
tion, thus randomizing the precession process causing spin dephasing. The corresponding
spin dephasing time (τφ ) is 1=(ω2τi), where τi is the scattering time. In diffusive regime τ i
is replaced by the elastic scattering time, τel, leading to spin relaxation length

Lφ =
q
(1=2)v2

f τelτφ = Lsp (12)

which is independent of mean free path (note that for impurity induced SO scattering,
presented in section 2.1 the spin-relaxation length given by eq. (8) depends on mean free
path). However, in the presence of strong disorder when the spin precession length L sp
is much larger than the mean free path Le the spin relaxation length can show deviation
from the relation given in eq. (12). We report numerical calculation in x4 which shows
these deviation. The mean free path in two-dimension in the presence of Anderson onsite
disorder with width W , within Born approximation is given by

Le =
12~v f

2πN2d(E f )W
2 a; (13)

where N2d(E f ) is the density of states. Here we would like to remind the reader that in 2D
tight binding model, density of states are singular in the middle of the band, and goes to a
constant near the band edge. This effects the mean free path drastically in the band center
and can lead to a non-monotonic behavior for spin coherence as a function of Fermi energy
as we will see in x4.

3. Magnetic scanning tunneling microscopy with a non-magnetic tip:
An effect of impurity induced spin-orbit coupling

Imaging the magnetic structures of surfaces down to the atomic level is a major goal of
surface magnetism. Magnetic scanning tunneling microscopy (MSTM) provides a way
to image magnetic domains on the surface. In the conventional approach magnetic sen-
sitivity of tunneling current has been based upon the spin-valve effect [15], the tunneling
current between two ferromagnets separated by a tunnel barrier depend on the relative ori-
entation of the magnetizations of the ferromagnets. In this approach a magnetic tip has to
be used. The experimental realization of magnetic scanning tunneling microscopy based
on spin-valve effect was realized by Wiesendanger et al [16], who investigated a Cr(001)

Pramana – J. Phys., Vol. 58, No. 2, February 2002 297



T P Pareek and P Bruno

surface with a ferromagnetic CrO2 tip, their observation confirmed the model of topolog-
ical antiferromagnetism between ferromagnetic terraces separated by monoatomic steps.
They measured a spin asymmetry of the order of 20%. Recently this method has been
used to image magnetic domains [17–20]. It was shown that, by periodically changing
the magnetization of the tip, it is possible to separate spin-dependent tunnel current from
the topographic dependent current and hence the magnetic structure of the surface can be
recorded. Using this method Wulfhekel et al [17] studied magnetic domain structure on
a single crystalline Co(0001) surface and polycrystalline Ni surface. In refs [18–20], a
two-dimensional anti-ferromagnetic structure of Mn atoms on tungsten(110) surface was
investigated. It was shown that the spin-polarized tunneling current is sensitive to the mag-
netic superstructure, and not to the chemical unit cell [18].

However, the MSTM with a magnetic tip has a drawback that the magnetostatic interac-
tion between the tip and magnetic sample cannot be avoided, which are likely to influence
the domain structure. In view of this an alternative approach was recently proposed to per-
form the magnetic scanning tunneling microscopy with a two-terminal non-magnetic tip
[11]. It is based upon Mott’s spin-asymmetry effect in scattering caused by disorder [21].
It was shown that due to spin-orbit coupling the tunnel conductance between the ferro-
magnetic surface and one of the tip terminal depends on the orientation of magnetization.
Because of the spin-orbit interaction the intensity of the scattered beam depends on the
orientation of spin-polarization axis of the incidents electrons, i.e., it is sensitive to the spin
component perpendicular to the scattering plane. In other words tunnel conductance is spin
asymmetric. However, to observe this spin asymmetry effect, caused by Mott scattering, a
three-terminal device is a prerequisite. Due to the Casimir–Onsager symmetry relation the
conductance of a two-terminal device has to be symmetric with respect to magnetic field
(in our case spin plays the role of magnetic field since as far as time reversal properties
are concerned ‘spin’ and ‘magnetic field are equivalent), this is a requirement imposed by
the underlying microscopic time reversal symmetry. However, in the case of the three-
terminal device, there is no such restriction on the conductance; rather, a more generalized
symmetry relation exists involving all terminals as shown by Büttiker [22]. Hence to per-
form magnetization sensitive scanning tunneling microscopy with a non-magnetic tip, it is
necessary to use a two-terminal tip [11].

