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Abstract

Localization corrections to charge and spin conductivity of two-dimensional ferromagnetic systems with spin–orbit
interaction are studied theoretically. The corrections lead to negative magnetoresistanceF also in the presence of spin–
orbit scattering. Magnitude of the corrections depends on the magnetization orientation with respect to the plane of the

system. The corrections to spin conductivity are shown to be small. r 2002 Elsevier Science B.V. All rights reserved.
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Transport properties of magnetic systems at low

temperatures are important in view of possible applica-
tions in spintronics [1] and quantum computing [2]. It is
known that in nonmagnetic metals and doped semi-

conductors, quantum corrections are responsible for the
anomalous dependence of electrical conductivity on
temperature and magnetic field [3,4]. The problem of
quantum corrections in ferromagnetic metals is still

unexplored. Only a few theoretical works can be found
in the relevant literature [5,6], and also a few reports on
experiments [7,8]. The experiments proved the existence

of quantum corrections related to both localization and
electron–electron interaction effects. The theoretical
works, on the other hand, considered the effects of

localization on the spin-density fluctuations in the
vicinity of ferromagnetic transition [5] and also the
electron–electron interaction effects in spin quantum

wells [6].
The localization corrections in nonmagnetic systems

can be suppressed by a sufficiently large magnetic
induction B: One may expect a similar suppression of
weak localization by an internal magnetic induction Bint
in ferromagnets. However, numerical estimations show

that the internal magnetic induction may only reduce the

localization corrections instead of destroying them
totally. Apart from this, the demagnetizing factor in
thin magnetic films with perpendicular magnetization

leads to vanishing internal magnetic induction.
In this paper, we study the localization corrections to

conductivity in the presence of spin–orbit (SO) scatter-
ing from defects. It is known that in nonmagnetic

materials, SO scattering leads to antilocalization, i.e., to
positive magnetoresistance at small magnetic fields
[9,10]. However, the situation in ferromagnetic metals

is different. The processes leading to the antilocalization
in nonmagnetic systems are totally suppressed by the
exchange field, and one obtains a negative magnetore-

sistance only.
We consider a Hamiltonian of a two-dimensional

(2D) ferromagnet with SO scattering:

H ¼
Z
d2r cwðrÞ �

r2

2m
�Msz þ VðrÞ

� �
cðrÞ; ð1Þ

where the axis z is oriented along the magnetization M;
cðrÞ is the spinor field, and we put _ ¼ 1: In the presence
of a magnetic induction, the r operator is replaced by
r�i eA=c; where A is the vector potential. The random
potential VðrÞ consists of the component V0ðrÞ indepen-
dent of the electron spin, and the SO component VSOðrÞ:
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Matrix elements of the latter have the form

ðVSOÞka;k0b ¼ iV1ðk� k0Þ 	 sab ð2Þ

for the transitions ðk; aÞ-ðk0;bÞ; where V1 is a constant,
k and k0 are the initial and final electron wavevectors,
respectively a and b describe the corresponding spin
states, and s ¼ ðsx; sy; szÞ are the Pauli matrices.
The key element of the weak localization theory is a

Cooperon [3], which can be presented by a ladder in the
particle–particle channel with two propagators describ-

ing electrons with small total momentum and close-
energy parameters. In the case of ferromagnets and as
long as Mbt�1m;k; where tm and tk are the momentum
relaxation times of the spin-up and spin-down electrons
at the Fermi surface, this channel does not include
ladder elements with the Green’s functions correspond-

ing to opposite spins. The absence of the singlet
Cooperon is the crucial point, which leads to the
absence of weak antilocalization.
In a 2D case, the wave vectors are in the plane of the

ferromagnet. Consider first the case of in-plane magne-
tization. For weak scattering and upon averaging over
the random field VðrÞ; one finds the bare amplitude of
the electron–electron scattering,

G0abgd ¼
1

2pn
dad dbg
t0

�
sxad s

x
bg

txSO

� �
; ð3Þ

where t0 is the electron relaxation time due to potential
scattering, and tSO is the spin-flip SO scattering time. In
a 2D case, the density of states is independent of the spin
orientation, nm ¼ nk 
 n: Calculating the self-energy
diagrams, we find the total one-particle relaxation time
which is independent of the spin orientation,

1

tm
¼
1

tk


1

t
¼
1

t0
þ
1

txSO
: ð4Þ

The Cooperon can be found by calculating the ladder
diagrams with the scattering amplitudes given by

