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Abstract 

The photoelectric current is calculated on the basis of the Green's function matching method. Peak widths and intensities 
of bulk and surface states are studied in dependence on electron and hole lifetimes. For Cu(lll)  it is shown that the ratio of 
peak intensities of both types of states yield information on electron inverse lifetime which can particularly be used for very 
low energies ( < 10 eV), where the peak width analysis for studying lifetimes fails. 

Keywords: Angle resolved photoemission; Copper; Electron density, excitation spectra calculations; Green's function methods; Photoelec- 
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1. Introduction 

The direct method of investigating electron and hole lifetimes in valence-band photoemission (to < 20 eV) 
consists in determining the full width at half maximum (FWHM) in angular-resolved spectra [1-8]. Provided 
that broadening contributions from the analyzing process are known, it is still necessary to eliminate 
contributions to the FWHM from initial and final state bands. In general, this is done by using a special 
spectroscopic tuning mode (e.g. constant initial state spectroscopy) but the technique is restricted to certain 
suitable energies (e.g. the initial state energy is near the Fermi level). For very low electron energies ( < 10 eV) 
in particular there are almost no electron lifetimes available from photoemission. 

To our knowledge the relation between lifetimes and peak intensities has not yet been investigated. 
Obviously, the correspondence is somewhat problematic since intensities additionally depend on optical 
absorption and electron scattering. In the simplest way of a one-step formulation of photoemission, scattering 
only appears in the self-energies of the photohole and photoelectron. It results in a mean free path or a complex 
k i ,  respectively, by means of band dispersion. Vertex corrections are neglected. Inelastic scattering is assumed 
to depend weakly on energy on the scale of interest. To be independent of these corrections, only the ratio of the 
bulk peak intensity to the surface state peak intensity is considered. 

It is at least necessary to show that bulk and surface state peaks differ in their dependences on lifetimes. 
Especially the surface state peak characteristics are not yet satisfactorily understood. On the one hand, there are 
computer programs which are based on the dynamic scattering formulation of photoemission [9]. In this way one 
can calculate the FWHM with electron and hole lifetimes being the input parameters [10]. On the other hand, a 
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simple golden-rule formula for the emission from bulk states, including a Lorentzian broadening, yields the 
following FWHM of the energy distribution curve (EDC) [8]: 

('Y1 Y2 ) 1_~1 ( viii sin2(O) ) 1 ( v211 sin2(O) ) 1 
1 

k,I [-~2[ 1 , (1) kll 

where Yi and Y2 are given by the imaginary parts of the optical potential for the hole and the electron, 
respectively, i.e., YE = --2 Im ,~(E). E = E 1 and E = E 2 = E 1 + to are the initial and final state energies, v 1 
and v 2 are the corresponding velocities perpendicular to the surface, vii I and v211 are the corresponding parallel 
velocities, and 0 is the angle with respect to the surface normal. For 0 = 0, formula (1) is usually quoted in the 
literature [1-6]. Now one might argue that for the surface state "Ys should be obtained from (1) with v 1 = 0 since 
there is no perpendicular dispersion. Queerly, the result turns out to be correct in spite of the argument being 
wrong. The derivation of Eq. (1) is based on the "quasi-k.-conservation" [8] which is commonly derived for 
bulk state transitions where complex k± is simply a consequence of the absorbing potential. This corresponds 
to a Lorentzian broadening of the spectral functions which belong to the internal current passing a plane from 
one side. The situation for a matched system is completely different. Though being possibly stable, the surface 
state has a complex k ± ,  which results from a complex band structure within a hybridizing gap. Matching 
requires the superposition of propagating and evanescent waves, not only for surface states but for bulk states, 
too. Hence, the correct way is to derive ;/b and "~ from the corresponding poles of the current, which actually 
are different as it will be shown below by using complex band structure and matching. In addition, some other 
facts can also be deduced only by applying a correct analysis, for example the broadening of surface and bulk 
peaks resulting from different kinds of defects [5-7], or the resonance of the surface state as a function of to 
[11-14]. 

In order to include excitations from surface states, a "one-step model" of photoemission is required with the 
Green's functions determined for a matched or truncated system. This was carried out for a simple tight-binding 
model for initial states [15]. Although the model is not properly satisfying for calculating sp-bands, it enables 
surface and bulk peak characteristics to be calculated on the same basis. 

