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Polaron effect in GaAs-Ga_,Al,As quantum wells: A fractional-dimensional space approach
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The binding energy and the effective mass of a polaron confined in a GaAsAgAs quantum well are
calculated within the framework of the fractional-dimensional space approach. In this scheme, the real confined
“polaron plus quantum well” system is mapped onto an effective fractional-dimensional bulk in which the
polaron behaves unconfined, and the fractional dimension is essentially related to the degree of confinement of
the actual system. Analytical expressions allowing a very simple estimation of the corresponding polaron
corrections are found. The fractional-dimensional theoretical results are shown to be in good agreement with
previous more detailed calculations.
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[. INTRODUCTION account the finite size of the QW and the finite height of the
confinement potential and deals with only one bulk phonon
With the progress in semiconductor growth techniques itmode. The purpose of the present paper is to go one step
has been possible to produce a variety of low-dimensionalorward and to formulate a more simplified model to calcu-
systems such as quantum wel@W’s), superlattices, quan- late, in a purely analytical way, the polaron corrections in
tum wires, and quantum dots. These systems exhibit a set @aAs-Ga_,Al,As quantum wells, within a good accuracy.
interesting physical properties that have found applications Of particular interest to the present work is the original
in a wide range of electronic and optoelectronic devicesapproach proposed by H&23 In this approach the aniso-
Consequently, in the last decades a great deal of resear@lbpic (or confined interactions in real 3D space are treated
effort has been devoted to the study of the physical effectgs isotropic(or unconfinedl ones in an effective fractional-
occurring in such low-dimensional systems. One of the efgimensional environment the dimension of which constitutes
fects that has aFtracted the attention of a considerable amougtneasure of the degree of anisotrgpyconfinementof the
of researchers is the polaron effect. , actual physical system. The main advantage of this approach
In particular, some commonly used QW'S, such aSjgg in the fact that all information about a perturbaticon-
GaAs-Ga_,AlAs, are constituted by weak polar Semicon- gi,oment or anisotropycan be introduced in a single value—

ductors in which the polaron effects can strongly inﬂuence[he dimensionality. Thus, given this simple value, the real

the optical and transport properties of the heterostructureSystem can be modeled in a simple analytical way. In the last

Indeed, the electron—LO-phonon interaction leading to the . ) ;
polaron effect modifies the properties of the electron conY€ars: the fractional-dimensional space approach has been
fined in the QW successfully used in modeling excitét;?®

H 9,30 pai H 31,32 ; H ,33,34
At earlier stages, polarons in bulk material were investi-magnetoexcitofi, * biexciton"** and impurity states

gated and a wide variety of mathematical techniques werd s_emiconductor heterostructu_res._ The _Stark shift of exci-
applied to the study of the polaron problefsee, for in-  toNic complexe¥ and the refractive mdéﬁ_m_quantum well
stance, Refs. 1 and).2The polaron confined to an infinite structures have also been studied within the fractional-
thin two-dimensional2D) layer was firstly studied by Das dimensional space approach.
Sarma and MasohPolaron corrections in an infinitely deep ~ In the present paper we extend the fractional-dimensional
QW of a finite length were calculated in Refs. 4—6. In thesespace formalism to the case of a polaron confined to a rect-
papers only the interaction with the bulk LO-phonon modesangular quantum well. Thus, the real confined “polarén
was considered. The polaron effect in heterostructures of figuantum well” system is mapped onto an effective
nite size is, however, quite different from that in bulk mate-fractional-dimensional bulk in which the polaron behaves
rials. In the former case a variety of phonon modeg., unconfined, and the fractional dimension is essentially re-
bulklike phonon modes, slab mode$§;1° interface lated to the degree of confinement of the actual system. The
modes’">™~12 half-space modé ™3 arises as a conse- paper is organized as follows. For completeness of argument
guence of the presence of the heterointerfaces. Consequentiye briefly comment on some results of a previous WOk
a rigorous treatment of the electron-phonon interaction irSec. I, where the Fidich-like Hamiltonian describing the
semiconductor heterostructures requires the consideration efectron—LO-phonon interaction in a fractional-dimensional
all these modes. The polaron problem in QW’s becomes thespace is presented. The corresponding fractional-dimensional
too complicated and even the simplest models cannot be rgolaronic corrections in the weak-coupling limit are obtained
solved analytically. For the influence of the different phononin Sec. I, within second-order perturbation theory. In Sec.
modes on polarons in different layered heterostructures se&y the polaron binding energy and effective mass in an infi-
for instance, Refs. 14-20. nitely deep rectangular quantum well are obtained for vary-
In order to simplify the polaron problem in multilayered ing well width. The results are compared with the calcula-
heterostructures, Smondyrev, Gerlach, and DZdnave re-  tions reported in Ref. 16. In Sec. V the polaron problem in
cently proposed a simplified polaron model that takes intdGaAs-Ga_,Al,As quantum wells is considered and a com-
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parison of our results with calculations by other authors idn fact, following the same physical considerations as in Ref.
shown. Finally, conclusions are summarized in Sec. VI. 37, but now assuming a fractional dimensi@nd this im-
plies to renounce the use of any vector properone can

