
PHYSICAL REVIEW B, VOLUME 65, 165321
Polaron effect in GaAs-Ga1ÀxAl xAs quantum wells: A fractional-dimensional space approach

A. Matos-Abiague*
Max-Planck Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

~Received 6 December 2001; published 5 April 2002!

The binding energy and the effective mass of a polaron confined in a GaAs-Ga12xAl xAs quantum well are
calculated within the framework of the fractional-dimensional space approach. In this scheme, the real confined
‘‘polaron plus quantum well’’ system is mapped onto an effective fractional-dimensional bulk in which the
polaron behaves unconfined, and the fractional dimension is essentially related to the degree of confinement of
the actual system. Analytical expressions allowing a very simple estimation of the corresponding polaron
corrections are found. The fractional-dimensional theoretical results are shown to be in good agreement with
previous more detailed calculations.
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I. INTRODUCTION

With the progress in semiconductor growth technique
has been possible to produce a variety of low-dimensio
systems such as quantum wells~QW’s!, superlattices, quan
tum wires, and quantum dots. These systems exhibit a s
interesting physical properties that have found applicati
in a wide range of electronic and optoelectronic devic
Consequently, in the last decades a great deal of rese
effort has been devoted to the study of the physical effe
occurring in such low-dimensional systems. One of the
fects that has attracted the attention of a considerable am
of researchers is the polaron effect.

In particular, some commonly used QW’s, such
GaAs-Ga12xAl xAs, are constituted by weak polar semico
ductors in which the polaron effects can strongly influen
the optical and transport properties of the heterostruct
Indeed, the electron–LO-phonon interaction leading to
polaron effect modifies the properties of the electron c
fined in the QW.

At earlier stages, polarons in bulk material were inves
gated and a wide variety of mathematical techniques w
applied to the study of the polaron problem~see, for in-
stance, Refs. 1 and 2!. The polaron confined to an infinit
thin two-dimensional~2D! layer was firstly studied by Da
Sarma and Mason.3 Polaron corrections in an infinitely dee
QW of a finite length were calculated in Refs. 4–6. In the
papers only the interaction with the bulk LO-phonon mod
was considered. The polaron effect in heterostructures o
nite size is, however, quite different from that in bulk ma
rials. In the former case a variety of phonon modes~e.g.,
bulklike phonon modes,7 slab modes,8–10 interface
modes,7–9,11–13 half-space modes11–13! arises as a conse
quence of the presence of the heterointerfaces. Consequ
a rigorous treatment of the electron-phonon interaction
semiconductor heterostructures requires the consideratio
all these modes. The polaron problem in QW’s becomes t
too complicated and even the simplest models cannot be
solved analytically. For the influence of the different phon
modes on polarons in different layered heterostructures
for instance, Refs. 14–20.

In order to simplify the polaron problem in multilayere
heterostructures, Smondyrev, Gerlach, and Dzero21 have re-
cently proposed a simplified polaron model that takes i
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account the finite size of the QW and the finite height of t
confinement potential and deals with only one bulk phon
mode. The purpose of the present paper is to go one
forward and to formulate a more simplified model to calc
late, in a purely analytical way, the polaron corrections
GaAs-Ga12xAl xAs quantum wells, within a good accuracy

Of particular interest to the present work is the origin
approach proposed by He.22,23 In this approach the aniso
tropic ~or confined! interactions in real 3D space are treat
as isotropic~or unconfined! ones in an effective fractional
dimensional environment the dimension of which constitu
a measure of the degree of anisotropy~or confinement! of the
actual physical system. The main advantage of this appro
lies in the fact that all information about a perturbation~con-
finement or anisotropy! can be introduced in a single value—
the dimensionality. Thus, given this simple value, the r
system can be modeled in a simple analytical way. In the
years, the fractional-dimensional space approach has b
successfully used in modeling exciton,24–28

magnetoexciton,29,30 biexciton,31,32 and impurity states27,33,34

in semiconductor heterostructures. The Stark shift of ex
tonic complexes35 and the refractive index36 in quantum well
structures have also been studied within the fraction
dimensional space approach.

