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Carrier-induced ferromagnetism in diluted magnetic semiconductors
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~Received 6 November 2001; published 28 March 2002!

We present a theory for carrier-induced ferromagnetism in diluted magnetic semi-conductor~DMS!. Our
approach treats on equal footing both quantum fluctuations within the random-phase approximation and dis-
order within the coherent potential approximation~CPA!. This method allows for the calculation ofTc ,
magnetization, and magnon spectrum as a function of hole, impurity concentration, and temperature. It is
shown that, sufficiently close toTc and within our decoupling scheme~Tyablicov type!, the CPA for the
itinerant electron gas reduces to the virtual crystal approximation. This allows, in the low-impurity concentra-
tion and low density of carriers, to provide analytical expression forTc . For illustration, we consider the case
of Ga12cMncAs and compare our results with available experimental data.
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The discovery of carrier-induced ferromagnetism in
luted magnetic semiconductor~DMS! has attracted consider
able attention from both theoreticians and experimentali
The interest in these material is mainly stimulated by
possible technological applications~e.g. semiconductor spin
devices!. For example by doping GaAs~Refs. 1 and 2! with
magnetic impurities Mn21, Tc exceeding 100 K has bee
reached. The doping of a III-V semiconductor compou
with Mn impurities introduces simultaneously local magne
moments (S55/2) and itinerant valence-band carrierss
51/2). One of the important open issues is to find o
whether it is possible to reach critical Curie temperature
order 300 K. Thus it is important to understand theoretica
how Tc varies with the impurity concentration, effectiv
mass, hole concentration, and exchange integral. Many
oretical approaches have been performed to analyze fe
magnetism in DMS, this includes mean-field theory,3–5 spin-
wave theory,6 first-principle calculations,7–9 and Monte Carlo
simulations.10 In contrast to most of the theoretical work, w
present a theory that is able to treat the disorder in a m
realistic manner~beyond coarse graining!. Our theory in-
cludes quantum fluctuations within random-phase appr
mation ~RPA! and the disorder is treated within cohere
potential approximation~CPA!. It should be stressed that i
our approach the spin impurities are treated quantum
chanically.

We start with the following minimal Hamiltonian:

H5(
i j ,s

t i j cis
† cj s1(

i
JiSW isW i . ~1!

The first term stands for the tight-binding part of the itinera
free electron gast i j 5t if i and j are nearest neighbor, or
otherwise. The second term is the exchange between lo
ized impurities spin and itinerant electron gas,Ji are random
variables:Ji5J if site i is occupied by a Mn21 ion or 0. The
operatorsW i5cia

† (1/2sW ab)cib is the spin operator ati of the
itinerant electron gas andSi is the spin of the magnetic
impurity.

Let us define the Green’s function

Gi j
12~ t !52 iu~ t !^@Si

1~ t !,Sj
2~0!#&5^^Si

1 ;Sj
2&& . ~2!
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We write the equation of motion and use Tyablico
decoupling,11 ~equivalent to RPA! which is suitable for fer-
romagnetic systems. It consists in closing the system by
proximating the higher-order Green’s function^^Si

zsi
1 ;Sj

2&&
'^Si

z&^^si
1 ;Sj

2&&. In this approximation, we obtain in fre
quency space,

~v1Ji^s
z&!Gi j

12~v!52^Si
z&d i j 1Ji^Si

z&^^si
1 ;Sj

2&&, ~3!

where^sz& is the magnetization of the itinerant electron g
and^Si

z& is the magnetization of a magnetic ion at sitei. It is
convenient to rewrite the new Green’s function th
appears in the right part of the equality in the follow
ing form: ^^si

1 ;Sj
2&&51/L2(kqe

iqRiG j
k1q,k , where G j

k1q,k

5^^ck1q,↑
† ck,↓ ;Sj

2&&. We obtain

G j
k1q,k5 f ~k,q,v!(

l

1

2
Jle

2 iqRlGl j
12 , ~4!

where

f ~k,q,v!5
~^nk1q,↑&2^nk,↓&!

v2~ek2ek1q!1cJ^SA
z &

, ~5!

where ^nk,s& is the occupation number of (k,s) state.c is
the impurity concentration,̂SA

z & is the averaged magnetiza
tion of Mn21, andek denotes the hole’s dispersion. Insertin
both Eq.~4! and Eq.~5! into Eq. ~3!, we immediately find

