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Abstract
We study the combined e� ect of temperature and disorder in the spacer on the

interlayer exchange coupling. The temperature dependence is treated ab initio like
by employing the spin-polarized surface Green function technique within the
tight-binding linear mu� n-tin orbital method and the Lloyd formulation of the
IEC. The integrals involving the Fermi± Dirac distribution are calculated using an
e� cient method based on a representation of integrands by a sum of complex
exponentials. Application is made to Co/Cu1- xMx/Co(001) trilayers (M= Zn,
Au, and Ni) with varying thickness of the spacer.

§1. Introduction
The oscillatory interlayer exchange coupling (IEC) between magnetic layers

separated by a non-magnetic spacer has recently attracted considerable attention.
The physical origin of such oscillations is attributed to quantum interferences due to
spin-dependent con® nement of electrons in the spacer. The periods of the oscillations
with respect to the spacer thickness are determined by the spacer Fermi surface, and
this conclusion has been con® rmed by numerous experiments. In particular, the
change of the Fermi surface by alloying thus leads to a change of the oscillatory
periods (van Schilfgaarde et al. 1995, KudrnovskyÂ et al. 1996). On the other hand,
there are very few studies of the temperature-dependence of the IEC (Bruno 1995,
d’Albuquerque e Castro et al. 1996), and its systematic study on an ab initio level is
missing.

The main mechanism of the temperature dependence of the IEC is connected
with thermal excitations of electron± hole pairs across the Fermi level as described
by the Fermi± Dirac function. It turns out that other mechanisms (e.g. electron±
phonon or electron± magnon interactions) are less important. The e� ect of tem-
perature on the IEC can be evaluated either analytically or numerically. The
analytical approach assumes the limit of large spacer thickness, for which all
the oscillatory contributions to the energy integral cancel out with the exception
of those at the Fermi energy. The energy integral is then evaluated by a standard
saddle-point method (Bruno 1995). The general functional form of the tempera-
ture-dependence of the interlayer exchange coupling % x (T) in the limit of a single
period is then:

% x (T) = % x (0) t(N,T) , t(N,T ) =
cNT

sinh (cNT ) . (1)

0141± 8637/98 $12.00 Ñ 1998 Taylor & Francis Ltd.



Here, T denotes the temperature, N is the spacer thickness in monolayers, and c is a
constant which depends on the spacer Fermi surface. The term % x (0) exhibits a
standard N- 2 dependence (Bruno 1995), while the scaling temperature factor
t(N,T) depends on N via NT . In the pre-asymptotic regime (small spacer thick-
nesses) the functional form of t(N,T ) di� ers from that of equation (1), particularly
in the case of complete but relatively weak con® nement due to the rapid variation of
the phase of the integrand which enters the evaluation of the IEC
(d’Albuquerque e Castro et al. 1996).

The second, numerical approach is in principle exact, i.e. not limited to large
spacer thickness, however, it may be numerically very demanding, in particular for
low temperatures. It is applicable also to disordered systems with randomness in the
spacer, magnetic layers, or at interfaces (Bruno et al. 1996).

§2. Formalism
The multilayer system consists of a left and right magnetic subspace separated by

a non-magnetic spacer (the trilayer). The spacer may be a random substitutional
alloy. We employ the Lloyd formulation of the IEC combined with a spin-polarized
surface Green function technique as based on the tight-binding linear mu� n-tin
orbital (TB-LMTO) method. The exchange coupling energy % x (T ) can be written as

% x (T ) = ImI(T ), I(T ) =
C

f (T ,z) W (z) dz, (2)

where f (T,z) is the Fermi± Dirac distribution function and

W (z) =
1

p Ni k i

trL lnM(k i ,z)

is a di� erence of (in the case of disorder, of con® gurationally averaged) grandcano-
nical potentials for the antiferromagnetic and ferromagnetic alignments of magnetic
slabs (Drchal et al. 1996).

The energy integration is performed over a contour C along the real axis and
closed by a large semicircle in the upper half of the complex energy plane, trL denotes
the trace over angular momentum indices L = (°m) , the sum runs over k i vectors in
the surface Brillouin zone, and Ni is the number of lattice sites in one layer. The
quantity M(k i ,z) is expressed in terms of screened structure constants which couple
neighbouring (principal) layers and of the so-called surface Green functions. All
details can be found in Drchal et al. (1996). We only note that the use of a Green
function formulation of the IEC is essential for describing the randomness in the
spacer within the coherent potential approximation (CPA) which is known to repro-
duce compositional trends in random alloys reliably.

The integral in (2) can be recast into a more suitable form using the analytic
properties of W (z) , namely, (i) W (z) is holomorphic in the upper complex halfplane,
and (ii) zW (z) ® 0 for z ® ¥ , Imz > 0. Let us de® ne a new function U (y) =
- iW (EF + iy) of a real variable y, y ³ 0. Then at T =0K,

I(0) =
+ ¥

0
U (y) dy ,
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while at T > 0K,

I(T ) = 2p kBT
¥

k=1

U (yk) ,

where kB is the Boltzmann constant, and the yk are Matsubara energies, yk =
p kBT (2k - 1) . In the limit T ® 0, I(T ) ® I(0) continuously.