In this section we present numerical simulation results of the three-terminal STM device
within the single-band tight-binding model introduced in section 2.1, using recursive Green
function method and Landauer–Büttiker formula for conductance [9].

A cross-section of the system in the xy plane, for the calculation of spin sensitivity of
the proposed two-terminal non-magnetic tip is shown in figure 1. The system consists
of three regions: (i) the ferromagnetic lead (labelled 1 in figure 1), (ii) the central region
and, (iii) the two non-magnetic terminals (labelled as 2 and 3 in figure 1). The central
region is composed of an insulating tip, such as those routinely used to perform atomic
force microscopy, coated on two opposite faces by a thin metallic film. The metallic coat-
ing has a thickness d. This is shown in the central region where the empty circles depict
vacuum, black circles corresponds to insulating sites and the rest corresponds to metallic
sites (hatched circles) and the impurities (stars). Between the ferromagnetic surface (gray
circles in figure 1) and the tip there is a vacuum layer of one lattice spacing (empty circles
in figure 1). The tip is placed symmetrical with respect to the xz plane. Current flows along
the two faces of the tip which makes an angle of �45Æ with the x-axis. The structure
shown in figure 1 consists of three semi-infinite leads (�∞ � i � 1 and Nx+ 1 � i � ∞)
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Figure 1. Cross-section of tip-geometry shown in xy plane. Gray circles denote ferro-
magnetic sample, the empty circles depict vacuum, black circles corresponds to insu-
lating sites and the rest corresponds to metallic sites (circles with downward diagonal
lines) and the impurities (empty stars) in the tip.

separated by the tip region 1� i � Nx. The thickness of the metallic coating on the tip is
da where a is the lattice constant and the cross-section of the system is (Nya�Nza), where
Ny and Nz are the number of sites along y- and z-axes. For numerical calculation we have
taken Ny = Nz = 20, Nx = 10 and the metallic coating on the tip has a thickness of 4 lattice
spacing, i.e., d = 4 as shown in figure 1 [22,23].

As shown in figure 1, in the ferromagnet, the left face of the tip and the right face of the
tip is connected to three reservoirs at chemical potentials V1, V2 and V3 respectively. Let I1,
I2 and I3 be the corresponding incoming currents in the three terminals. The currents are
related to potentials by

Ip = ∑
q6=p

Gpq(Vp�Vq): (14)

The above expression is gauge invariant and the currents conservation law ∑i Ii = 0 requires
that Gpq = Gqp be satisfied.

The calculation of the conductance of the structure is based on the non-equilibrium
Green’s function formalism [24,25]. When applied to multi-terminal ballistic mesoscopic
conductor we obtain the following result for the conductance [23]

Gpq =
e2

h
Tr[ΓqGRΓpGA]: (15)

Here p and q enumerates the three terminals and the upper indices R and A refer to the
retarded and advanced Green function of the whole structure taking leads into account.
Here Γp(q) self-energy function for the isolated ideal leads are given by Γ p(q) = t2Ap(q),
where Ap(q) is the spectral density in the respective lead when it is decoupled from the
structure. The trace is over space and spin degrees of freedom, and all the matrices in
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eq. (4) are of size (2Ny �Nz;2Ny �Nz), where Ny and Nz are the number of sites along
the y and z direction and the factor 2 takes into account the spin degree of freedom. All
the quantities in the above equations are evaluated at the Fermi energy. To calculate the
required Green function we use the well-known recursive Green function method [26].