ll. THE FRACTIONAL-DIMENSIONAL obtain

ELECTRON-PHONON HAMILTONIAN

The first difficulty arising in dealing with the fractional-
dimensional formalism is that the fractional-dimensional
space is not, in general, a vector spitelowever, one can Where
trace a certain number of mutually perpendicular lines. A " 1
remarkable fact is that, for noninteger values of the dimen- FD(Q)Z(ZTF)D/ZJ drrP=(qr)* P2ip,_1(qr) = (3)
sion D of the space, the largest numkeof mutually per- 0 r
pendicular lines can even be greater thasee Ref. 38 Of i o fractional-dimensional Fourier transfdfimof the

course, wherD is an integer we hav®=s. The set ofS g, jsmp-like potential. In the equations above and in what
mutually perpendicular lines can then be regarded as a set gf)5\ys m, o, andw, o represent the electron effective mass,
orthogonal axes along which we can define certainy,g Frgich constant, and the bulk LO-phonon limiting fre-
pseudocoordlnates'l'hus, it is .possmle. to describe the posi- quency, respectivelyy, is the fractional-dimensional vol-
tion of the electron by introducing arscomponent e of the crystal to which Born—Von Karman periodicity

pseugovectow. Inthe same Wa(?./ we Cﬂn dﬁf'ne the ‘g’ar\:econditions are applied, anl,(x) represent the Bessel func-
pseudovectorg andk corresponding to the phonons and the ;5 Notice that introducing the fractional-dimensional

ele_ct;ron, rhespelctlvely. TEe Fhltnch-hke Hamlltc_)man tfhat Qe- | Fourier transform we avoid the use of any property concern-
scribes the electron-phonon interaction in a fractional ing vector spaces.

dimensional space can then be written as After the corresponding integration in E(B) we obtain
from Eq. (2) the coupling coefficient

112 1/4
FD(Q)“) ( h ) @

Cq(D):_|h0)|_o( VD meLO

N = b iq- —+ * ht —iqa-
He.pn Eq [Cq(D)byexpiiq-r)+C} (D)blexp —ig-1)], B (4m)®- V2D —1)/2]] 2
(l) Cq(D)—_|fLwLo qulvD
where bg (bg) is the creation(annihilatior) operator for a % 14
phonon with wave pseudovectorg, and Cy(D) is the (me ) (4)
LO

fractional-dimensional coupling coefficient of the electron-

phonon interaction. characterizing the electron-phonon interaction in the
By considering that the basic interaction characterizingractional-dimensional bulk. We remark that if we extend the

the electron motion i\ dimensions K being an integer values of the dimensional parameter to noninteger values in

numbej remains Coulomb-like{ 1/r), Peeters, Xiaoguang, the results of Ref. 37, we obtain an expression for the cou-

and Devrees obtained an expression for thedimensional  pling coefficient that coincides precisely with Ed).

coupling coefficient of the electron-phonon interaction. Al-

though the procedure used by these authors is valid only for 1. FRACTIONAL-DIMENSIONAL POLARONIC

integer values of the dimensidhone can try a straightfor- CORRECTIONS

ward generalization of the results in Ref. 37 by extendihg

to noninteger values. At first sight, this prolongationNofo Taking into account that in GaAs-GaAl,As quantum

noninteger values in order to obtain the correspondingvells the electron-phonon coupling constan&l we can
fractional-dimensional coupling coefficient may seem notrestrict our study to the weak-coupling case.