We have veri® ed that the function U (y) can be represented with a high accuracy
as a sum of a few complex exponentials of the form

U (y) =
M

j=1
Aj exp (pjy), (3)

where the Aj are complex amplitudes and the pj are complex wave numbers. An
e� cient method of ® nding the parameters Aj and pj is described elsewhere (Drchal et
al. 1998). The evaluation of I(T ) is then straightforward:

I(T ) = - 2p kBT
M

j=1

Aj

exp ( p kBTpj) - exp (- p kBTpj)
, (4)

which for T =0K gives

I(0) =-
M

j=1

Aj

pj
. (5)

§3. Results and discussion
Numerical studies were performed for an ideal fcc(001) stacking of layers of the

spacer (Cu) and magnetic (Co) layers with the experimental lattice spacing of fcc Cu.
The spacer layers can contain impurities (Zn, Ni and Au) which form a substitu-
tional alloy with the spacer atoms. Possible lattice and layer relaxations are
neglected. Alloying with Ni, Zn or Au alters the electron concentration and, conse-
quently, modi® es the Fermi surface, and thus, in turn, also the temperature depen-
dence of the IEC. The most obvious e� ect of alloying, for T = 0, is the change of the
periods of the oscillations connected with the change of the corresponding spanning
vectors of the alloy Fermi surface (KudrnovskyÂ et al. 1996). A more subtle e� ect of
the alloying is connected with damping of electron states and relaxation of symmetry
rules due to alloying.

To determine the parameters of the complex exponentials (3), we have evaluated
the function U (y) at 40 Matsubara energies corresponding to T =25 K. We have
veri® ed that the results depend weakly on the actual value of the parameter T .
Special care was devoted to the Brillouin zone integration. The e� ciency of the
present approach allows us to perform calculations with a large number of k i points
in the irreducible part of the surface Brillouin zone (ISBZ). Note also that such
calculations have to be done only once and then the evaluation of the IEC for
any temperature is an easy task. In particular, we employ typically 40 000 k i points
in the ISBZ for the ® rst Matsubara energies close to the Fermi energy. The number
of k i points then progressively decreases for points distant from the real axis. The
present calculations agree with the results of conventional calculations (Drchal et al.
1996) but they are much more e� cient numerically, in particular when calculations
for many di� erent temperatures are required.
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The calculations were done for spacer thicknesses N =1 - 50 monolayers and
for temperatures T =0 - 500 K (in steps 10 K) and by assuming semi-in® nite Co
slabs. In this case only one period, namely the so-called short period exists, which
simpli® es the study. There are several possibilities of how to present the results
(see Drchal et al. (1998) for more details). As an illustration, in ® gure 1 we plot
the discrete Fourier transformations (Drchal et al. 1996) of N2 % x (N,T) with
respect to N, % x (q,T ) , as a function of the variables q and T . A discrete
Fourier transformation on a subset N Î 10 - 50 which avoids the pre-asymptotic
region is employed here. The positions of peaks, q =qm, then determine the
oscillation periods p = 2p /qm, while |% x| gives the oscillation amplitudes
(Drchal et al. 1996). In particular, one can see how the modi® cation of the
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Figure 1. Absolute values of the discrete Fourier transformations of N2 % x(N,T) with
respect to the spacer thickness N as a function of the temperature T and the wave
vector q for a trilayer consisting of semi-in® nite Co slabs sandwiching the spacer of
indicated composition.



Fermi surface due to alloying changes the temperature dependence of the IEC,
i.e. the coe� cient c in equation (1).

The following conclusions can be drawn from the present numerical results: (i)
the non-random case (Cu) exhibits a period p < 2.53MLs (monolayers) or, equiva-
lently, qm < 2.48 in accordance with previous calculations (Drchal et al. 1996). In
accordance with KudrnovskyÂ et al. (1996), the periods of oscillations for Cu75Zn25
are shifted towards higher periods (p < 3.05MLs), towards smaller periods for
Cu85Ni15 (p < 2.27 MLs), while they remain almost unchanged for a Cu50Au50
alloy spacer (p < 2.36MLs). (ii) The periods of oscillations are temperature inde-
pendent because the electronic structure or, alternatively, spanning vectors are tem-
perature independent. (iii) The amplitudes exhibit a strong temperature dependence
in agreement with predictions of model theories (Bruno 1995). In particular, our
results agree reasonably well with those of ® gure 3 of d’Albuquerque e Castro et al.
(1996), for the case of an ideal Cu spacer. (iv) For alloy spacers at T = 0 we mention,
in particular, the dependence N- 2 of the oscillation amplitudes on the spacer thick-
ness N for Cu/Ni and Cu/Au alloy spacers, while additional exponential damping
due to disorder was found for a Cu/Zn alloy spacer. This indicates a ® nite lifetime of
states at the Fermi energy for k i vectors corresponding to the short-period oscilla-
tions for this case and only a weak damping for the Cu/Au and Cu/Ni alloys. (v)
Finally, the e� ect of temperature (the factor t(N,T) in equation (1)) is similar for a
pure Cu-spacer, Cu/Ni and Cu/Au alloys, but it is much smaller for the case of Cu/
Zn alloys. The e� ect of temperature, similarly to alloying, is to broaden spanning
vectors of the Fermi surface (Bruno 1995). If the damping due to alloying is non-
negligible, then as compared to the case T =0K, the combined e� ect of disorder and
temperature leads to a relatively smaller suppression of the oscillation amplitude
with respect to temperature.
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