We present numerical results for a system of cross-section (20 � 20) in yz plane and a
length of 10 lattice spacing along the x direction. The number of metallic layers on the tip,
i.e., d in figure 1 is taken to be 4 lattice spacings. The hopping parameter, t, is same for
all pairs and set to �1 for numerical calculation. The on-site energies in the leads and on
the metal coating on the tip is set to be zero, while in the vacuum layer it is ε vac = 4:0jtj,
and in the tip of the insulating region it is ε ins = 10:0jtj. The Fermi level throughout the
calculation is kept fixed at ε f = 3jtj above the bottom of the band. For disorder we consider
Anderson model in which a random on-site energy, characterized by square distribution of
width W, is added to the on-site energy of perfect case. In our case disorder is added only
in the metallic coating on the tip; everywhere else the system is perfect.

In figure 2 we have plotted the conductance G 12 and G13 as a function of magnetization
angle θ with respect to the z axis. We rotate the magnetization in the yz plane such that the
magnetization is always perpendicular to the x-axis or in other words the angle φ does not
change and has a fixed value of 90Æ. To be specific, when θ = 0 and φ = 90Æ, magnetization
is parallel to the z-axis while for θ = 90Æ and φ = 90Æ the magnetization is parallel to the
y-axis. We have taken ε f = 3jtj, αSO = 0:02 and ∆ = 2:4jtj and the Anderson disorder
strength is W = 1jtj.

This set of parameters corresponds to a mean free path of l m = 80a, spin relax-
ation length of lSO = 25lm and polarization is P = 50%. We notice that the conduc-
tance shows approximately cos(θ ) as a function of angle, which is expected since in
our geometry the tip is placed symmetrically to xz plane. However, because of disor-
der the effective axis in the system does not coincide with the chosen spin quantization
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Figure 2. Conductance (G12 and G13) versus θ plot for the two terminals for a fixed
value of φ = 90. The other parameters chosen for this figure are εf = 3:0jtj, ∆= 2:4jtj,
αSO = 0:02, and W = 1jtj.
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Figure 3. Plot of the average two-terminal conductance (G12 +G13)=2 versus θ . The
other parameters are same as those in figure 2.

axis, i.e., z axis, and also since the structure considered is three-dimensional the scattering
plane is not fixed and hence the conductance variation with magnetization angle does not
show an exact cosine behavior. Also we notice that the variation of G 13 is opposite to that
of G12. This is in agreement with the underlying microscopic time-reversible symmetry
which requires that the two-terminal conductance should be symmetric under time reversal.

To verify this point in figure 3 we have plotted the sum of (G 12 +G13)=2. We see that
the two-terminal conductance is symmetric with respect to magnetization angle θ and also
the magnitude of oscillation is much smaller than either G12 or G13. This is due to the
fact that the variation of G12 or G13 with θ is of first-order with respect to the spin-orbit
coupling, whereas the variation of G12 +G13 is of second order with respect to spin-orbit
coupling. Actually the latter can be viewed as related to the anisotropic magnetoresistance
of ferromagnets, whereas the former is related to the extraordinary Hall effect. In fact
from this figure it is clear that the conductance of a ferromagnetic–nonmagnetic interface
will be anisotropic in the presence of spin-orbit coupling [10]. The essential point here
is that the conductance of a ferromagnetic-nonmagnetic interface, in the presence of SO
interaction depends on the magnetization angle of ferromagnet and is consistent with the
Büttiker symmetry relation [22]. This anisotropy exist irrespective of the dimensionality
of the system considered as we will see later in x5.

In figure 4 we plot spin asymmetry as a function of polarization of ferromagnet for the
terminal 2. We have defined the spin-asymmetry as

A =
Gmax

12 �Gmin
12

Gmax
12 +Gmin

12

; (16)

where to find Gmax
12 and Gmin

12 we generate a curve as shown in figure 3 for each set of
parameters and from these points we get the corresponding maximum and minimum val-
ues. This is necessary since the variation of conductance with magnetization angle does
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Figure 4. Spin asymmetry A as a function of polarization for different disorder strength.
The other parameters are ε f = 3:0jtj and αSO = 0:02.

not follow exact cosine behavior, the maxima and minima need not occur exactly at zero
and π respectively. We have fixed Fermi energy at ε f = 3jtj and αSO = 0:02. Different
curves in figure 4 correspond to disorder strengths W = 1jtj (solid line), W = 2jtj (dotted
line), W = 2:5jtj (dot–dashed line) and W = 4jtj (dashed line) whose corresponding mean-
free-paths are respectively 80a, 10a, 6a, and 3a. Although all these curves correspond to
different mean-free-paths, the ratio lSO=lm is the same for all the curves and is equal to 25,
since this ratio is determined by Fermi energy and spin-orbit coupling strength, which are
kept fixed here.