quite convincing. Nevertheless, it gives the appropriate The electron self-energy due to the electron—LO-phonon
fractional-dimensional coupling coefficient as will be shown. interaction in the weak-coupling approximation can be cal-
Actually, the axiomatic nature of the fractional-dimensionalculated within second-order perturbation theory. The energy
spaces is different from that of integer-dimensional ones an@f a fractional-dimensional polaron in the ground state is
we cannot expect that this simple procedure will conducediven by

always to the correct fractional-dimensional valdasbrief .

comment about this situation can be found also in Ref. 40 0 [{Lkr , Ok, gl He— phlOkr 1, Og) |2
In this sense, the dependence of the fractional-dimensional E=Ey +2, E.—E., '
guantities on the dimension of the space is not a trivial de- : koK

pendence; i.e., although the fractional-dimensional expreswhere

sions recover the corresponding integer-dimensional ones o R

when the dimension becomes an integer number, the oppo- Ex=(0q, 1,00 |H®|0y/,1 ,0o) = ELY (6)
site is not true in general. In the present problem, however,
the simple extension oN in the coupling coefficient ob- and

tained in Ref. 37 to noninteger values gives the appropriate — ~(0) )

expression corresponding to the fractional-dimensional case. ~ Ek'={1k/:0k1g/H™[1.00, 1) =B +hiw o (7)

®)
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are the unperturbed electron energies corresponding to the

initial and intermediate states, respectively.

In the equations abov®,,1,,0,) denotes the initial state

with one electron in the state zero electrons in thk’, and

PHYSICAL REVIEW B 65 165321

IV. POLARON IN AN INFINITE-BARRIER
QUANTUM WELL

In the present section we will study the behavior of the

zero phonons. The assumption of absence of phonons in thpolaron confined in an infinitely deep quantum well, within
initial state is usually fulfilled for low temperatures. The in- the framework of the fractional-dimensional space approach.

terpretation of the intermediate StatE%,Ok,lkr) is analo-
gous to that of the initial states.

In this approach the real three-dimensional “polareiQW”
system will be treated as a polaron in an effective fractional-

Taking into account that the free electron motion in adimensional bulk, which dimension constitutes a measure of
fractional-dimensional space can be described by a planthe degree of confinement of the real system. Thus, given the
wave® and after the corresponding integration over the vol-value of the dimensionality of the effective bulklike environ-

umeVp in the matrix elements present in E&) we get

o(D)?[A[k'—k+q]|?
’ -2
k?—k'?=Ry

2m C
E-E0=— 2 | . ®
ﬁ2 k’,q
whereR,= y2mw o /% is the polaron radius antl(x) rep-

resents the Kronecker delta functipa(x)=1 if x=0, and
A(X)=0

if x#0]. This function, as in the integer-

ment, the corresponding polaron corrections can be easily
obtained from Eqs(10) and(11). The question that arises is
then how to calculate the appropriate value of the dimen-
sional parameter. At earlier stages, Mathieu and co-workers
introduced a heuristic model for calculating the appropriate
dimensionality in the case of confined excitons. Their
method provide a surprisingly accurate parametrization of
the exciton binding energy in rectangular quantum wlls,

. ; ; : iradb :
dimensional bulk case, is an expression of the momenturfuantum well wires? and superlattice€ More recently de

conservation law.
By now approximating the summation overin Eq. (8)
by an integral

Vp 2 (D-1)12
% " (2m)P TI(D-1)/2]

xf f".--qul(sina)D*qude, ©)
0Jo

and after the standard procedures, we obtain from(&ghe
following expression for the polaron energy:

2k2
E=—aﬁwLoGa(D)+2 o (10
where
RS L. 11
M =1-aG4D) (11)

is the polaron effective mass.
In Egs.(10) and (11) the D-dependent function& (D)
andGg(D) are given by

6.(D) ﬁ I[(D—-1)/2]

2 I[D/2] (12

and

V7 T[(D-1)/2]

Cs(D)="4 ~bripdiz]

(13

respectively. In Eqs(9), (12), and(13), I'(x) represents the
gamma function.

The set of equation§l0)—(13) determines the polaronic

Dios-Leyva and co-workef5 have developed a systematic
procedure for determining the dimensionality of the effective
medium in modeling exciton and impurity states in quantum
wells 2% multiple quantum well$® and superlattice¥: For
the sake of simplicity we will consider in the present paper a
procedure analogue to that in Refs. 24-26.