In the present paper we extend the fractional-dimensio
space formalism to the case of a polaron confined to a r
angular quantum well. Thus, the real confined ‘‘polaron1
quantum well’’ system is mapped onto an effecti
fractional-dimensional bulk in which the polaron behav
unconfined, and the fractional dimension is essentially
lated to the degree of confinement of the actual system.
paper is organized as follows. For completeness of argum
we briefly comment on some results of a previous work37 in
Sec. II, where the Fro¨hlich-like Hamiltonian describing the
electron–LO-phonon interaction in a fractional-dimension
space is presented. The corresponding fractional-dimensi
polaronic corrections in the weak-coupling limit are obtain
in Sec. III, within second-order perturbation theory. In Se
IV the polaron binding energy and effective mass in an in
nitely deep rectangular quantum well are obtained for va
ing well width. The results are compared with the calcu
tions reported in Ref. 16. In Sec. V the polaron problem
GaAs-Ga12xAl xAs quantum wells is considered and a com
©2002 The American Physical Society21-1
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A. MATOS-ABIAGUE PHYSICAL REVIEW B 65 165321
parison of our results with calculations by other authors
shown. Finally, conclusions are summarized in Sec. VI.

II. THE FRACTIONAL-DIMENSIONAL
ELECTRON-PHONON HAMILTONIAN

The first difficulty arising in dealing with the fractiona
dimensional formalism is that the fractional-dimension
space is not, in general, a vector space.38 However, one can
trace a certain number of mutually perpendicular lines
remarkable fact is that, for noninteger values of the dim
sion D of the space, the largest numbers of mutually per-
pendicular lines can even be greater thanD ~see Ref. 38!. Of
course, whenD is an integer we haveD5s. The set ofs
mutually perpendicular lines can then be regarded as a s
orthogonal axes along which we can define cert
pseudocoordinates. Thus, it is possible to describe the pos
tion of the electron by introducing ans-component
pseudovectorr . In the same way we can define the wa
pseudovectorsq andk corresponding to the phonons and t
electron, respectively. The Fro¨hlich-like Hamiltonian that de-
scribes the electron-phonon interaction in a fraction
dimensional space can then be written as

Ĥe-ph5(
q

@Cq~D !b̂qexp~ iq•r !1Cq* ~D !b̂q
†exp~2 iq•r !#,

~1!

where bq
† (bq) is the creation~annihilation! operator for a

phonon with wavepseudovectorq, and Cq(D) is the
fractional-dimensional coupling coefficient of the electro
phonon interaction.

By considering that the basic interaction characteriz
the electron motion inN dimensions (N being an integer
number! remains Coulomb-like (;1/r ), Peeters, Xiaoguang
and Devreese37 obtained an expression for theN-dimensional
coupling coefficient of the electron-phonon interaction. A
though the procedure used by these authors is valid only
integer values of the dimension,39 one can try a straightfor
ward generalization of the results in Ref. 37 by extendingN
to noninteger values. At first sight, this prolongation ofN to
noninteger values in order to obtain the correspond
fractional-dimensional coupling coefficient may seem n
quite convincing. Nevertheless, it gives the appropri
fractional-dimensional coupling coefficient as will be show
Actually, the axiomatic nature of the fractional-dimension
spaces is different from that of integer-dimensional ones
we cannot expect that this simple procedure will condu
always to the correct fractional-dimensional values~a brief
comment about this situation can be found also in Ref. 4!.
In this sense, the dependence of the fractional-dimensi
quantities on the dimension of the space is not a trivial
pendence; i.e., although the fractional-dimensional exp
sions recover the corresponding integer-dimensional o
when the dimension becomes an integer number, the o
site is not true in general. In the present problem, howe
the simple extension ofN in the coupling coefficient ob-
tained in Ref. 37 to noninteger values gives the appropr
expression corresponding to the fractional-dimensional c
16532
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In fact, following the same physical considerations as in R
37, but now assuming a fractional dimension~and this im-
plies to renounce the use of any vector property!, one can
obtain

Cq~D !52 i\vLOS FD~q!a

VD
D 1/2S \

2mvLO
D 1/4

, ~2!

where

FD~q!5~2p!D/2E
0

`

drr D21~qr !12D/2JD/221~qr !
1

r
~3!

is the fractional-dimensional Fourier transform38 of the
Coulomb-like potential. In the equations above and in w
follows m, a, andvLO represent the electron effective mas
the Fröhlich constant, and the bulk LO-phonon limiting fre
quency, respectively,VD is the fractional-dimensional vol
ume of the crystal to which Born–Von Karman periodici
conditions are applied, andJn(x) represent the Bessel func
tions. Notice that introducing the fractional-dimension
Fourier transform we avoid the use of any property conce
ing vector spaces.