We see that for a fixed disorder strength the spin asymmetry increases linearly with the
polarization or in other words spin asymmetry is directly proportional to the polarization
of ferromagnet. However, for a fixed polarization value, spin asymmetry shows a non-
monotonic behavior. As we increase disorder strength, spin asymmetry first increase and
then starts decreasing. This shows that the spin asymmetry is maximum when the system is
in quasi-ballistic regime, since the multiple scattering destroys the spin asymmetry effect.
This is clearly visible in figure 4 where spin asymmetry is maximum, for a fixed value of
polarization, at a disorder strength W = 2jtj, corresponding to a mean-free-path of 10a,
while it is minimum for W = 4jtj corresponding to a mean-free-path of 3a lattice spacings.
The order of magnitude of spin asymmetry is 5%, which is in good agreement with the
prediction in ref. [11].

In figure 5 we have studied the behavior of spin asymmetry as a function of spin-orbit
coupling parameter αSO. The other parameters are same as in figure 4. We notice that the
spin asymmetry shows a linear behavior for small values of α SO � 0:03. For larger αSO the
linear behavior is no longer seen because for a fixed disorder, i.e., fixed l m, as we increase
αSO, correspondingly, lSO, i.e. spin-relaxation path decreases, hence the higher order effect
in spin-orbit coupling starts dominating so we no longer observe a linear behavior. Also
we see that for a fixed αSO, spin asymmetry shows a maximum at a disorder strength of
around W = 2jtj. This is in harmony with the results presented in figure 4. A typical value
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of spin asymmetry is of the order of 5%. So from the results of figures 4 and 5 we can say
with confidence that the efficiency of the proposed three-terminal STM device would be
maximum when the device operates in quasi-ballistic regime.

In summary we have developed a new model to take into account spin-orbit scattering
within the single-band tight-binding model. Using this model we have done numerical
calculations of MSTM with a non-magnetic tip. The order of magnitude of the spin asym-
metry is about 5%, which is in good agreement with the qualitative estimate given in [11],
and the effect is maximum when the device operates in the quasi-ballistic regime. The spin
asymmetry of the present effect is smaller than the one obtained in the spin-valve tunneling
structures. However, it has some advantages. In particular since the tip is non-magnetic, it
is insensitive to an external magnetic field. This allows one to study the domain structure
as a function of applied field. Furthermore, the problem of the magnetostatic interaction
between the tip and the magnetic sample is avoided, which in case of a magnetic tip would
give rise to undesirable magnetic forces between the tip and the sample and are likely to
influence the domain structure. Another important advantage of this technique is that by
measuring separately the currents I2 and I3 of the two-tip terminals, and by combining them
appropriately, one can separate the weak magnetic contrast from the dominant topographic
contrast: the sum I2+ I3 depends only on the topography, whereas the magnetic informa-
tion is contained in the difference I2+ I3. Besides all these advantages it has an intrinsic
limitation that only in-plane components can be studied and also since multiple scattering
diminishes the spin-asymmetry effect, it is necessary that the device operates in a quasi-
ballistic regime. However, to construct such a tip would be experimentally challenging.
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Figure 5. Spin asymmetry A, as a function of lm=lSO for different disorder strength. The
other parameters are ε f = 3:0jtj and ∆= 2:4jtj. Corresponding value of polarization is
50%.
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2DEG1 2x

y

Figure 6. A 2DEG lying in xy plane connected to two semi-infinite ideal leads.

4. Spin transport in two-dimensional electron gas in the presence
of Rashba spin-orbit interaction

In this section we present a study of spin coherence in 2DEG in the presence of Rashba
SO interaction using the tight binding Hamiltonian presented in section 2.2. We consider
a system 2DEG lying in xy plane as shown in figure 6, with Nx sites along the x-axis
(the current direction) and with Ny (will also be referred as the width of the channel) sites
along y-axis, i.e., transverse direction perpendicular to the current direction. The 2DEG is
connected to two ideal non-magnetic leads 1 and 2 as shown in figure 6.