Eq. (3), which gives

Gðo; qÞ ¼
1

4pnt2
1

�ioþ %Dq2 þ 1=tj
; ð5Þ

where %D ¼ 1
2ðDm þDkÞ; the diffusion constants Dm and

Dk are defined as Dm;k ¼ 1
2 v
2
Fm;kt; vF is the Fermi

velocity, and tj is a phase relaxation time related to
inelastic processes [3,4]. The SO scattering enters the
Cooperon only through the one-particle relaxation time

t; and has no influence on the pole of the Cooperon.
Thus, in the case of in-plane magnetization, we obtain
1=*tSO ¼ 0; where *tSO is the effective SO relaxation time
of the Cooperon.
Consider now, the case when the magnetization M is

perpendicular to the plane. In this case, we find that the

bare scattering amplitudes G0m and G0k for up and down
electrons (the diagonal elements) are different and

have the form

G0m;k ¼
1

2pnt0
�

1

2pntzSOm;k
; ð6Þ

where tzSOm;k are the nonspin-flip SO relaxation times.
The total one-particle electron relaxation times are given

by

1

tm;k
¼
1

t0
þ

1

tzSOm;k
ð7Þ

and the effective SO relaxation time of Cooperon is

1

*tSOm;k
¼

2

tzSOm;k � 2tm;k
C

2

tzSOm;k
ð8Þ

for tzSOm;kbtm;k: By comparing the results obtained
for different magnetic configurations, we see that the
effect of SO interaction strongly depends on the
magnetization orientation with respect to the plane of

the ferromagnet.
The quantum correction to conductivity of a 2D

ferromagnet has the form

Ds ¼
e2

4p2
ln

tm
tjm

þ
tm
*tSOm

� �
þ ln

tk
tjk

þ
tk
*tSOk

� �� �
; ð9Þ

which is a generalization of the corresponding formula
in a nonmagnetic case [3,4]. Here, tm;k and *tSOm;k are
defined, respectively, by Eq. (4) and 1=*tSOm;k ¼ 0 for the
in-plane magnetization, and by Eqs. (7) and (8) for the
case of perpendicular magnetization. The localization

correction, described by Eq. (9), is negative since
t5*tSO; tj: The latter inequality means that the momen-
tum relaxation time of electrons is mainly due to the
potential scattering.

We can present an expression for the conductivity in
the case of a nonzero magnetic induction B perpendi-
cular to the plane, by generalizing the result for a

nonmagnetic 2D system [9]

DsðBÞ ¼ �
e2

4p2
c
1

2
þ

tHm

tm

� �
� c

1

2
þ

tHm

*tSOm
þ
tHm

tjm

� ��

þc
1

2
þ

tHk

tk

� �
� c

1

2
þ

tHk

*tSOk
þ

tHk

tjk

� ��
; ð10Þ

where 1=tHm;k ¼ 4eBDm;k=c; and cðxÞ is the digamma
function. The magnetic induction suppresses the nega-
tive correction to conductivity, which leads to negative

magnetoresistance. It should be noted that the in-plane
magnetic induction does not affect the localization
correction to conductivity, since the flux of magnetic

induction does not penetrate through any closed
electron paths [3,4].
One can also find the localization corrections to the

spin conductivity, defined as a spin current arising in
response to an electric field. In this case, the spin current
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is the difference of spin-up and spin-down polarized
currents, and for the quantum correction, we obtain

Dsspin ¼ �
e

4p2
ln

Dm *t�1SOk þ t�1jk
� �

Dk *t�1SOm þ t�1jm
� �

2
4

3
5: ð11Þ

The main contributions to the correction, originated
from the shortest times tm and tk; are exactly canceled.
Thus, the correction to the spin conductivity is

determined only by the SO scattering and the phase
relaxation.
In conclusion, we have analyzed the localization

corrections to charge and spin conductivity in 2D

ferromagnets with SO interactions. The strong magnetic
polarization excludes processes with the singlet Cooper-
on, which are responsible for the antilocalization effect

in nonmagnetic materials with SO scattering. As a result,
the quantum correction to conductivity is always
negative in ferromagnets and leads to negative magne-

toresistance. The strength of SO interaction and the
phase relaxation time due to inelastic processes deter-
mine the magnitude of these corrections. The effective

SO scattering time for Cooperon, *tSO; depends strongly
on the magnetization orientation with respect to the
system plane. In the case of in-plane magnetization, the
inverse time 1=*tSO vanishes, which significantly en-

hances magnitude of the localization correction. On the
other hand, the localization correction to spin con-
ductivity is very small due to exact cancellation of the

contributions from spin-up and spin-down channels

in the absence of the SO scattering and phase
relaxation.
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