Following Christolet al?® since the dimensional param-
eter is a measure of the degree of confinement of the real
system embedded in a three-dimensional Euclidean space, it

can be determined by

D:Bx+ﬁy+ﬁz-

whereg,, By, andg, represent the ratios of the homothetic
reduction of the unit length for the directions y, and z,
respectively.

In the case of a rectangular quantum well grown along the
z direction, the motion in thex(y) plane is free and we get
Bx=By=1. The ratio of the homothetic reduction of the unit
length in thez direction produced by the confinement effects
can be calculated through the relation

Bzzl_exq_g]!

(14)

(15

where

length of confinement
~ effective characteristic length of interaction

(16)

3

Equationg14)—(16) have been successfully used in mod-
eling exciton states in semiconductor quantum wétfs.in
the case of an exciton confined in an infinitely deep quantum
well we have, for instanceé=L,/(2a,) (see Ref. 24
wherelL,, represents the well width amal, is the effective
Bohr radius of the three-dimensional exciton. The dimen-
sionality is then given byd =3—exg —¢].

Let us consider now a polaron confined in an infinitely

corrections in a fractional-dimensional bulk. It is straightfor- deep rectangular quantum well. In this case, the electron is
ward to check that these equations recover the well-knowmnestricted to move only inside the well; consequently, the

forms in both the exact 2D and 3D limits.

length of confinement is equal to the well width. On the
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other hand, the effective characteristic length of the electron-
phonon interaction is equal to the polaron diameter

[ h
dZZszz m (17)

Therefore, the dimensional parameter can be calculated
through the simple relation

(@

3D limit |

AE

0.4} ---- Hali, Peeters & Devreese™ |
—— This work

D=3 exp{ LW} (19
2R, ' 02 200 200 600

whereR, is the polaron radius. Well width (A)

By now substituting the equation above in EGK))—(13)
we can estimate in a very simple way the energy and the N ®)
effective mass of the confined polaron. We use in our calcu- 081\, ]
lations the same material parameters as in Ref. 16. The nu- os |
merical results are shown in Fig. 1. e

The well width dependence of the fractional-dimensional 04 BT |
polaron binding energy compared with the corresponding 3D limit
calculations by Hai, Peeters, and Devré&se displayed in 02| -~ Hai. Peeters & Devreese® 1
Fig. 1(a). An excellent agreement between our results and | This work
those reported in Ref. 16 for 3D bulk LO-phonon modes can 00 ) )
be clearly appreciated. Notice that in Figajllthe polaron 0 200 400 600
binding energy is given in units of the 2D polaron binding Well width (A)
energy limit, i.e.,AE,=AE/AE,p. An overall agreement y
between our results and those reported in Ref. 16 can be
appreciated in Fig. (b) for the well width dependence of the
polaron effective mass. Here the polaron effective mass has
also been referred to its 2D value, i.Am,=Am/Amyp .

The fractional-dimensional parameter corresponding to
the results shown in Figs(d and 1b) is displayed in Fig.
1(c) as a function of the well width. A transition from the 2D
limit to the 3D limit when the well width increases is quite
apparent. In fact, fot.,=300 A the effective system be- ) )
comes practically three dimensional. ) 200 400 600

It is worth remarking that in Figs.(4) and Xb) we com- Well width (A)
pare our results with those results reported in Ref. 16 that . o
correspond only to the bulklike phonon case. One cannot F!G. 1. Well width dependence of the polaron binding energy
expect that in the region of narrow wells the approach pro-("’_‘)’ the_polaron effective magb), ar_1d the_ corres_,pc_)n_dlng fractional
posed in the present section will give correct values for thelimension (c), for a polaron confl_ne(_j in an infinite rectangula_\r
polaronic corrections corresponding to the interface and slafantum well. Both the polaron binding energy and the effective