After the corresponding integration in Eq.~3! we obtain
from Eq. ~2! the coupling coefficient

Cq~D !52 i\vLOF ~4p!(D21)/2G@~D21!/2#a

qD21VD
G 1/2

3S \

2mvLO
D 1/4

, ~4!

characterizing the electron-phonon interaction in t
fractional-dimensional bulk. We remark that if we extend t
values of the dimensional parameter to noninteger value
the results of Ref. 37, we obtain an expression for the c
pling coefficient that coincides precisely with Eq.~4!.

III. FRACTIONAL-DIMENSIONAL POLARONIC
CORRECTIONS

Taking into account that in GaAs-Ga12xAl xAs quantum
wells the electron-phonon coupling constanta!1 we can
restrict our study to the weak-coupling case.

The electron self-energy due to the electron–LO-phon
interaction in the weak-coupling approximation can be c
culated within second-order perturbation theory. The ene
of a fractional-dimensional polaron in the ground state
given by

E5Ek
(0)1(

k8

u^1k8 ,0k,1quĤe2phu0k8,1k ,0q&u2

Ēk2Ēk8

, ~5!

where

Ēk5^0q ,1k,0k8uĤ
(0)u0k8,1k ,0q&5Ek

(0) ~6!

and

Ēk85^1k8 ,0k,1quĤ (0)u1q,0k ,1k8&5Ek8
(0)

1\vLO ~7!
1-2
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POLARON EFFECT IN GaAs-Ga12xAl xAs QUANTUM . . . PHYSICAL REVIEW B 65 165321
are the unperturbed electron energies corresponding to
initial and intermediate states, respectively.

In the equations aboveu0k8,1k,0q& denotes the initial state
with one electron in the statek, zero electrons in thek8, and
zero phonons. The assumption of absence of phonons in
initial state is usually fulfilled for low temperatures. The i
terpretation of the intermediate statesu1q,0k,1k8& is analo-
gous to that of the initial states.

Taking into account that the free electron motion in
fractional-dimensional space can be described by a p
wave38 and after the corresponding integration over the v
umeVD in the matrix elements present in Eq.~5! we get

E2Ek
(0)5

2m

\2 (
k8,q

uCq~D !u2uD@k82k1q#u2

k22k822Rp
22

, ~8!

whereRp5A2mvLO /\ is the polaron radius andD(x) rep-
resents the Kronecker delta function@D(x)51 if x50, and
D(x)50 if xÞ0#. This function, as in the integer
dimensional bulk case, is an expression of the momen
conservation law.

By now approximating the summation overq in Eq. ~8!
by an integral

(
q

•••'
VD

~2p!D

2p (D21)/2

G@~D21!/2#

3E
0

`E
0

p

•••qD21~sinu!D22dqdu, ~9!

and after the standard procedures, we obtain from Eq.~8! the
following expression for the polaron energy:

E52a\vLOGa~D !1
\2k2

2m*
, ~10!

where

m* 5
m

12aGb~D !
~11!

is the polaron effective mass.
In Eqs. ~10! and ~11! the D-dependent functionsGa(D)

andGb(D) are given by

Ga~D !5
Ap

2

G@~D21!/2#

G@D/2#
~12!

and

Gb~D !5
Ap

4

G@~D21!/2#

DG@D/2#
, ~13!

respectively. In Eqs.~9!, ~12!, and~13!, G(x) represents the
gamma function.

The set of equations~10!–~13! determines the polaroni
corrections in a fractional-dimensional bulk. It is straightfo
ward to check that these equations recover the well-kno
forms in both the exact 2D and 3D limits.
16532
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IV. POLARON IN AN INFINITE-BARRIER
QUANTUM WELL