Gi j
125gid i j 1gi(

l
f i l Gl j

12 , ~6!

where theT-dependent locatorgi is defined as

gi~v!5
2^Si

z&

v1Ji^s
z&

; ~7!

f i l 5
1
4 JiJlx i l

0 (v) andx i l
0 (v) is the Fourier transform of the

polarized susceptibilityx0(q8,v)

x0~q8,v!5
1

L (
k

~^nk1q8,↑&2^nk,↓&!

v2~ek2ek1q8!1cJ^SA
z &

. ~8!

Note that Eq.~6! still contains the disorderthroughf i l
and gi . It is also interesting to mention that the previo
©2002 The American Physical Society03-1
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equation can be interpreted as the propagator of a free
ticle moving on a disordered medium,gi is the random on-
site potential, andf i l the long-range-hopping terms. No
also thatf i l is energy dependent throughx i l

0 (v). To solve
the problem we have to calculate in a self-consistent man
^sz& and ^nk,s& that appear in Eq.~6!. For that purpose we
have to write the equation of motion for the Green’s functi
Ki j ,s5^^ci ,s ;cj ,s

† &&. After decoupling we get

S v2
1

2
zsJi^Si

z& DKi j ,s5d i j 1(
l

t i l Kl j ,s . ~9!

One can recognize the propagator of the Anderson mo
with on-site random potential depending on the spins:
e i ,s5 1

2 zsJi^Si
z&. Since in our model the potential is temper

ture dependent througĥSi
z& then, sufficiently close toTc ,

we will always be in the metallic regimekf l e&&1:12 l e
'1/(J^Sz&)2. This is in contrast with the standard Anders
model where the impurities are static. Equations~6! and ~9!
(s561) provide a closed system of equations that have
be solved self-consistently within CPA.

The simplest way is to start with Eq.~9!. Indeed, it is
straightforward to get the solution with the standard C
since it contains only diagonal disorder. The averag
Green’s function is

Kk,s5
1

v2e~k!2Ss~v!
, ~10!

where the self-energy is

Ss~v!5Vs2@eA,s2Ss~v!#Ks
00~v!@eB,s2Ss~v!#,

~11!

where eA,s5 1
2 zsJ^SA

z &, eB,s50, and Vs is the average
value Vs5 1

2 zsJc^SA
z & and Ks

0051/L(q1/@v2e(q)
2Ss(v)#.

The self-energySs(v) can be reexpressed as

Ss~v!5Vs@11~12c! 1
2 zsJ^SA

z &K00~v!#. ~12!

We see that whenT→Tc , Ss(v)→Ss
VCA(v)5Vs . Thus, in

the framework of our decoupling scheme, close enough
Tc , the CPA for Eq.~10! reduces to the VCA.

The final step of the calculation consists in solving E
~6!. In order to provide analytical form forTc , we use the
similar approximation~VCA! for Gi j

12 as done above fo
Ki j ,s . We expect this approximation to be reasonable in
limit of both low-impurity concentration and low density o
itinerant carriers. To get the averaged Green’s fu
tion, we use the well-known Blackman-Esterling-Be
formalism.13,14By contrast with standard CPA, this approa
is suitable for nondiagonal disorder problems. It is based
a 232 matrix Green’s-function formalism for binary alloy
using locator expansion. Within VCA approximation, o
gets for the averaged Green’s function of an atom of typA

GA
12~k,v!5

c

gA
212ca~k,v!

, ~13!

wherea(k,v)5 1
4 J2x0(k,v).

Note also that since the Ga atoms have no magnetic
ment, it impliesGB

12(k,v)5gB50. The Mn21 ion propaga-
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tor can be rewritten,GA
12(k,v)52/@E2E(q)#, where E

5v/^Sz&. The dispersionE(q) is solution of

E~q!52J
^sz&

^Sz&
1

1

2
J2x0~q,E~q!^Sz&! ~14!

According to Ref. 15 the magnetization can be expres
in the following form:

^SA
z &5

~s2f!~12f!2S111~S111f!f2S11

~11f!2S112f2S11
, ~15!

wheref51/L(q1/@ebv(q)21#.
When T→Tc , f5(kBTc /c^SA

z &)(1/L)(q1/E(q). This
implies for Tc the standard RPA form

Tc5
1

3
c

S~S11!