Though the injected current is unpolarized, by analyzing the spin-resolved conductance
for a given quantization axis we can infer the information about spin coherence. To this
end we calculate spin resolved conductances using Landauer–Büttiker [22] formalism as
presented in eq. (15). The two terminal spin resolved conductance (for a given spin quan-
tization axis) is given by [10]

Gσσ 0

(εF) =
e2

h
Tr[Γσ

1 Gσσ 0
+

1Nx
Γσ 0

Nx
Gσ 0σ�

Nx1 ]; (17)

where the symbols have the same meaning as defined in eq. (15). The trace is over spatial
degrees of freedom. The total conductance is the sum of spin-spin conserved conductance
and spin-flip conductance, i.e., G = Gsc +Gsf where the spin-spin conserved and spin-flip
conductance are Gsc = G""+G## and Gsf = G"#+G#" respectively. We point out that in
our simulation the injected current is unpolarized since the ideal leads are non-magnetic.
However by analyzing the spin resolved conductances we can study the spin coherence
phenomena which would be observable when the injector and the detector are magnetic.

Figure 7 depicts the conductance and spin resolved conductance for different spin quan-
tization axis as a function of length along the x-axis, i.e., current direction. The behavior of
spin resolved conductance is different for different quantization axis since the system con-
sidered here is confined along transverse y direction and the effective Rashba field B R(k) is
almost parallel to the y-axis. Hence the spin polarization does not show the oscillation, for
the case (lower panel in figure 1) when the spin quantization axis is along the y-axis. We
note that the spin coherence length (Lφ ) is three times larger than the spin precession length
(Lsp) (in figure 6 the point where the difference between G sc and Gsf tends to zero). Since
the mean free path (122a) and the spin precession length (104a) are of the same order, this
regime corresponds to large elementary rotation during electron free flight, but still spin
coherence length is longer than the spin precession length. An appropriate quantity which
is suitable to study spin coherence is polarization of the transmitted electrons, defined as
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P=
Gsc�Gsf

Gsc+Gsf
: (18)

From the definition it is clear that the polarization lies strictly between+1 (spin conserved)
and�1 (spin flip). The polarization corresponding to figure 1 is shown in figure 8. We see
that polarization is always positive for spin quantization axis y while for spin quantization
axis x and z, it shows oscillation of larger amplitude. The amplitude of oscillation is differ-
ent for x and z direction. This implies that for Datta–Das [8] spin transistor a larger current
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Figure 7. Conductance ( ), spin conserved conductance (- - -) and spin flip
conductance (� � �) as a function of channel length. Left panel spin quantization axis is
y-axis, for right panel x-axis, channel width is 80. The model parameters are Ef = 1:1t,
W = 0:5jtj, and λSO = 0:03jtj.
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Figure 8. Polarization as function of channel length, parameters for this fig is same as
those for figure 1.
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modulation will be obtained as a function of gate voltage when the magnetization direction
of injector-detector ferromagnets are parallel to the current direction.

Figure 9 illustrates the point that in the diffusive regime to preserve spin coherence one
need to confine electrons to a width of the order of mean free path and not to tens of mean
free path as claimed by real space Monte Carlo simulation [28]. The mean free path for
figure 3 is 30a. We see that the polarization for channel width 30a, 50a and 80a decays
much faster as a function of channel length compared to the channel width 10a and 20a,
which is less than the mean free path. This shows a cross over from quasi-ballistic regime
to diffusive regime. Also the polarization remains almost unchanged corresponding to
channel width 10a, which is consistent with the 1D limit exhibiting no spin decoherence,
since all rotations are along one axis and are commuting [29].