In the present section we will study the behavior of t
polaron confined in an infinitely deep quantum well, with
the framework of the fractional-dimensional space approa
In this approach the real three-dimensional ‘‘polaron1 QW’’
system will be treated as a polaron in an effective fraction
dimensional bulk, which dimension constitutes a measure
the degree of confinement of the real system. Thus, given
value of the dimensionality of the effective bulklike enviro
ment, the corresponding polaron corrections can be ea
obtained from Eqs.~10! and~11!. The question that arises i
then how to calculate the appropriate value of the dim
sional parameter. At earlier stages, Mathieu and co-work
introduced a heuristic model for calculating the appropri
dimensionality in the case of confined excitons. Th
method provide a surprisingly accurate parametrization
the exciton binding energy in rectangular quantum wells24

quantum well wires,25 and superlattices.26 More recently de
Dios-Leyva and co-workers27 have developed a systemat
procedure for determining the dimensionality of the effect
medium in modeling exciton and impurity states in quantu
wells,27,28 multiple quantum wells,33 and superlattices.34 For
the sake of simplicity we will consider in the present pape
procedure analogue to that in Refs. 24–26.

Following Christolet al,25 since the dimensional param
eter is a measure of the degree of confinement of the
system embedded in a three-dimensional Euclidean spac
can be determined by

D5bx1by1bz , ~14!

wherebx , by , andbz represent the ratios of the homothet
reduction of the unit length for the directionsx, y, and z,
respectively.

In the case of a rectangular quantum well grown along
z direction, the motion in the (x,y) plane is free and we ge
bx5by51. The ratio of the homothetic reduction of the un
length in thez direction produced by the confinement effec
can be calculated through the relation

bz512exp@2j#, ~15!

where

j5
length of confinement

effective characteristic length of interaction
. ~16!

Equations~14!–~16! have been successfully used in mo
eling exciton states in semiconductor quantum wells.24,25 In
the case of an exciton confined in an infinitely deep quant
well we have, for instance,j5Lw /(2a0) ~see Ref. 24!,
whereLw represents the well width anda0 is the effective
Bohr radius of the three-dimensional exciton. The dime
sionality is then given byD532exp@2j#.

Let us consider now a polaron confined in an infinite
deep rectangular quantum well. In this case, the electro
restricted to move only inside the well; consequently, t
length of confinement is equal to the well width. On th
1-3
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A. MATOS-ABIAGUE PHYSICAL REVIEW B 65 165321
other hand, the effective characteristic length of the electr
phonon interaction is equal to the polaron diameter

d52Rp52A \

2mvLO
. ~17!

Therefore, the dimensional parameter can be calcula
through the simple relation

D532expF2
Lw

2Rp
G , ~18!

whereRp is the polaron radius.
By now substituting the equation above in Eqs.~10!–~13!

we can estimate in a very simple way the energy and
effective mass of the confined polaron. We use in our ca
lations the same material parameters as in Ref. 16. The
merical results are shown in Fig. 1.

The well width dependence of the fractional-dimensio
polaron binding energy compared with the correspond
calculations by Hai, Peeters, and Devreese16 is displayed in
Fig. 1~a!. An excellent agreement between our results a
those reported in Ref. 16 for 3D bulk LO-phonon modes c
be clearly appreciated. Notice that in Fig. 1~a! the polaron
binding energy is given in units of the 2D polaron bindin
energy limit, i.e.,DEr5DE/DE2D . An overall agreemen
between our results and those reported in Ref. 16 can
appreciated in Fig. 1~b! for the well width dependence of th
polaron effective mass. Here the polaron effective mass
also been referred to its 2D value, i.e.,Dmr5Dm/Dm2D .

The fractional-dimensional parameter corresponding
the results shown in Figs. 1~a! and 1~b! is displayed in Fig.
1~c! as a function of the well width. A transition from the 2
limit to the 3D limit when the well width increases is qui
apparent. In fact, forLw>300 Å the effective system be
comes practically three dimensional.

It is worth remarking that in Figs. 1~a! and 1~b! we com-
pare our results with those results reported in Ref. 16
correspond only to the bulklike phonon case. One can
expect that in the region of narrow wells the approach p
posed in the present section will give correct values for
polaronic corrections corresponding to the interface and
phonon modes. We have assigned to the effective fractio
dimensional bulk a fix set of material parameters equa
that of GaAs layer. Thus, for wide quantum wells the mo
presented in this section gives the correct limit values of
polaronic corrections~i.e., those corresponding to a GaA
bulk!. However, for narrow quantum wells the correct lim
corresponding to a GaAs-Ga12xAl xAs bulk cannot be recov
ered. In order to take account of these effects the fractio
dimensional model is generalized to the case of a fin
barrier quantum well in the next section.