. . . [nass are referred to their corresponding 2D values. Solid curves
phonon modes. We have assigned to the effective fractional- . : :
correspond to the present fractional-dimensional results and the

dimensional bulk a fix set of material parameters equal tq ! : :
. ashed lines to calculations by Hai, Peeters, and Devigefel16.
that of GaAs layer. Thus, for wide quantum wells the model y ¢ 0

presented in this section gives the correct limit values of the

1.0

Am

(©

Fractional dimension

polaronic correctiondi.e., those corresponding to a GaAs __ﬁ_zi(i i) +V(2) (19)
bulk). However, for narrow quantum wells the correct limit € 2 dz\m(z) dz '
corresponding to a GaAs-GaAl,As bulk cannot be recov-
ered. In order to take account of these effects the fractionalwhere
dimensional model is generalized to the case of a finite-
barrier quantum well in the next section. 0 if|zl<L,/2

W ]

V(z)= [ (20)

V. POLARON IN A FINITE-BARRIER QUANTUM WELL Vo otherwise.

We consider now the problem of a polaron confined in aln the equations above and in what followgz) represents
semiconductor GaAs-Ga,Al,As QW grown along the di-  thez-dependent effective mass of the electrby,is the well
rection. Within the effective mass and parabolic band apwidth, andV, is the height of the potential barri¢notice
proximations the electronic part of the Hamiltonian may be ahat the value oV, depends on the Al concentration in the
given, in the growth direction, by barriey.
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While in the infinitely deep QW the length of confinement Notice that in our model the electron effective mismatch is
| can be taken equal to the well widilsee the previous included in the electron wave functioki(z). That is, in our
section, in the present problem the motion of the electron ismodel the functionV (z) does not depend on the mean value
no longer restricted to the region inside the well only. There-of the electron effective mass but om,, and m,,;. There-
fore, the spreading of the electron wave function into thefore, the mean value can be determined directly from Eq.
barriers on both sides of the well has to be considered ii23), avoiding the self-consistent procedure required in Ref.
defining the corresponding length of confinement. Taking21.
into account that the spatial extension of the electron motion Finally, after considering Eq$14)—(16) and(21), the di-

in the barrier region is mainly characterized iy f+k_ %),  mension corresponding to the effective bulklike environment
we can define the length of confinement as follows: can be calculated as
2 (2+kouilw)
I=Ly+—, (21) D=3-e p[—&, 2
v out X ZkoutRp ( 7)
where and the polaronic corrections can be obtained in a very
simple analytical way from Eq$10)—(13).
Ko = \/mout 2MinftVo _ E1) (22) The fractional-dimensional polaron binding enefgplid
out Min Lw line) as a function of the well width for a GaAs-G#\l As

rectangular quantum well is displayed in FigaR For very
i _ _ - narrow quantum wells the polaron binding energy has the
being the electron eigenenergy determinedthy[see Eq. value corresponding to the 3D limit of a GaAsGAl, sAs
(19)] and corresponding to the first subbamabtice that we i " The polaron energy shift then decreases as the well

are interested in the polaron ground state pnlly Eq. (22)  yiqth increases and reaches a minimurhgt-2 A [see the
and in what follows, the subindexé@sandoutare labels for  set in Fig. 2a)]. By continuing to increase the well width,

the well and barrier regions, respectively. the energy shift increases and reaches a maximurn,at
Ina G‘?‘AS'G@XAIXAS QW th‘? maFenaI parameters that 10 A. For wider guantum wells the energy shift again
characterize the polaron properties differ when passing frongacreases ak,, increases and recovers the appropriate 3D
the well to the barrier region. In order to take account of thisjiyit value corresponding to a GaAs bulk for very large well
fact, we may assign to the effectlve fractlonal-dmensmnabvidths (L,>300 A). A similar behavior for the fractional-
bulk an average of the material parameters over the polarofansional polaron effective mass can be appreciated in
positions. If we consider the polaron as a phonon clou ig. 2(b), where the well width dependence of the mass shift
around the electron, the polaron position will be determlned,ém:Am/Am_ is displayed. Notice that, actuallym rep-
essentially, by the electron position. The mean values of theesentS the rlantio of the maes shiftrf) to’ that in t’he well
material parameters can therefore be calculated in the same. i, (m.). Comparing our resultgsolid line) with
manner as in Ref. 21, i.e., according to the way they enter iy, oo reportelgl by Smondyrev, Gerlach, and DZef@ashed
the Hamiltonian of the system and weighting the spatial 'n'line) good agreement is found. The maximal discrepancy be-
tegration with the square module of the electron ground—statheen both calculations is about 3.566.15 me\f for the
wave function¥(z) determined byH, [Eq. (19)]. Our effec-  energy shift and about 12% for the mass shift. For Fig. 2 we
tive fractional-dimensional bulk is then characterized by thengye used the same set of material parameters as defined by