1

N (
q

1

E~q!

. ~16!

This expression is similar to the one obtained in the cle
limit for the Kondo lattice model.16,17 In the vicinity of Tc
the dispersionE(q) is

E~q!5
1

8p2

J2

t

1

2 Fkf2
1

q S kf
22

q2

4 D lnS q12kf

q22kf
D G . ~17!

Note that, belowTc , the Eq.~14! should be solved nu-
merically in order to getE(q) as a function of the tempera
ture. This is required to calculate^Sz& and^sz& as function of
T. According to Eq.~16!, Tc is given by

Tc5
S~S11!

24p2

J2c

t S 1

N (
q

1

C~q,kf !
D 21

, ~18!

where we define C(q,kf)5 1
2 †kf21/q(kf

22q2/4)ln@(q
12kf)/(q22kf)#‡. This implies thatTc is proportional toJ2

and to the effective mass (1/t). The dependence on the ho
concentration is only contained inC(q,kf). We define the
hole concentration asnh5gc, whereg<1. This is the sim-
plest way to take into account the presence of As antisite18

In Fig. 1 we show the variation ofTc as a function ofg. We
observe that in the low-hole-concentration regime,Tc agrees
very well with the mean-field result~this is more clear in the
inset log-log plot!. In the mean-field regime the magnon e
citation spectrum is dispersionless:EMF(q)5 limq→`E(q)
5(1/8p2)(J2/t)kf wherekf5(3p2gc)1/3. In this limit

Tc5
1

24S 3

p4D 1/3

S~S11!
J2

t
g1/3c4/3. ~19!

When increasingg, Tc stronglydeviates from the mean
field results and shows abroadmaximum. Such a maximum
was also observed in Ref. 6. By further increase ing, the
Curie temperature starts to decrease.19 As we observe it from
Fig. 1, for very largeg, Tc agrees very well with the cas
where the magnon spectrum is approximated byE(q)
5Esti f f(q)5Dq2 where the stiffnessD is given by D
5(1/48p2)(J2/t)(1/k f), this regime is denoted ‘‘stiffness’
regime. In this regime we find
3-2
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Tc5
1

144

1

~18p4!1/3
S~S11!

J2

t
g21/3c2/3. ~20!

The existence of a maximum can be understood in
following way: Like in the Ruderman-Kittel-Kasuya-Yosid
situation,20 the exchange oscillates with typically leng
scale l osc}1/kf . Thus, it is expected that when the leng
scale gets sufficiently large~larger than the average distan
between impurities! some Mn-Mn bonds are coupled antife
romagnetically. The induced frustration leads to the imme
ate consequence a decrease inTc . In Fig. 2 we illustrate the
previous discussion by showing the dispersion as a func
of k/kc wherekc is chosen in order to conserve the volum
of the Brillouin zone@v5(2p)3#. The results are shown fo
the three different regions: ‘‘mean-field,’’ ‘‘intermediate,
and ’’stiffness’’ regime. We observe that in all cases the d
persion goes to 0~whenq→0), as expected, when the Gold
stone theorem is fulfilled.

In Fig. 3, we show the region for whichTc reaches its
maximum as a function ofc@Tc

max(c)# and the region where

FIG. 1. Tc as a function ofg for c50.05 andJ2/t510.5 eV.
The continuous line represent the VCA calculation, the dashed
corresponds toTc within the mean-field approximation, and th
dotted line is obtained by approximating the dispersion byE(q)
5Dq2, D is the spin stiffness. The inset shows ln(Tc) versus ln(g).

FIG. 2. Magnon dispersion forc50.05 in three different re-
gimes: ‘‘mean-field’’ ~continuous line!, ‘‘intermediate’’ ~dotted
line!, and ‘‘stiffness’’ regime~dashed line!. E(q) is rescaled by a
factor l5J2/t(3p2g)1/3
15320
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MF formula provides a good approximation forTc , it corre-
sponds tou(Tc2Tc

MF)/Tcu<0.1. First we see that the regio
of validity of the mean-field~MF! result ~dashed area! cor-
responds to a very narrow region typicallyg<0.05. A good
approximated value of theg, for which Tc is maximum, can
be obtained by taking the intersection point between the
and ‘‘stiffness’’ values. This leads togmaxc5nmax50.016.

