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Carrier-induced ferromagnetism in diluted magnetic semiconductors
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We present a theory for carrier-induced ferromagnetism in diluted magnetic semi-con(tSj. Our
approach treats on equal footing both quantum fluctuations within the random-phase approximation and dis-
order within the coherent potential approximati@@PA). This method allows for the calculation df,
magnetization, and magnon spectrum as a function of hole, impurity concentration, and temperature. It is
shown that, sufficiently close td. and within our decoupling schem@yablicov type, the CPA for the
itinerant electron gas reduces to the virtual crystal approximation. This allows, in the low-impurity concentra-
tion and low density of carriers, to provide analytical expressiornTfarFor illustration, we consider the case
of Ga,_.Mn;As and compare our results with available experimental data.
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The discovery of carrier-induced ferromagnetism in di- We write the equation of motion and use Tyablicov
luted magnetic semiconductd®MS) has attracted consider- decoupling'! (equivalent to RPAwhich is suitable for fer-
able attention from both theoreticians and experimentalistsomagnetic systems. It consists in closing the system by ap-
The interest in these material is mainly stimulated by theproximating the higher-order Green's functi¢{g's;” ;S; "))

possible technological applicatiofie.g. semiconductor spin ~(S7)((s;" ;S;")). In this approximation, we obtain in fre-

device$. For example by doping GaA®Refs. 1 and Rwith quency space,

magnetic impurities Mfi, T, exceeding 100 K has been

reached. The doping of a IlI-V semiconductor compound (aH—Ji(sZ>)GiT(w)=2<S|Z>6ij+Ji<$z)<(si+ ;S ), (3)
with Mn impurities introduces simultaneously local magnetic N o .
moments §=5/2) and itinerant valence-band carriers ( wheregs) is the magryetgatmn of the |t|n§r§1nt elegtrop 9as
~1/2). One of the important open issues is to find outdNd(S;) is the magnetization of a magnetic ion at sité is

whether it is possible to reach critical Curie temperature offonvenient to rewrite the new Gree_n’s _funct|on that

order 300 K. Thus it is important to understand theoretically2PPears in the right part of the fﬂ;’f“ty n thekI(()]ILow—

how T, varies with the impurity concentration, effective N9 form: ((s” ;S ))=1/L"%, 977", where I'/"%

mass, hole concentration, and exchange integral. Many the= {(Ck+q,1Ck,1 ;Sj ))- We obtain

oretical approaches have been performed to analyze ferro-

magnetism in DMS, this includes mean-field thebryspin- Tk ak=f(k,q,0) ) 13 e ARG~ @)

wave theory’ first-principle calculation$;®and Monte Carlo ! e 2 o

simulations® In contrast to most of the theoretical work, we Where

present a theory that is able to treat the disorder in a more ((Nis g1 —(Nic 1))

realistic manner(beyond coarse grainingOur theory in- f(k,q,w)= . oSy’

cludes quantum fluctuations within random-phase approxi- © = (€~ €krg) +CHSY)

mation (RPA) and the disorder is treated within coherentwhere(n, ,) is the occupation number ok(c) state.c is

potential approximatioiCPA). It should be stressed that in the impurity concentrationS3) is the averaged magnetiza-

our approach the spin impurities are treated quantum mejon of Mn?", ande, denotes the hole’s dispersion. Inserting

chanically. both Eq.(4) and Eq.(5) into Eq.(3), we immediately find
We start with the following minimal Hamiltonian:

®

o Gﬁ_:9i5ij+gizl G, (6)
H :E tijCiT(erquz JiSs;. (1)
e ! where theT-dependent locatay; is defined as
The first term stands for the tight-binding part of the itinerant )
free electron gas;;=t if i andj are nearest neighbor, or 0 gi(w)= — . 7
otherwise. The second term is the exchange between local- w+Ji(s%)

ized impurities spin and itinerant electron gasare random
variables:J;=J if site i is occupied by a Mfi* ion or 0. The
operators;=c/ (1/20,5)ci 5 is the spin operator &tof the
?tinera}nt electron gas an8, is the spin of the magnetic o, 1 ((Miqr 1) — (N 1))
impurity. X (¢ ,w)—E; — ey Sy