V. POLARON IN A FINITE-BARRIER QUANTUM WELL

We consider now the problem of a polaron confined in
semiconductor GaAs-Ga12xAl xAs QW grown along thez di-
rection. Within the effective mass and parabolic band
proximations the electronic part of the Hamiltonian may b
given, in the growth direction, by
16532
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Ĥe52
\2

2

d

dzS 1

m~z!

d

dzD1V~z!, ~19!

where

V~z!5H 0 if uzu<Lw/2,

V0 otherwise.
~20!

In the equations above and in what followsm(z) represents
thez-dependent effective mass of the electron,Lw is the well
width, andV0 is the height of the potential barrier~notice
that the value ofV0 depends on the Al concentration in th
barrier!.

FIG. 1. Well width dependence of the polaron binding ener
~a!, the polaron effective mass~b!, and the corresponding fractiona
dimension ~c!, for a polaron confined in an infinite rectangula
quantum well. Both the polaron binding energy and the effect
mass are referred to their corresponding 2D values. Solid cu
correspond to the present fractional-dimensional results and
dashed lines to calculations by Hai, Peeters, and Devreese~Ref. 16!.
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POLARON EFFECT IN GaAs-Ga12xAl xAs QUANTUM . . . PHYSICAL REVIEW B 65 165321
While in the infinitely deep QW the length of confineme
l can be taken equal to the well width~see the previous
section!, in the present problem the motion of the electron
no longer restricted to the region inside the well only. The
fore, the spreading of the electron wave function into
barriers on both sides of the well has to be considered
defining the corresponding length of confinement. Tak
into account that the spatial extension of the electron mo
in the barrier region is mainly characterized by (kout

211kout
21),

we can define the length of confinement as follows:

l 5Lw1
2

kout
, ~21!

where

kout5Amout

min
S 2min\V0

Lw
2E1D ~22!

represents the electron wave vector in the barrier regionE1

being the electron eigenenergy determined byĤe @see Eq.
~19!# and corresponding to the first subband~notice that we
are interested in the polaron ground state only!. In Eq. ~22!
and in what follows, the subindexesin andout are labels for
the well and barrier regions, respectively.

In a GaAs-Ga12xAl xAs QW the material parameters th
characterize the polaron properties differ when passing f
the well to the barrier region. In order to take account of t
fact, we may assign to the effective fractional-dimensio
bulk an average of the material parameters over the pola
positions. If we consider the polaron as a phonon clo
around the electron, the polaron position will be determin
essentially, by the electron position. The mean values of
material parameters can therefore be calculated in the s
manner as in Ref. 21, i.e., according to the way they ente
the Hamiltonian of the system and weighting the spatial
tegration with the square module of the electron ground-s
wave functionC(z) determined byĤe @Eq. ~19!#. Our effec-
tive fractional-dimensional bulk is then characterized by
following set of mean parameters:

m215E
2`

` 1

m~z!
uC~z!u2dz, ~23!

vLO5E
2`

`

vLO~z!uC~z!u2dz, ~24!

and

Aa5E
2`

` vLO~z!

vLO
S a~z!A mvLO

m~z!vLO~z!
D 1/2

uC~z!u2dz.

~25!

In the same way, the mean polaron radius that determine
effective characteristic length of the electron-phonon inter
tion can be written as

ARp5E
2`

` vLO~z!

vLO
Aa~z!Rp~z!

a
uC~z!u2dz. ~26!
16532
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Notice that in our model the electron effective mismatch
included in the electron wave functionC(z). That is, in our
model the functionC(z) does not depend on the mean val
of the electron effective mass but onmin and mout . There-
fore, the mean valuem can be determined directly from Eq
~23!, avoiding the self-consistent procedure required in R
21.

Finally, after considering Eqs.~14!–~16! and~21!, the di-
mension corresponding to the effective bulklike environm
can be calculated as

D532expF2
~21koutLw!

2koutRp
G , ~27!

and the polaronic corrections can be obtained in a v
simple analytical way from Eqs.~10!–~13!.