represents the electron wave vector in the barrier redtqn,

following set of mean parameters: Smondyrev, Gerlach, and Dzero in Ref. 21.
In Fig. 2(c) we show the well width dependence of the
m- 1= Jm L|‘P(z)|2dz, (23) d?mens?onal parameter _corresponding to the fractional-
—M(2) dimensional results in Figs.(@ and 2b). For large well
widths the system behaves as a GaAs bulk and consequently
°° 5 the dimensional parameter has the limit vadie-3. When
@Lo= f_w‘”LO(Z)W(ZH dz, (24 the well width decreases, the system becomes more and more
confined, the polaron turns moocempressedand the effec-
and tive dimension decreases, reaching a minimum [gy
o ~25 A. If we continue decreasing the well width, the tun-
Ja= o wLO(Z)(a(Z) [ Mmoo ) W (2)|2dz neling through the.weII barriers becomes significative and
—» W0 M(z) v o(2) ' the degree of confinement of the system decreases. Conse-

(25) quently, the corresponding fractional dimension increases

i . and recovers a value of 3 for very narrow quantum wells.
In the same way, the mean polaron radius that determines the Although Fig. 2 shows an overall quantitative agreement

effective characteristic length of the electron-phonon interacpenyveen our results and the calculations by Smondyrev
tion can be written as Gerlach, and Dzerd: there is, however, a significative quali-

. tative difference. While in Ref. 21 these authors obtained
JR = wLo(2) /“(Z) Rp(z)|\[,(z)|2d 7z (26 only a peak in the well width dependence of both the energy
P)e wio a : and the mass shiffsotice that in Fig. 2a) the peak in the
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FIG. 2. Well width dependence of the polaron energy staift FIG. 3. Same as in Fig. 2, but now_assuming material param-
the polaron mass shitb), and the corresponding fractional dimen- eters as used in Refs. 10 and 11. Solid curves correspond to the

sion (c) for a polaron confined in a GaAs-G#l, sAs rectangular ~ present fractional-dimensional results, while dashed and dash-
quantum well. Solid curves correspond to the present fractionaldotted lines correspond to the calculations by Smondyrev, Gerlach,

dimensional results and the dashed lines to calculations bjnd Dzero(Ref. 21 and by Hai, Peeters, and Devredgef. 20,
Smondyrev, Gerlach, and Dzer@ef. 2). The insets show a respectively.
zoom-in of the corresponding fractional-dimensional polaronic cor-
rections. The material parameters have been assumed as definedi8yahout 0.12 meV. One also can appreciate in Fig) that
Smondyrev, Gerlach, and Dzero in Ref. 21. the agreement between our results and the HPD model is
better than that between the HPD and the SGD models in the
energy shift reported in Ref. 21 is very small and almostregionsL,,<3 A andL,>12 A. On the other hand, for the
invisible], a structure with a peak and a dipee Figs. @)  case of the mass shifsee Fig. 8)] the agreement between
and 2b), and the corresponding insgts obtained within the  our results and the HPD model is better only fby,
present fractional-dimensional space approach. This compli=12 A. It is worth remarking that, as a difference with the
cated structure with the peak and the dip was also obtaineBGD modeP! our simple fractional-dimensional space ap-
by Hai, Peeters, and Devreese in Ref. 20, where detailedroach reproduces the structure with the peak and the dip

theoretical calculations were performed. predicted by the more detailéednd much more complicatgd
A comparison between our results and calculations byalculations within the HPD modéf.
Hai, Peeters, and Devreé8e (HPD mode) and by The fractional dimension corresponding to our results in

Smondyrev, Gerlach, and Dz&W0(SGD model for a  Figs. 3a) and 3b) is displayed in Fig. &) as a function of
GaAs-Gg /Al sAs quantum well is shown in Figs(® and  the well width. The behavior is quite similar to that of the
3(b). For the case of the energy shift the agreement is quiteurve in Fig. 3c). In fact Figs. 2 and 3 correspond to the
apparent. The maximal discrepancy between the tree modet&me structure, i.e., a GaAs-3alyAs quantum well.

