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Weak localization corrections to the anomalous Hall effect
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Abstract

We calculate localization corrections to the anomalous Hall conductivity in the framework of side-jump and skew
scattering mechanisms. In contrast to the ordinary Hall effect, there exists a nonvanishing localization correction to the

anomalous Hall resistivity. The correction to the anomalous Hall conductivity vanishes in case of side-jump
mechanism, but is nonzero for the skew scattering. r 2002 Elsevier Science B.V. All rights reserved.
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Recently, there has been a growing interest in the
anomalous Hall effect (AHE) due to the importance of
the spin polarization and spin–orbit (SO) interaction for

transport properties of materials and structures of spin
electronics [1,2]. Besides, the measurement of AHE is
proved to be a useful tool to investigate the magnetism

of layered structures [2]. Usually, two relevant mechan-
isms of AHE are distinguishedFa skew scattering [3]
and a side-jump effect [4,5]. It was shown [6] that for the

skew scattering, there are non-vanishing localization
corrections and vanishing interaction corrections to the
off-diagonal AHE conductivity sxy: The experiments on
amorphous Fe films [7] confirmed the absence of
quantum corrections to sxy; which has been interpreted
as a dominate role of interaction effects. Here we present
the calculation of localization corrections in the case of

the side-jump mechanism and analyse different ap-
proaches to the problem.
We consider the Hamiltonian of a ferromagnet with a

strong exchange field M oriented along the axis z; and
SO relativistic term (we put _ ¼ 1)

H ¼ �
r2

2mn
�Msz �

i l20
4
ðs�rVÞ � r þ V ; ð1Þ

where mn is the electron effective mass, l0 is a constant,
which measures the strength of the SO interaction, VðrÞ
is a random potential created by impurities or defects,

and s ¼ ðsx; sy;szÞ are the Pauli matrices. The constant
l0 has the dimensionality of length and for non-
relativistic electrons in vacuum l0 ¼ lc=2p; where lc ¼
2p=m0c is the Compton wavelength of electron and m0 is
the free electron mass.
We assume that the potential VðrÞ is short-ranged,

with zero mean value, /VðrÞS ¼ 0; where the angle
brackets mean the configurational averaging over all
realizations of VðrÞ: We shall characterize this potential
by its second, g2; and third, g3; momenta, denoting
/Vðr1ÞVðr2ÞS¼ g2 dðr1� r2Þ and /Vðr1ÞVðr2ÞVðr3ÞS¼
g3 dðr1 � r3Þ dðr2 � r3Þ: The constants g2 and g3 are
parameters, characterizing the strength of the disorder
potential and statistical properties of the random field.
When the potential VðrÞ is created by randomly
distributed short-ranged impurities, we have g2 ¼ Ni v

2
0

and g3 ¼ Ni v
3
0; where Ni is the impurity concentration,

and v0 is the matrix element of the potential of an
isolated impurity. In the case of Gaussian distribution,

we have g3 ¼ 0:
The calculation of the off-diagonal conductivity

tensor as the loop Feynman diagram with the SO

correction to the vertex part [8] gives us (side-jump
mechanism of AHE)

sðsjÞxy ¼
e2l20
6

ðnk kFk vFk � nm kFm vFmÞ; ð2Þ

where kFm;k; vFm;k; and nm;k are the momenta, velocities,
and the densites of states of majority and minority
electrons at the Fermi surfaces, respectively.
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Now we consider the localization corrections to sðsjÞxy :
They can be presented by the loop diagrams, which

include Diffusons and Cooperons [9,10]. Assuming the
exchange energy M larger than the inverse electron
relaxation time, 1=t; we may consider only triplet
Cooperons and Diffusons, with the same orientation of
spins in the particle–particle (Cooperon) or particle–hole
(Diffuson) channels. There are eight loop diagrams for
the correction to AHE containing the Cooperon and

four diagrams with the Diffuson. We calculated the
quantum corrections due to the Cooperon as a sum of
all diagrams, and also due to the Diffuson, which

renormalizes the anomalous vertex with the SO interac-
tion. The calculation shows that the corrections related
to the Cooperon, exactly cancel each other, whereas the

contribution of the Diffuson gives a non-vanishing but
very small in parameter ðeFtÞ

�4 effect (eF is the Fermi
energy). Thus, the localization corrections to sðsjÞxy are

negligibly small.
The localization corrections for the skew scattering

have been calculated earlier [6] in a different mod-
elFwithout spin polarization of electron gas due to the

Stoner-like itinerant field M but with a partial polariza-
tion of spin-orbit scatterers. To avoid possible differ-
ences related with the choice of model, we have

calculated the localization corrections to the AHE due
to the skew scattering from the Hamiltonian of Eq. (1).
In frame of the skew scattering, we take into account the

loop diagrams with the third-order corrections due to
scattering from impurities, keeping the first order of SO-
depending matrix elements. Without quantum correc-
tions, the relevant diagrams for the skew scattering

mechanism are two diagrams with such third-order
corrections [8]. Calculating them and taking into
account that /V2S ¼ g2=a