The fractional-dimensional polaron binding energy~solid
line! as a function of the well width for a GaAs-Ga0.7Al0.3As
rectangular quantum well is displayed in Fig. 2~a!. For very
narrow quantum wells the polaron binding energy has
value corresponding to the 3D limit of a GaAs-Ga0.7Al0.3As
bulk. The polaron energy shift then decreases as the
width increases and reaches a minimum atLw;2 Å @see the
inset in Fig. 2~a!#. By continuing to increase the well width
the energy shift increases and reaches a maximum atLw
;10 Å. For wider quantum wells the energy shift aga
decreases asLw increases and recovers the appropriate
limit value corresponding to a GaAs bulk for very large we
widths (Lw.300 Å). A similar behavior for the fractional
dimensional polaron effective mass can be appreciated
Fig. 2~b!, where the well width dependence of the mass s
dm5Dm/Dmin is displayed. Notice that, actually,dm rep-
resents the ratio of the mass shift (Dm) to that in the well
material (Dmin). Comparing our results~solid line! with
those reported by Smondyrev, Gerlach, and Dzero21 ~dashed
line! good agreement is found. The maximal discrepancy
tween both calculations is about 3.5%~0.15 meV! for the
energy shift and about 12% for the mass shift. For Fig. 2
have used the same set of material parameters as define
Smondyrev, Gerlach, and Dzero in Ref. 21.

In Fig. 2~c! we show the well width dependence of th
dimensional parameter corresponding to the fraction
dimensional results in Figs. 2~a! and 2~b!. For large well
widths the system behaves as a GaAs bulk and consequ
the dimensional parameter has the limit valueD53. When
the well width decreases, the system becomes more and m
confined, the polaron turns morecompressed, and the effec-
tive dimension decreases, reaching a minimum forLw
'25 Å. If we continue decreasing the well width, the tu
neling through the well barriers becomes significative a
the degree of confinement of the system decreases. Co
quently, the corresponding fractional dimension increa
and recovers a value of 3 for very narrow quantum wells

Although Fig. 2 shows an overall quantitative agreem
between our results and the calculations by Smondy
Gerlach, and Dzero,21 there is, however, a significative qual
tative difference. While in Ref. 21 these authors obtain
only a peak in the well width dependence of both the ene
and the mass shifts@notice that in Fig. 2~a! the peak in the
1-5
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A. MATOS-ABIAGUE PHYSICAL REVIEW B 65 165321
energy shift reported in Ref. 21 is very small and alm
invisible#, a structure with a peak and a dip@see Figs. 2~a!
and 2~b!, and the corresponding insets# is obtained within the
present fractional-dimensional space approach. This com
cated structure with the peak and the dip was also obta
by Hai, Peeters, and Devreese in Ref. 20, where deta
theoretical calculations were performed.

A comparison between our results and calculations
Hai, Peeters, and Devreese20 ~HPD model! and by
Smondyrev, Gerlach, and Dzero21 ~SGD model! for a
GaAs-Ga0.7Al0.3As quantum well is shown in Figs. 3~a! and
3~b!. For the case of the energy shift the agreement is q
apparent. The maximal discrepancy between the tree mo

FIG. 2. Well width dependence of the polaron energy shift~a!,
the polaron mass shift~b!, and the corresponding fractional dime
sion ~c! for a polaron confined in a GaAs-Ga0.7Al0.3As rectangular
quantum well. Solid curves correspond to the present fractio
dimensional results and the dashed lines to calculations
Smondyrev, Gerlach, and Dzero~Ref. 21!. The insets show a
zoom-in of the corresponding fractional-dimensional polaronic c
rections. The material parameters have been assumed as defin
Smondyrev, Gerlach, and Dzero in Ref. 21.
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is about 0.12 meV. One also can appreciate in Fig. 3~a! that
the agreement between our results and the HPD mode
better than that between the HPD and the SGD models in
regionsLw<3 Å andLw>12 Å. On the other hand, for the
case of the mass shift@see Fig. 3~b!# the agreement betwee
our results and the HPD model is better only forLw
<12 Å. It is worth remarking that, as a difference with th
SGD model,21 our simple fractional-dimensional space a
proach reproduces the structure with the peak and the
predicted by the more detailed~and much more complicated!
calculations within the HPD model.20

The fractional dimension corresponding to our results
Figs. 3~a! and 3~b! is displayed in Fig. 3~c! as a function of
the well width. The behavior is quite similar to that of th
curve in Fig. 3~c!. In fact Figs. 2 and 3 correspond to th
same structure, i.e., a GaAs-Ga0.7Al0.3As quantum well.

l-
y

-
by

FIG. 3. Same as in Fig. 2, but now assuming material para
eters as used in Refs. 10 and 11. Solid curves correspond to
present fractional-dimensional results, while dashed and d
dotted lines correspond to the calculations by Smondyrev, Gerl
and Dzero~Ref. 21! and by Hai, Peeters, and Devreese~Ref. 20!,
respectively.
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However, for the computation of Fig. 2 the values of t
material parameters were assumed as defined by Smond
Gerlach, and Dzero in Ref. 21, while for Fig. 3 identic
parameters as taken by Hai, Peeters, and Devreese20 were
used.