The results presented above were in the regime where the mean free path and spin pre-
cession lengths were such that during free flight electrons spin precession was of finite
value. However, the other regime of small precession during electron’s free flight can give
rise to qualitatively different results as seen in figure 10, where we have plotted polariza-
tion for spin quantization axis y for different mean free paths keeping the spin precession
length fixed. This is the regime where (lmfp � Lsp or Lsp=Le � 1), so that during its free
flight electron polarization precesses by a small angle. As we reduce mean free path while
keeping spin precession length fixed we observe an enhancement of spin coherence, or in
other words polarization decay is suppressed, i.e. disorder helps to preserve spin coher-
ence. Note the opposite behavior for λSO � 0:02. This is the regime of finite precession
during free flight and disorder reduces spin polarization which is opposite to the behavior
for small precession regime. However, for large values of λ SO � 0:1, spin polarization
increases as seen in the right panel.

Thus encouraged by the results we study the spin coherence as a function of Fermi
energy. Motivation comes from the simple observation that the mean free path in two
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Figure 9. Polarization as a function of channel length for different channel width. Mean
free path and spin precession length are 30a and 104a (λSO = 0:02jtj) respectively. The
other parameters are same as those for figure 1.
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Figure 10. Polarization as a function of Rashba spin-orbit coupling parameter. Differ-
ent curves corresponds to different mean free path as shown in the figure. The system
size is 80 � 80.

dimension behave like Le �
p
(E f )=(N2d(E f )W

2), any deviation from non-parabolicity
in the band will affect the density of states and therefore the spin coherence. Near the
band edges, where energy band can be well-approximated by parabola, the mean free path
increases as Fermi energy is increased since N2d(E f ) is constant. However as one ap-
proaches the band center, N2d(E f ) start to diverge logarithmically within 2d tight binding
model (Von Hove singularity). This in turn causes mean free path to decrease. This is due
to non-parabolicity of the energy band and in recent experiments by Hu et al [14], it was
reported to cause a reduction in Rashba spin-orbit coupling λ SO by 25%. The reduction in
λSO due to non-parabolicity is encouraging since it will increase the spin precession length
which can only help to push the parameters in the regime of small precession. From the dis-
cussion above we see that as we move away from the band edges, initially mean free path
will increase and then starts to decrease, and will be shortest at the band center. Though
the presence of disorder will weaken the singularity in the density of states, it still remains
peaked at the band center as reported recently in ref. [32]. Hence we expect that for any
value of spin precession length, the band center will always correspond to the regime of
small precession and therefore the enhancement of spin coherence, i.e., polarization should
be maximum at the band center.

This is clearly seen in figure 11, where we have plotted polarization as a function of
Fermi energy for different strength of disorder, where λ SO = 0:02 or the equivalent spin-
precession length is Lsp = 157a. We notice that in the middle of the band polarization
enhancement is largest compared to the ballistics case even for the weak disorder, i.e,
W=t = 0:5 and 1.0. This is in agreement with the fact that density of states are peaked at
band center [32]. Also it is seen that polarization for W=t = 0:5; 1:0 and 2.0 decreases
till jEf j � 2:0 (measured from the band edge) and beyond this point increases in disorder
strength always enhances the polarization. In the energy window �2 � E F � 2 we are
always in the regime of small rotations i.e., Lsp=Le � 1. Hence polarization is enhanced
compared to ballistic case irrespective of the disorder strength. Beyond�2� E f � 0 the
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Figure 11. Polarization as a function of Fermi energy in units of jtj. Different curves
corresponds to different values of disorder strengthW . The system size is 80 � 80. The
Rashba spin-orbit coupling λSO = 0:02, corresponding spin precession length is 157a.
Disorder averaging was performed for 20 different realization for each W .