Let us define the Green’s function ©~ (€~ €krq’) +CXS)

éi=23,9x3(w) and x2(w) is the Fourier transform of the
polarized susceptibility°(q’, w)

®

L _ N . . Note that Eq.(6) still contains the disordethrough ¢;
Gy ()=—10(t(S (1.5 (0D=(S":S)). (2 andg. It is also interesting to mention that the previous
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equation can be interpreted as the propagator of a free pater can be rewrittenG, ~(k,w)=2[E—E(q)], where E

ticle moving on a disordered medium, is the random on- = w/(S,). The dispersiorE(q) is solution of

site potential, andp;, the long-range-hopping terms. Note s

also thatg;, is energy dependent througrﬂ(w). To solve __ & 1 2 0

the problem we have to calculate in a self-consistent manner El@)=-J (S,) - 2‘] X (A, B(A)(S,)) (14

(s*) and(ny,) that appear in Eq(6). For that purpose we ) o
have to write the equation of motion for the Green’s function  According to Ref. 15 the magnetization can be expressed

Kij.o=((Ci ¢ ,)). After decoupling we get in the following form:

1 (5= P)(1— ¢)*°" 1+ (S+1+¢)¢p*°"!
= EZJ‘]i<S|Z>)KiJ,a: 5ij+2| tiKjj o - ©) (Sh= (1+ §)25+1_ 2571 (19
One can recognize the propagator of the Anderson modelyhere ¢ = 1/|_gq1/[eﬁw(q)_ 1].

with ?n-sne Zrand_om potentlal depending on t_he spin When T—T,, ¢=(kgTc/c(SR))(1L)Z,L/E(q). This
€ o= 32,3i(S). Since in our model the potential is tempera- implies for T, the standard RPA form
ture dependent throug(s?) then, sufficiently close td., 1 S(S+1)
we will always be in the metallic regimélo))1:*2 I, Tcz—c—1 (16)
~1/(J(S?)2. This is in contrast with the standard Anderson 31
model where the impurities are static. Equatiodsand (9) N g E(q)

(o==1) provide a closed system of equations that have to This expression is similar to the one obtained in the clean

be solved self-consistently within CPA. _— . 6,17 S
) . X o limit for the Kondo lattice modet®’ In the vicinity of T,
The simplest way is to start with E¢9). Indeed, it is Athe dispersiorE(q) is

straightforward to get the solution with the standard CP

since it contains only diagonal disorder. The averaged 1 121 1 G q+ 2K;
G 's function i =— —S|k—=| K-
reen’s function is . E(q) 82 1 z[kf q(kf 4) 4= 2K, (17)
Kk,a': Kk 2 ’ (10)
w—€(k)=24(w) Note that, belowT., the Eq.(14) should be solved nu-
where the self-energy is merically in order to geE(q) as a function of the tempera-
00 ture. This is required to calcula{s,) and(s,) as function of
2(@)=V,—[eps—2o(0)]K; (“’)[68,0_20(“’)]’(11) T. According to Eq.(16), T, is given by
where € ,=32,J(S3), €s,=0, and V, is the average - _S(S+1) I EE 1\ 19
value V,=3z,J¢(S;) and KP=1LZ1[w—e(q) € oar2 t (NG C(gkp)/|
=2 ()]