In the present paper, the photoelectron current is rigorously calculated on the basis of a pseudopotential 
model using the method of Oreen's function matching [16,17]. The method was used by Paasch [18] mainly to 
determine the asymptotic expansion for the final state. Approximations are restricted to the free-electron based 
Hamiltonian, whereas integrations for determining the current are exactly performed. Although it is appropriate 
to use a free-electron basis for matching, the method is practically restricted to sp-bands. It is well known that 
photoemission matrix elements are not correctly obtained from a pseudopotential model, especially for initial 
states arising from well localized electrons. Besides revealing differences in bulk band emission and surface 
band emission in principle, the examination of the poles directly yields the corresponding intensities. For 
illustration, in Section 3 a simple nearly-free-electron two-band model is used to study photoemission in normal 
direction of Cu(111). 

2. The photoelectric current 

2.1. Formalism 

Let the crystal fill the half space x < 0 with Q being the projection onto that space. The potential for x > 0 is 
continued by the surface barrier which asymptotically approaches the flat vacuum potential and which is 
assumed to be free of lateral corrugation. The current with the momentum component parallel to the surface gll 
and energy E is given by 

I x ( KII E)  = - p--A-x Im ( X, KIIIG ~- AQG ~ Q A + G ~[X, KII ) + surface barrier contributions, (2) 
'77" 
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where X is the distance of the plane of detector from the surface. The neglected surface barrier contributions 
correspond to a similar expression with Q replaced by its complement P = 1 - Q. G + 1,2 are the retarded hole 
and electron Green's functions and A is the coupling to the photon field, 

A = I ( V .  A + a  . V ) ,  (3) 

iK~x eiKii p A = E a ~e . (4) 
o/ 

A ~ = (Axe, A IL,) are the longitudinal ( a  = L) and transversal ( a  = T)  components of the field. KII is real and 
Im(x,,) < 0. The Green's functions are determined by their surface-projected parts ~'1,2 and the crystal and 
vacuum barrier functions ~'c and ~'b (and their surface-projected parts ~'c and fib) [16,17] 

^ t G(x,x')=C,c(x,x')+G¢(x,O)~[l(~-#c)#[lGc(O,x ), x,x' <0, (5) 

G ( X , X  t )  d b ( X , 0 ) ~ b l ~ c  -1  ^ t Xt = Gc(0,x ), x > 0 ,  <0 ,  (6) 

where E, KII are suppressed. Furthermore, the G's are matrices with respect to the parallel component of the 
reciprocal lattice vector gll' i.e., g = (g,gll): 

( = x ,x ' ,K, ,  + + g;,) 

d K  
= ~ , f - ~ - - ~ e x p [ i ( K + g ) x - i ( K + g ' ) x ' ] G c ( K + g , K + g '  (7) 

G b at the energy E = E - p~k~ is most simply represented by the wavefunctions in one dimension, which, for 
example, can be calculated by numerical integration of the SchrSdinger equation with a certain barrier potential: 

tZbGb( X'X"Kll) = thl( x,Kii)~2( x',Kit)O ( x - x ')  + th2( X,Kll)~l( x' ,Ku)O ( x' - x) 
W (  thl, ~2 )  ( 8 )  

/% is half the reciprocal free-electron mass, i.e., /% = 1 /2  in atomic units. Asymptotically, thl and thE are 
ingoing and outgoing plane waves, and W is the Wronskian. 

The matching Eq. [16,17] determines ~', 

~ - 1  = [ £ b t ~ b ~ b  1 --  ~[Lct~c+~c 1 = ~.£b.~ b -- ~ c ~ c  ' (9) 

where from (5) 

, + f d K  ~'g (KIl+gli ,Kil+g;I) = lim ~ e - i r ' ( K + g ) G ¢ ( K + g , K + g ' ) .  (10) 
~ 0 +  g g , r 