165321-6



POLARON EFFECT IN GaAs-Ga ,Al,As QUANTUM. .. PHYSICAL REVIEW B 65 165321

peaks and dips of the polaronic corrections as well as in the
position of the maximum of the fractional dimension to
smaller well widths. Notice that this behavior is predicted by
both the fractional-dimensional space and the HPD ap-
proaches.
_ In the HPD modéf!! the peaks and dips appear as a
ssst oA T ] consequence of the competition between the contributions
630 due to the half-space, interface, and slab phonon modes. Our
x=1 simple model deals with only bulklike phonon modes and
cannot give a detailed description of the physical origin of
the peaks and dips of the polaronic corrections in the actual
system. However, an analysis of the behavior of the peaks
b) and dips in the effective fractional-dimensional environment
WOV R can contribute to the understanding of the situation in the
real physical system.

We note that although our model deals with only bulklike
phonons, these phonons are characterized by parameters
whose values are averaged through the heterostructure. This
/M, / N - means that, in some way, we are taking into account the

""" interaction with the half-space, interface, and slab phonon
TR YR TETRT) x=1 modes. Thus, for instance, for very narrow quantum wells,
1 1 0 100 1000 the parameters characterizing the bulk phonons in the effec-
Well width (A) tive fractional-dimensional system coincide with those corre-
3.25 . : . sponding to the half-space phonon modes in the actual sys-
tem (notice that for very narrow quantum wells the most
important contribution is precisely the contribution corre-
sponding to the half-space phonon madeSimilarly, the
fractional-dimensional bulk phonons can be associated,
somehow, with interface and slab phonon modes in the cases
of mean and large well widths, respectively.
] In what follows we only refer to the case of the peak and
x=1 the dip of the energy shift. The analysis for the case of the
2,00 . . . mass shift is quite similar and we omit it. In order to under-
o1 1 10 100 1000 stand the origin of the peak and the dip in the fractional-
Well width (A) dimensional polaron binding energy, we first note that the
energy shift{see Eq.(10)] depends on the factorg’ w| g

Energy shift (meV)

8.25
00 0.2 04 06 08 10
2 !

0.1 1 10 100 1000
Well width (A)

Mass shift m

4.15

-°°

3.00

275 L

250 |

Fractional dimension

225 |

F.IG' f‘ Same_ as in Fig. 3, but for an Al concentration n the and G (D). The former does not depend on the dimension
barrier x=1. Solid curves correspond to the present fractional-

dimensional results, while dash-dotted lines correspond to the ca ‘_nd |s“(_ieterm|ned by the material paramete.rs that th? polaron
culations by Hai, Peeters, and DevreéRef. 20 feels” in the actual system, and the latest is determined by
' ' T the dimensionality of the effective system and related to the
However, for the computation of Fig. 2 the values of thedegree ofcompressiorof the polaron in the quantum well.
material parameters were assumed as defined by Smondyrégth factors are displayed in Figs(eb and 3b), respec-
Gerlach, and Dzero in Ref. 21, while for Fig. 3 identical tively, as functions of the well width. By comparing the in-
parameters as taken by Hai, Peeters, and Devitesme Sets in Fig. 5 one can see that for quantum wells wigh
used. <2 A the effective environment behaves as a 3D bulk with
The polaronic corrections and the fractional dimension a$>, being practically a constant, while the factafio g
functions of the well width for a GaAs-GaAlAs quantum decreases as the well width increases. Consequently, in the
well are displayed in Fig. 4. An overall agreement betweerregionL,, <2 A, the energy shift decreases as the well width
our results(solid lineg and those of the HPD modéllash-  increases. From the point of view of the real system this
dotted line$ can be appreciated in Figs(a# and 4b), al-  region can be associated with the region in which the contri-
though now the discrepancies between both calculations afeution of the half-space phonon modes is the most important

larger than in the case of small Al concentration in the barrieone. In the region 2 AL, <10 A, howeverG, increases
(see also Fig. B faster than the decreasing rateddfw, o and gives rise to an