where we define C(q,kf)z%[kf—llq(k?—qzm)ln[(q
+2k)/(q—2k¢)]]. This implies thatT, is proportional toJ?
S (@) =V, [1+(1-¢)32,(SHKw)]. (12)  and to the effective mass ¢}/ The dependence on the hole
concentration is only contained i@8(q,k;). We define the
We see that whefi— T, 3 ,(w)—3Y“Nw)=V,. Thus,in  hole concentration as,= yc, wherey<1. This is the sim-
the framework of our decoupling scheme, close enough tglest way to take into account the presence of As antisftes.
T¢, the CPA for Eq.(10) reduces to the VCA. In Fig. 1 we show the variation df, as a function ofy. We
The final step of the calculation consists in solving Eq.observe that in the low-hole-concentration regifigagrees
(6). In order to provide analytical form fof;, we use the very well with the mean-field resulthis is more clear in the
similar approximation(VCA) for Gﬁ’ as done above for inset log-log plot. In the mean-field regime the magnon ex-
Kij,»- We expect this approximation to be reasonable in thesitation spectrum is dispersionlesEfV'F(q)=IimqﬁmE(q)
limit of both low-impurity concentration and low density of = (1/872)(J%/t)k; wherek;=(372yc)Y3. In this limit
itinerant carriers. To get the averaged Green's func- L[ 3\ e
tion, we use the well-known Blackman-Esterling-Beck
formalism®14By contrast with standard CPA, this approach Tc:ﬂ(;) S(S+1) T71/304/3- (19
is suitable for nondiagonal disorder problems. It is based on ) ) ]
a 2x 2 matrix Green's-function formalism for binary alloys _ When increasingy, T, strongly deviates from the mean-
using locator expansion. Within VCA approximation, one field results and showslaroad maximum. Such a maximum

gets for the averaged Green's function of an atom of t#pe Was also observed in Ref. 6. By further increaseyinthe
Curie temperature starts to decre&&s we observe it from
G, (k,w)=

1 . O (13 Fig. 1, for very largey, T. agrees very well with the case
g —ca(k,w) where the magnon spectrum is approximated Bgq)
wherea(k, 0) = 232x°(k, w). =Es"(q)=Dg? where the stiffnessD is given by D

Note also that since the Ga atoms have no magnetic mo=(1/4872)(J%/t)(1/kf), this regime is denoted “stiffness”
ment, it impliesGg ~ (k,w)=gg=0. The Mrf" ion propaga- regime. In this regime we find

The self-energy ,(w) can be reexpressed as
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FIG. 1. T; as a function ofy for c=0.05 andJ?/t=10.5 eV. FIG. 3. The dashed area represents region where mean-field
The continuous line represent the VCA calculation, the dashed lingesylt for T, is valid, the symbols are calculated points and the
corresponds tdl; within the mean-field approximation, and the gashed line a fit. The continuous curve represents values,o} (

dotted line is obtained by approximating the dispersionBfl)  for which T, is maximum ). In the inset we have plotteB["®*
=Dg?, D is the spin stiffness. The inset showsTg(versus Ing). as a function ot assumingl?/t=10.5 eV.

1 1 72 MF formula provides a good approximation fog, it corre-

Te=r = S(S+1) —y 2 (200 sponds td(T,—TMF)/T,/<0.1. First we see that the region

144 (187 1" ! f validity of the mean-fieldMF) result (dashed are

The existence of a maximum can be understood in thér)esvilnég t(; a vee;nenaa?r-ré\e/v o ior:etsuicalj?yss OeOSatAacgc:j

following way: Like in the Ruderman-Kittel-Kasuya-Yosida pon y glon typica 02- A g
approximated value of the, for which T, is maximum, can

situation?® the exchange oscillates with typically length . . . . :
' g be obtained by taking the intersection point between the MF
scalel s 1/k;. Thus, it is expected that when the length and “stiffness” values. This leads t9,.,c=n. . — 0.016.

scale gets sufficiently larggarger than the average distance So far, we did not have to specify the values of the pa-

between impuritiessome Mn-Mn bonds are coupled antifer- rameterst and J for our discussion. In order to check the

romagnetically. The induced frustration leads to the immedi—validit of our theory we compare our results with available
ate consequence a decreasd in In Fig. 2 we illustrate the y y P

previous discussion by showing the dispersion as a functiof’?Xpe”mentaI data. GaAs is known to have a fcc structure

of Kl wherek is chosen in order o conserve the volume (1 % ECICR SHoRme S8 . T SIEIIeROn O
of the Brillouin zone[v =(27)3]. The results are shown for P

the three different regions: “mean-field,” “intermediate,” the lattice constant which has to be taken in our calculation,

oA —n a3 :
and "stiffness” regime. We observe that in all cases the dis'® a,=a,/4™ in order to conserve the volume for the unit