curve for W=t = 2:0 shows an increase in polarization. This is expected since an increase
in disorder only helps to decrease the mean free path. This is in agreement with the results
presented earlier. So from this curve we can safely draw the conclusion that as we move
away from the band edge, polarization will decrease initially and then will start to increase
again till the band center, i.e. polarization shows a non-monotonic behavior as a function
of Fermi energy. This is the coupled effect of disorder and non-parabolicity of energy
band. This non-monotonic behavior should be seen with reference to the recent experiment
on n-type GaAs [33], where observed spin life-time show a non-monotonic behavior as
a function of carrier density. In this experiment carrier density was controlled through
doping, which increases the Fermi energy and reduces the mean free path. Therefore, our
result might provide a qualitative explanation for the said experiment. Another interesting
conclusion which can be drawn from figure 11 is, the diffusive case spin coherence can be
preserved even for wide channels, since disorder helps to preserve spin coherence as soon
as non-parabolicity of density of states starts to play a role, however weak the disorder
may be. This is clearly illustrated in figure 11 where all the curves in the presence of
disorder lies above the curve for ballistic case in the range�2� E f � 2. This might have
an important implication for Datta–Das spin transistor [8], since it removes the stringent
criterion to confine electrons in one dimension.

5. Symmetry and anisotropy of conductance of a ferromagnetic-2DEG interface

In this section we consider the following question: Does the conductance of a FM/2DEG
interface depend on the magnetization direction? Büttiker symmetry relation for electrical
conduction says that when one flips the magnetization of the ferromagnet, conductance
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should remain invariant. However, it does not make any statement about how conductance
should behave when one changes the direction of magnetization. Motivated by this and the
recent erroneous claim in ref. [34], where it was claimed that the conductance of FM/2DEG
interface changes upon the flip of magnetization direction, which is obviously incorrect in
the light of the Büttiker symmetry relation, we present the results for the conductance of
FM/2DEG interface and point out that the conductance is anisotropic [10]. The results are
shown in figure 12, as is seen clearly when we rotate the magnetization direction in the
yz plane the conductance changes, and the conductance curve is symmetric with the mag-
netization angle which is consistent with the Büttiker symmetry relation. This anisotropy
exist even for 3D systems with impurity induced spin-orbit interaction as shown in figure
3. This is in contrast to the result of ref. [35] where they used effective mass Hamiltonian
presented in eq. (9) and showed that conductance of a FM/2DEG interface is invariant
upon the rotation of magnetization. It was argued in ref. [35] that the anisotropy which
is seen in numerical simulation within tight binding model is a consequence of reduced
symmetry of lattice. However we believe that the anisotropy is due to the simultaneous
presence of exchange and spin-orbit interaction, though they are spatially separated. The
existence of anisotropy is due to the presence of SO interaction which breaks rotational
invariance in space.

0 90 180 270 360
θ (degree)

9.0

9.5

10.0

10.5

11.0

G
 (

e2 /h
)

ballistic

0 90 180 270 360
θ (degree)

4.8

5.0

5.2

5.4

5.6

5.8

diffusive

Figure 12. Top: schematic description of the device geometry (left), and of the band-
structure (center) and Fermi surface (right) of a 2DEG with Rashba effect; the arrows
indicate the direction of the spin-quantization axis. Bottom: Two-terminal conductance
of a FM/2DEG junction as a function of the angle θ of the magnetization in yz plane
for the ballistic (left) and diffusive (right) cases. Calculations were performed on a
50�50 lattice with kFa = 1, FM exchange splitting ∆ given by ∆=εF = 0:5, 2DEG
Rashba parameter kFα=εF = 0:03; for the diffusive case (no configuration averaging),
the mean-free-path l is given by kFl = 30.
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6. Conclusion

In summary we have presented new single band tight binding model including Elliot–Yafet
and Rashba SO interaction. Using these tight binding models effect of SO interaction on
spin and charge transport is studied. Numerical results were presented for spin relaxation
in 2DEG in the presence of Rashba SO interaction and it was shown contrary to naive
expectation that disorder helps to reduce spin relaxation. Also it is pointed out that con-
ductance of a FM/2DEG interface can be anisotropic due to the simultaneous presence of
exchange and SO interaction.
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288, 1805 (2000)
[19] O Pietzsch, A Kubetzka, M Bode and R Wiesendanger, Phys. Rev. Lett. 84, 5212 (2000)
[20] M Bode, M Getzlaff and R Wiesendanger, Phys. Rev. Lett. 81, 4256 (1998)

310 Pramana – J. Phys., Vol. 58, No. 2, February 2002



Spin and charge transport

[21] N F Mott, Proc. R. Soc. London A124, 438 (1929)
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