/z~ is half the inverse effective mass of the crystal, which unlike to /% may deviate from the value 1/2. fib and 
'~'b are calculated by using (8) where the derivative has to be taken from the right unlike to (10). It is 
advantageous to represent the propagation of the electron through the surface in terms of transmission of the 
vacuum incoming wave. Using (6) and the vacuum Green's function G O yields the propagation from x = X 
through the surface 

eiPx X + + ~ + 

X,KIIIG~ = ip  x (KIII3-2 Gc2 ~ 2 ,  (11) 

where the transmission amplitude is given by 

(Klll3-~I KII + gll) = ( X,KIIIG~IO,KII + gl t ) / (  X,KIIIafflO,KII) - + ' + - (Ku'K   + gH), 
(12) 

3- o( = ( X,K  IC;IO,K O/( (13) 
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X is far outside the surface where the expressions on the right of (12) and (13) are asymptotically independent 
of X. Using (5) and (11) enables the current to be entirely expressed by surface-projected objects 

1 + + -1  1 

(14) 
where 

J (KII  + gll'KII + glf) = (O'KII + glIIG~AQG~QA+G~210,KII + gil)' 

~t'(KIr + gll 'KII + gil) -- (0'KII + glIIGA AQGc+a 10,KII + gil)' 

"/V(KII + gll'KII + gil) = (0,KII + glIIGc+aQA+G~IO,KII + gil)' 

(15) 

(16) 

(17) 

still have to be calculated. In the same way as for (7) and (10), but somewhat more lengthily, these integrals are 
obtained by contour integrations in the complex kx-plane using the Fourier representation of Q, i.e., 

dk e ikx 
O ( x ) = i  lim f 

n-~0 + 2¢r k + i r /  

The integration path for calculating (7), (10) and (15)-(17) excludes all poles outside a strip of width of a 
Brillouin zone. Hence, 

J(Kil+gli ,Ki l+g;i)=-iY'~ ~_, ~ ~_~ ~_, Res (K+g lG~lK+gr )  
aft g,g' gr'''g,, k + ( 2 + )  k"_(2-)  k + ( 2 + )  

X A, (K+(2  +1 + g r ) A ; ( K " _ ( 2 - )  +g,,)3(g,.ll,g,ll)3(gmll,g,,ll ) 

1 
G K" × Res (K"+g,,  ~ + g ' ) k + ( 2 + )  k " _ ( 2 - ) + g r + g m - g , - g  , K.+K~ k " ( 2 -  ) - -  - -  * 

1 Res (K'+gl lG~lK'+gm) 
× ~-~ k + ( l + ) - k " _ ( 2 - ) + g m - g , , + K ;  k'+(a+) k'+(1 + )  

+ Res (K' +g, lG£+llK ' +gin) , (18) E k' ( l + ) - - k + ( 2 + ) + g l - - g r + K  a k'_(l+) k'_(1 +) - 

l ( x ,  + g,,X, + gO 

= i ~  2 ]~ 2 ]~ Res (K+gIG~IK+gi )A~ , (K+(2+)+gi )  
g,g'gi,gj k + ( 2 + )  k L ( l + )  k + ( 2 + )  

1 
× Res (K' +gjIG~IK' +g') ,  (19) 6(gill'g~ll) k+(2 + ) - k'_(1 + )  + gi - gj - K~ k-(l+) 

J r ( / q  + + g;,) 

= i ~  Y'~ Y'~ Y'~ ~ Res (K+glG~IK+gi )A+(K_(2  - )  +gj) 
g,g' gi,gy k+(1 + )  k ' _ ( 2 - )  k + ( l + )  

1 
. Res (K'+g/la~-zlK'+g'),  (20) X t~ ( gill' gill ) k+ ( 1 + ) - k'_ (2 - ) + gi - gj + K,~ k'_(2 - ) 
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where KII=KII--KII (KII is neglected), k + ( E + )  are the eigenvalues of the forward-propagating waves 
(v2+> 0, Im k+> 0) and k_(E  + ) are the backward-propagating ones (v2+< 0, Im k_ < 0), respectively, 
where E + denotes the corresponding retarded Green's function. Note that for the advanced functions (e.g. 
2 - ), forward-propagating waves (v 2_ > 0) correspond to k_, i.e., Im(k_(2 - )) < 0. The matrix element is 
simply given by 

A s ( K  + (2 + ) + gr) =Axe(k+ (2 + ) + gr-- ½Ks) + atl~ "(KII + gll-½KII)' 