3
0 and /V3S ¼ g3=a

6
0 (here

a0 is the lattice parameter), we obtain

sðssÞxy ¼
p/V3S l20 a

3
0

6/V2S
sxx;k k2Fk nk � sxx;m k2Fm nm
h i

; ð3Þ

where sxx;m;k are the diagonal conductivities in the spin
up and down channels. The dimensionless ratio

/V3S=/V2S3=2 depends only on the shape of the
distribution PðVÞ of the random field VðrÞ; whereas the
combination na30/V

2S1=2 characterizes the relative

strength of the potential.
Now we consider the diagrams with one Cooperon

and three-leg impurity vertices. There are twelve non-

vanishing diagrams. After calculating them, we find for
the skew scattering

DsðssÞxy ¼
e2l20g3
8
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where tso;m;k and tj;m;k are the spin–orbit and phase
relaxation times [9,10], and t0m;k are some constants
(t0m;kCtm;k), which cannot be calculated exactly in the
diffusion approximation for the Cooperon. In the
effectively 2D case [9,10], similar calculations give us

DsðssÞxy ¼ �
e2l20g3
36pg2

k2Fmnm ln
tm
tsom

þ
tm
tjm

� ��

�k2Fknk ln
tk
tsok

þ
tk
tjk

� ��
: ð5Þ

Thus, the localization correction to the AH conductivity
due to the skew scattering is nonzero, in agreement with
Ref. [6].

The anomalous Hall resistivity, determined as
RAHCsxy=s2xx; acquires the corrections from both
diagonal and off-diagonal conductivities

DRAH
R0AH

¼
Dsxy
s0xy

� 2
Dsxx
s0xx

: ð6Þ

Since the correction to AH conductivity in frame of the
side-jump mechanism is very small, the total localization

correction Dsxy is given by Eqs. (4) or (5). The relative
magnitude of this correction depends on the prevailing
mechanism of AH effect. Using Eqs. (2) and (3), we can

find that the relative order of the AH conductivity due to
the skew scattering or side-jump is

sðssÞxy

sðsjÞxy

C
n g3
g2

eFtð Þ: ð7Þ

The weak-localization approach is valid as long as

ðeFtÞb1: Thus, for ng3=g2 > 1; the skew scattering
mechanism is more important, and the localization
correction is determined by Eqs. (4) or (5). In the case of
ng3=g251; the prevailing mechanism is side-jump. Since
the side-jump correction is zero, the total localization
correction, determined by Eqs. (4) or (5), turns
out to be negligibly small: DsðssÞxy =s

ðsjÞ
xyC DsðssÞxy =s

ðssÞ
xy

� �
� ðng3=g2Þ ðeFtÞ
� �1=2

5DsðssÞxy =s
ðssÞ
xy :

Thus, (i) for the low-resistivity metals with prevailing
skew scattering, the localization correction to AH

resistivity Eq. (6) contains both parts with Dsxy (de-
scribed by Eqs. (4) or (5) and Dsxx: No cancellation
between them is possible due to the separation of
contributions from the different spin channels; (ii) for

the high-resistivity metals or doped semiconductors with
prevailing side-jump mechanism, the correction to Dsxy
is negligibly small, so that the localization correction to

AH resistivity is exactly twice the relative correction to
the diagonal conductivity (with the opposite sign).
These results differ significantly from what is known

for the usual Hall effect, described by a Hall constant
RH: The localization correction to RH is zero due to the
mutual cancellation of contributions from the diagonal

and off-diagonal conductivities [11,12]. On the other
hand, considering the interaction corrections to RH; it
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has been found that DsðintÞxy ¼ 0: Thus, the total quantum
corrections to the Hall constant are reduced to

DRH=R0H ¼ �2 ðDsðintÞxx =sxxÞ:
The experiments on amorphous Fe films [7] have

shown that the quantum correction to the AH resistivity

Eq. (6) is double the correction to the diagonal
conductivity. This is in accordance with our result for
the localization corrections under condition that the
side-jump mechanism prevails. The latter is in agreement

with the comparatively high resistivity of amorphous Fe
films studied in Ref. [7]. Our main argument in favor of
the prevailing side-jump mechanism [4] is that the

random field experienced by the electrons in amorphous
films is naturally described by a distribution PfVðrÞg
with nearly equal probabilities of positive and negative

deviations of the random potential VðrÞ from zero. In
such a case the parameter ng3=g2 in Eq. (7) is small since
/V3S=/V2S3=251: The authors of the cited works
[6,7] have given another explanation of the measure-
ments: suppression of localization corrections to the off-
diagonal conductivity due to very strong SO scattering
(tsoCt), upon the prevailing skew scattering mechanism.
Besides, the quantum corrections to the AH conductiv-
ity due to electron-electron interaction have been
calculated for the skew scattering, and the cancellation

of interaction corrections has been proved. It should be
noted, however, that the Hartree diagrams were not
taken into account in this calculation.

In conclusion, we have shown that the role of
localization corrections is quite different for the skew
scattering and side-jump mechanisms of AH effect. We

suggest that the experimental results of Ref. [7] can be
interpreted as a relative smallness of the localization

correction to the off-diagonal conductivity upon the
prevailing side-jump mechanism.
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