The polaronic corrections and the fractional dimension
functions of the well width for a GaAs-GaAlAs quantu
well are displayed in Fig. 4. An overall agreement betwe
our results~solid lines! and those of the HPD model~dash-
dotted lines! can be appreciated in Figs. 4~a! and 4~b!, al-
though now the discrepancies between both calculations
larger than in the case of small Al concentration in the bar
~see also Fig. 3!.

By comparing Fig. 3 and Fig. 4 one can study the infl
ence of the Al concentration in the barrier on the polaro
corrections. Although the structure of the curves~with a peak
and a dip for the cases of the energy and mass shifts! is
conserved, one can see that the increase in the Al conce
tion in the well barrier produces a shift in the positions of t

FIG. 4. Same as in Fig. 3, but for an Al concentration in t
barrier x51. Solid curves correspond to the present fraction
dimensional results, while dash-dotted lines correspond to the
culations by Hai, Peeters, and Devreese~Ref. 20!.
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peaks and dips of the polaronic corrections as well as in
position of the maximum of the fractional dimension
smaller well widths. Notice that this behavior is predicted
both the fractional-dimensional space and the HPD
proaches.

In the HPD model10,11 the peaks and dips appear as
consequence of the competition between the contributi
due to the half-space, interface, and slab phonon modes.
simple model deals with only bulklike phonon modes a
cannot give a detailed description of the physical origin
the peaks and dips of the polaronic corrections in the ac
system. However, an analysis of the behavior of the pe
and dips in the effective fractional-dimensional environme
can contribute to the understanding of the situation in
real physical system.

We note that although our model deals with only bulkli
phonons, these phonons are characterized by param
whose values are averaged through the heterostructure.
means that, in some way, we are taking into account
interaction with the half-space, interface, and slab phon
modes. Thus, for instance, for very narrow quantum we
the parameters characterizing the bulk phonons in the ef
tive fractional-dimensional system coincide with those cor
sponding to the half-space phonon modes in the actual
tem ~notice that for very narrow quantum wells the mo
important contribution is precisely the contribution corr
sponding to the half-space phonon modes!. Similarly, the
fractional-dimensional bulk phonons can be associa
somehow, with interface and slab phonon modes in the ca
of mean and large well widths, respectively.

In what follows we only refer to the case of the peak a
the dip of the energy shift. The analysis for the case of
mass shift is quite similar and we omit it. In order to unde
stand the origin of the peak and the dip in the fraction
dimensional polaron binding energy, we first note that
energy shift@see Eq.~10!# depends on the factorsa\vLO
and Ga(D). The former does not depend on the dimens
and is determined by the material parameters that the pol
‘‘feels’’ in the actual system, and the latest is determined
the dimensionality of the effective system and related to
degree ofcompressionof the polaron in the quantum well
Both factors are displayed in Figs. 5~a! and 5~b!, respec-
tively, as functions of the well width. By comparing the in
sets in Fig. 5 one can see that for quantum wells withLw
&2 Å the effective environment behaves as a 3D bulk w
Ga being practically a constant, while the factora\vLO
decreases as the well width increases. Consequently, in
regionLw&2 Å, the energy shift decreases as the well wid
increases. From the point of view of the real system t
region can be associated with the region in which the con
bution of the half-space phonon modes is the most impor
one. In the region 2 Å&Lw&10 Å, however,Ga increases
faster than the decreasing rate ofa\vLO and gives rise to an
increase in the energy shift as the well width increases. T
situation leads to the appearance of the dip atLw.2 Å @see
also Fig. 3~a!#. In the region 10 Å&Lw&12 Å the factor
Ga continues increasing, but the decreasing rate ofa\vLO is
faster, in this region, than the increase inGa . Therefore, the
energy shift again decreases as the well width increases.