A + (K~(2 - ) + g.)=A*~.(k"_ ( 2 - )  + g . -  ½K~ ) + A,I,." (K;; + grll-- ½Kll)" (21) 

The residuum of the Green's function at fixed Kll and E is connected with the eigenvectors of real bands as 
follows 

R e s ( K  + glQ+lK + = g agag,lvl ' (22) 

where ag are the Fourier coefficients of the Bloch wave. Eq. (22) results from the spectral representation of G. 
The different contributions to the current are easy to extract from (14). Bulk contributions correspond to the 
poles of J whereas surface-state contributions belong to the poles of fix. Nevertheless, the general formula 
should preferentially be used for the calculations, whereas for interpretations (14) should be decomposed into 
the pole contributions. 

2.2. Emission from bulk states 

The terms with g = g' and gr = gl =gm = gn yield the largest contribution to the pole of J .  With 
E(k, kll) = E(k, - kll) and E(k )  = E * ( k  * ), the prefactor before the parentheses, i.e., 

(k+(2 + )  k _ ( 2 - )  - 2ilm K~) - l  1 -1 l - = - I  + ) , ( 2 3 )  

is essentially determined by the electron mean free path 1 = u 2 / / ' ~ 2  for transversal fields (~r >> 1), whereas the 
contribution from longitudinal fields may be reduced owing to a strong attenuation. The terms in the parentheses 
of (18) represent the "quasi-k±-conservation" for bulk peak transitions. Which of these terms is predominant 
depends on the sign of v 1. The first term corresponds to a direct transition from an initial state band with a 
forward-propagating wave, whereas the second belongs to a backward-propagating one. Particularly the second 
term yields the essential bulk band transition near a local gap, where v 1 and v 2 have opposite signs. Linear 
expansion of the initial and final state bands, presuming transitions far from the critical points and using (22), 
for the longitudinal and transversal contributions to the current yields 

1 1 
j ,  = ~ r  (24) 

72 e + i~b,~/2' 

1 
~ la~(2)121a~,(2)121ag,(1)121 z L (K+ (2 + ) + gr)l 2, (25) 

where E is the energy with respect to the peak maximum, and the interference terms between the different field 
contributions are neglected. ~ weakly depends on the energy. The FWHM of the peak originating from bulk 
transitions agrees with (1) for ~r >> l, which can also be illustrated by geometric considerations in the local band 
structure scheme [4,8]. However, in general, the broadening contribution from longitudinal fields cannot be 
neglected. The intensity of bulk peaks is essentially determined by T2, which is also plausible. Note that the 
same result (1) is obtained from (2) with neglected projection Q. 
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2.3. Emission from surface states 

The surface state peak in photoemission spectra is determined by the pole of ffl" Consequently, the FWHM 
of that peak is independent of "~2, i.e., the optical potential for electrons: 

~1 = ~ / / ( E 1 - E s ( k l [ ) -  E l ) ,  (27) 

~1 is the algebraic complement to ,~11 . Contrary to bulk state transitions, which are characterized by poles 
with respect to k j_, here the pole is given solely by the initial state energy. Expansion with respect to the peak 
maximum yields 3's formally obtainable from (1) with v I = 0. However, the FWHM strongly depends on 
surface imperfections [5-7]. For example, assuming a local surface impurity potential in the simplest way yields 

V(r )  = 6 ( x )  E V( p -  p,). (29) 
Pi 

Then averaging Eq. (5) is restricted to the surface projection 

where the notation ~0 here concerns the impurity-free surface and "~i includes surface scattering in a certain 
approximation. In general, there is no simple separation in band and self-energy parts in the form of (27) since 
the surface projection ~'0 is not a true propagator. If neglecting surface corrugation, the contribution of 
impurities to the FWHM y~ is given by 

) "Yi = - 2  Im Zi(kl lE (/Xb_OW b - - /Zc .~)  le,~k,, ) , (31) 

which in contrast to the hole contribution shows a scaling of the corresponding self-energy by the surface state 
intensity factor [15]. kll s corresponds to the surface state, i.e., E 1 = Es(kHs). Besides the broadening due to 
limited angular resolution, the intrinsic effect of the peak width depending on band dispersion is sometimes 
called non-lifetime effect [5]. Kevan assumes a constant impurity cross section of potassium trace impurities on 
Cu(l l l ) ,  concluding a linear increase of the FWHM via quadratic surface band dispersion [7]. This dispersive 
effect can be verified by calculating Zi(kli ,E) in Born's approximation using a potential V(p)  in Eq. (29) with 
a certain lateral extent [19]. 