So far, we did not have to specify the values of the p
rameterst and J for our discussion. In order to check th
validity of our theory we compare our results with availab
experimental data. GaAs is known to have a fcc struct
with a lattice constanta0'5.6 Å . For simplification in our
calculation we have assumed a simple cubic structure
the lattice constant which has to be taken in our calculati
is a15a0/41/3 in order to conserve the volume for the un
cell. Also assuming an effective mass for the holesm
50.5me one getst50.63 eV. The remaining free paramet
J will be chosen in order to fit the experimental data of R
2. For that purpose we calculateg for each sample accordin
to the measured experimental values of the hole concen
tion given in Fig. 2 of Ref. 2. The results are depicted in F
4. As can be seen we find a very good agreement with
experimental data if J2/t510.5 eV, this implies uJu
52.58 eV.22 Note that the deviations observed at lowc are
due to the uncertainty on the hole-concentration value~see
the huge error bars in Fig. 2 of Ref. 2!. From the experimen-
tal measurements, there is no clear consensus concernin
correct value of this parameter. Indeed, recent core-le
photoemission has providedJ521.260.2 eV.23 Whilst,
from Magnetotransport measurements a value ofuJu52.4
60.9 eV was suggested.2,21And within first-principle calcu-
lations Sanvitoet al.7 have foundJ'24.6560.25 eV. In
order to proceed to a better estimation of the parameterJ,
one should compare theoretical calculations with other d
for instance, transport measurements data.24 However, it is
interesting to note that the band splitting atT50 K (D
5JcS) obtained within our calculations agrees with the e
perimental value reasonably well.25 In the inset of Fig. 3,
assumingJ2/t510.5 eV we showTc as function ofc taking

e
FIG. 3. The dashed area represents region where mean-

result for Tc is valid, the symbols are calculated points and t
dashed line a fit. The continuous curve represents values of (g,c)
for which Tc is maximum (Tc

max). In the inset we have plottedTc
max

as a function ofc assumingJ2/t510.5 eV.
3-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 153203
g on the line of ‘‘maximum ofTc . ’’ For instance ifc'0.1
andg'0.2 aTc of order 230 K can be reached.

Let us proceed further on and compare the calcula
magnetization with the measured one. In the experime
data the concentration of Mn21 is c50.053% and the pa
rameterg is estimated to be 0.3~see Ref. 21! In Fig. 5, we
show the magnetization as function of the T wherem*
50.5me and J52.58 eV. We observe that for sufficientl
high temperatureT<0.5Tc there is a very good agreeme
with the measured Mn21 magnetization. On decreasingT,
some deviation appears, which suggests that the VCA tr
ment is not good enough in this region, which was expec

To conclude, we have presented a general theory
carrier-induced ferromagnetism in DMS. Our approach
lows one to treat the disorder beyond simple coarse grain
within full CPA treatment. It goes beyond mean field a

FIG. 4. Tc in Kelvin as a function ofc. The filled squares cor-
responds to experimental values taken from Ref. 2. The fi
circles represent the calculated values, theg ’s where also taken
from the same reference.
90

,
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includes quantum fluctuations in the RPA approximation.
have shown that, within our decoupling scheme and su
ciently close toTc , the CPA for the itinerant gas reduces
VCA, which allowed us to provide analytical results forTc
in the low impurity concentration and hole-density regim
We have also discussed its dependence on the hole con
tration. We have also shown that the mean-field approxim
tion is only valid for very low carrier concentration. Add
tionally, for illustration of our theory a comparison wit
available experimental data on Ga12cMncAs was made. We
find a very good agreement with the experimental res
assuming a single band for itinerant carriers and a large
change constantJ522.58 eV. Finally, this work provides a
good starting point for higher decoupling scheme.

Note added. After this work was completed we becam
aware of Yanget al. comment.17 By analogy with the Kondo
lattice model16 ~no disorder! they proposed a similar expres
sion for Tc as the one derived in Eq.~16!.

d

FIG. 5. Normalized magnetization as a function ofT/Tc . The
experimental data are taken from Ref. 2.
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