By comparing Fig. 3 and Fig. 4 one can study the influ-increase in the energy shift as the well width increases. This
ence of the Al concentration in the barrier on the polaronicsituation leads to the appearance of the dip g2 A [see
corrections. Although the structure of the cur¢edth a peak  also Fig. 3a)]. In the region 10 AsL,=<12 A the factor
and a dip for the cases of the energy and mass hits G, continues increasing, but the decreasing ratefob g is
conserved, one can see that the increase in the Al concentriaster, in this region, than the increaseG@n . Therefore, the
tion in the well barrier produces a shift in the positions of theenergy shift again decreases as the well width increases. This
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35 - - - essentially determined by the well width dependence of the
fractional dimension. Indeed the behavior of the peak posi-
30 ¢ tion is determined, qualitativefif, by the behavior of the
s position of the minimum of the fractional dimensiére., the
g ¥r Ho, 1 position of the maximum 06,).
g 8300 Starting from very wide quantum wells, the confinement
S 20 s increased(i.e., the dimension decreagess the well width
s ::: ] d_ecr_e_ase_s until th_e tunneling through the barriers b_ecomes
- x=03 significative. At this value of the well width the fractional
10 NCENEEE dimension reaches its minimum and again increases as the
0.1 1 10 100 1000 well turns narrower. On the other hand, the increase in the Al
Well width (&) moll fraction in the well barriers implies an increase in the
barrier height. For higher barriers the tunneling effects be-
12 o come significative at smaller well widths, and this is the
il ® reason for the shift of the minimum of the fractional dimen-
' sion and of the peaks of the polaronic corrections. In the case
10 of the dip, its position is basically determined by the behav-
N ior of the point from which the fractional dimension begins
© 09| ] to decreas¢and G, begins to increaseln a similar way of
o J reasoning one can straightforwardly explain the correspond-
0| ™ ] ing shift of the dip position.
o5 x=03 Finally, we want to note that although we have applied
0.7 S 2L A our fractional-dimensional space approach to the study of the
01 1 1o 100 1000 polaron effects in the specific case of a rectangular quantum
Well width (A) well, one can hope that in analogy to the fractional-

FIG. 5. Well width dependence of the factaidiw,o (3 and dimensional models for the exciton states in semiconductor

G, (b) corresponding to a polaron confined in a GaAg.@dy As heterostructure?ﬁ‘”the present model for the polaronic ef-
qguantum well. The insets show a zoom-in of the curves of thefECt can be easily gener_allzed to the cases of other kinds of
corresponding factors. The material parameters have been assuma@nostructures. In fact, it has been recently shown that the
as in Ref. 20. fractional-dimensional space approach provides an accurate
estimation of the polaronic corrections in parabolic-confined

situation gives rise then to the presence of the peak,at systems?
=10 A [see Fig. 8)]. Thus the peak and the dip in the
fractional-dimensional energy shift appear as a consequence
of the competition between the dimensionalite., the de-
gree ofcompressiorof the polaron due to the confinement  In conclusion, the fractional-dimensional space approach
effecty and the material parameters “seen” by the polaronwas extended to the study of polarons confined in a rectan-
(i.e., the averaged values of the material parameters that, gular GaAs-Ga_,Al,As quantum well. In this approach, the
some way, characterize the degree of interaction of the eleceal confined “polaron+ QW” system is modeled into an
tron with the different phonon modes, say, half-space, intereffective fractional-dimensional bulk in which the polaron
face, and slab phonon modef&rom the experimental point behaves unconfined and the fractional dimension is a mea-
of view, unfortunately, it seems very difficult to detect the sure of the degree of confinement of the real system. Ana-
existence of the peak and the dip of the polaron energy shititical expressions for the corresponding polaron corrections
because of the smallness of the energy differgabeut 0.1  were found. These expressions allow us an estimation of the
meV) between them. polaron binding energy and effective mass in a very simple
By taking into account the discussion above, the shift ofway, avoiding the tedious and complicated calculations aris-
the position of the peaks and dips of the polaronic correcing in the standard treatments. The fractional-dimensional
tions to smaller well widths when increasing the Al concen-results were shown to be in good agreement with previous
tration in the barrier§compare Figs. 3 and)4&an be easily more detailed calculations. The simplicity and flexibility of
explained. The facton w, o always decreases as the well the proposed model suggest an easy generalization to the
width increase$see Fig. %a)]; the behavior of the positions study of the polaron effect in other kinds of semiconductor
of the peak and the dip in the energy shift are thereforéheterostructures.

VI. CONCLUSIONS
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