-
l-
1-7
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situation gives rise then to the presence of the peak atLw
.10 Å @see Fig. 3~a!#. Thus the peak and the dip in th
fractional-dimensional energy shift appear as a consequ
of the competition between the dimensionality~i.e., the de-
gree ofcompressionof the polaron due to the confineme
effects! and the material parameters ‘‘seen’’ by the polar
~i.e., the averaged values of the material parameters tha
some way, characterize the degree of interaction of the e
tron with the different phonon modes, say, half-space, in
face, and slab phonon modes!. From the experimental poin
of view, unfortunately, it seems very difficult to detect th
existence of the peak and the dip of the polaron energy s
because of the smallness of the energy difference~about 0.1
meV! between them.

By taking into account the discussion above, the shift
the position of the peaks and dips of the polaronic corr
tions to smaller well widths when increasing the Al conce
tration in the barriers~compare Figs. 3 and 4! can be easily
explained. The factora\vLO always decreases as the we
width increases@see Fig. 5~a!#; the behavior of the position
of the peak and the dip in the energy shift are theref

FIG. 5. Well width dependence of the factorsa\vLO ~a! and
Ga ~b! corresponding to a polaron confined in a GaAs-Ga0.7Al0.3As
quantum well. The insets show a zoom-in of the curves of
corresponding factors. The material parameters have been ass
as in Ref. 20.
ep
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essentially determined by the well width dependence of
fractional dimension. Indeed the behavior of the peak po
tion is determined, qualitatively,41 by the behavior of the
position of the minimum of the fractional dimension~i.e., the
position of the maximum ofGa).

Starting from very wide quantum wells, the confineme
increases~i.e., the dimension decreases! as the well width
decreases until the tunneling through the barriers beco
significative. At this value of the well width the fractiona
dimension reaches its minimum and again increases as
well turns narrower. On the other hand, the increase in the
moll fraction in the well barriers implies an increase in t
barrier height. For higher barriers the tunneling effects
come significative at smaller well widths, and this is t
reason for the shift of the minimum of the fractional dime
sion and of the peaks of the polaronic corrections. In the c
of the dip, its position is basically determined by the beha
ior of the point from which the fractional dimension begin
to decrease~andGa begins to increase!. In a similar way of
reasoning one can straightforwardly explain the correspo
ing shift of the dip position.

Finally, we want to note that although we have appli
our fractional-dimensional space approach to the study of
polaron effects in the specific case of a rectangular quan
well, one can hope that in analogy to the fraction
dimensional models for the exciton states in semicondu
heterostructures,24–26 the present model for the polaronic e
fect can be easily generalized to the cases of other kind
nanostructures. In fact, it has been recently shown that
fractional-dimensional space approach provides an accu
estimation of the polaronic corrections in parabolic-confin
systems.42

VI. CONCLUSIONS

In conclusion, the fractional-dimensional space appro
was extended to the study of polarons confined in a rec
gular GaAs-Ga12xAl xAs quantum well. In this approach, th
real confined ‘‘polaron1 QW’’ system is modeled into an
effective fractional-dimensional bulk in which the polaro
behaves unconfined and the fractional dimension is a m
sure of the degree of confinement of the real system. A
lytical expressions for the corresponding polaron correcti
were found. These expressions allow us an estimation of
polaron binding energy and effective mass in a very sim
way, avoiding the tedious and complicated calculations a
ing in the standard treatments. The fractional-dimensio
results were shown to be in good agreement with previ
more detailed calculations. The simplicity and flexibility o
the proposed model suggest an easy generalization to
study of the polaron effect in other kinds of semiconduc
heterostructures.
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40A. Schäfer and B. Müller, J. Phys. A19, 3981~1986!.
41Notice that, actually, the position of the minimum of the fra

tional dimension does not determine quantitatively the posit
of the peak of the polaron energy shift~one can see in Figs. 2, 3
and 4 that the minimum of the dimensionality and the peaks
the polaron energy shift take place at different values ofLw).
This is because in determining the exact position of the pea
the energy shift we have to take into account also the contr
tion of the factora\vLO . However, the qualitative behavior o
the peak position is essentially determined by the behavior of
position of the minimum of the dimensionality.

42A. Matos-Abiague, Semicond. Sci. Technol.17, 150 ~2002!.
1-9