. cell. Also assuming an effective mass for the holes
sgﬁgo?hgg(::nzoig}/g;ﬂgso)’ as expected, when the Gold =0.5m, one gets=0.63 eV. The remaining free parameter

In Fig. 3, we show the region for whicli, reaches its J will be chosen in order to fit the experimental data of -Ref.
. : ma . 2. For that purpose we calculajefor each sample according
maximum as a function of[ T7'*(c)] and the region where ¢ )

o the measured experimental values of the hole concentra-
tion given in Fig. 2 of Ref. 2. The results are depicted in Fig.
4. As can be seen we find a very good agreement with the
experimental data ifJ%/t=10.5 eV, this implies |J]

--------------------------------------- =2.58 eV?? Note that the deviations observed at lovare
P | due to the uncertainty on the hole-concentration vakee
the huge error bars in Fig. 2 of Ref). From the experimen-
tal measurements, there is no clear consensus concerning the
correct value of this parameter. Indeed, recent core-level
photoemission has provided=—1.2+0.2 eV* Whilst,
- from Magnetotransport measurements a valug Jpf=2.4
+0.9 eV was suggestédAnd within first-principle calcu-
lations Sanvitoet al.” have foundJ~—4.65-0.25 eV. In
o Moo ‘ . order to proceed to a better estimation of the paramelters
0 02 04 06 08 ! one should compare theoretical calculations with other data,

¢ for instance, transport measurements datdowever, it is

FIG. 2. Magnon dispersion foc=0.05 in three different re- interesting to note that the band splitting B0 K (A

0.015

gimes: “mean-field” (continuous ling “intermediate” (dotted =~ =JCS) obtained within our calculations agrees with the ex-
line), and “stiffness” regime(dashed ling E(q) is rescaled by a perimental value reasonably wéll.In the inset of Fig. 3,
factor A =J%/t(37%y) 1 assuming)?/t=10.5 eV we showl . as function ofc taking
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FIG. 4. T, in Kelvin as a function of. The filled squares cor- FIG. 5. Normalized magnetization as a functionTafT.. The
responds to experimental values taken from Ref. 2. The fillecEXperimental data are taken from Ref. 2.
circles represent the calculated values, the where also taken

from the same reference. includes quantum fluctuations in the RPA approximation. We

have shown that, within our decoupling scheme and suffi-
v on the line of “maximum ofT..” For instance ifc~0.1  ciently close toT., the CPA for the itinerant gas reduces to
and y~0.2 aT, of order 230 K can be reached. VCA, which allowed us to provide analytical results fog

Let us proceed further on and compare the calculateéh the low impurity concentration and hole-density regime.
magnetization with the measured one. In the experimentalVe have also discussed its dependence on the hole concen-
data the concentration of Mh is c=0.053% and the pa- tration. We have also shown that the mean-field approxima-
rametery is estimated to be 0.@&ee Ref. 2LIn Fig. 5, we  tion is only valid for very low carrier concentration. Addi-
show the magnetization as function of the T wheng tionally, for illustration of our theory a comparison with
=0.5m, and J=2.58 eV. We observe that for sufficiently available experimental data on GaMn.As was made. We
high temperaturd <0.5T, there is a very good agreement find a very good agreement with the experimental results
with the measured M1 magnetization. On decreasifiy  assuming a single band for itinerant carriers and a large ex-
some deviation appears, which suggests that the VCA treathange constart=—2.58 eV. Finally, this work provides a
ment is not good enough in this region, which was expectedgood starting point for higher decoupling scheme.

To conclude, we have presented a general theory for Note addedAfter this work was completed we became
carrier-induced ferromagnetism in DMS. Our approach al-aware of Yanget al. comment’ By analogy with the Kondo
lows one to treat the disorder beyond simple coarse grainintttice modet® (no disorder they proposed a similar expres-
within full CPA treatment. It goes beyond mean field andsion for T, as the one derived in E¢16).
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