The effective mass of the surface state band is obtained by using the expansion of the pole up to the order of 

Es = E 0 +/2k~, (32) 

/2= - ~ - i ~  d e t ( 2 / Z b  ~ b  --/xc'Z~) det(/Zb..~ b - - /xc .~)  . (33) 

For isotropic mass and neglected lateral corrugation, this expression is simplified to 

a- b oK 

/20 = O.S~ b OSa . (34) 
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For at least the homogeneous effective mass junction, i.e., fo r /x  b = / x  c = 1 /2 ,  the result (34) is in contradiction 
to experimental findings which refute the assumptions. There are considerable deviations of  the effective mass 
from the free electron value also for image states. Giesen et al. explain these deviations by the shrinking gap 
[20]. Thus lateral corrugations have to be taken into account in calculations if the effective mass of  the surface 
state is considered. 

The intensity of the surface state is essentially determined by the prefactors of  the pole-producing if ,  i.e., X 
and ~t'. It is well known that the intensity shows maxima at certain photon energies [11-14]. In fact, these 
resonances can be interpreted as being a consequence of "quas i -k±-conserva t ion"  applied to surface states. 
This is revealed by comparing the poles of  J ,  .~r and X .  However,  note that for surface states peak widths and 
intensities belong to different poles. The phenomenon of intensity resonances is explicitly demonstrated by (19) 
and (20) with E 1 = E s. The functions have maxima at final state energies with extended-zone-scheme wave 
vectors K 2 ( E  s + oJn), fulfilling R e ( K 2 ( E  S + ¢o,) - k s) = ng, where k s = k (E  s) is the surface state wave vector. 
There are resonances at ~o n for which K 2 is an odd integer of k 0 for a sp-band gap at the Brillouin zone 
boundary (Re (k  1) = k0). The distance between the resonances is %+1 - % = 4nk2o • Since the first intensity 
maximum is near the vacuum level (top of the gap) and k02 is in the order of  ten electron volts, the second has a 
typical value of 4 0 - 6 0  eV. 

3. Example: Cu (111) 

The noble metal surfaces have extensively been investigated both theoretically and experimentally. For our 
aims, C u ( l l l )  is especially suitable to illustrate lifetime effects in sp-bands since well-developed sp-band peaks 
are observed for very low photon energies (~o < 12 eV) being sufficiently separated from the d-bands [1,31]. 
The nearly-free-electron two-band model shows a simple complex band structure to reveal surface states and to 
provide initial and final states for photoelectronic excitation. Normal emission at low energies allows one to 
restrict oneself to KII--- 0 and gll = 0. For the real potential, the model of  Lenac et al. [21] is used, which is 
shown in Fig. 1. It has been applied by many authors in a more or less special version in order to calculate 
image potential states or quantum well states. The bound states can be calculated by using either the phase 

ull0 Xj Xi X i --X~ 

21 -Vo I t 

\ 

i 

4 x - x  i 

Fig. 1. The model potential. The bulk parameters V 0 and Vg correspond to the L-gap of Cu(111). At x = 0 there is the matching plane, 
whereas xj and x i denote the jellium edge and the image plane, respectively, x/* and a depend on the bottom of the surface potential Vp 
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Table 1 
Band parameters of Cu 
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[ Vg [ L 2, F 1 Work function (111) 

2.48 eV -0 .9  eV -8 .73 eV 4.86 eV 

accumulation method or det ~'-1 = 0 with f f  determined by Eq. (9). The crystal potential in the one-dimen- 
sional nearly-free-electron form 

U ( x ) -  -v0 + 2lv lcos(g  + (35) 

is terminated at the matching point x = 0, which is fixed between the outermost atomic layer (position of the 
maximum of U(x)) and the jellium edge xj (position of minimum of U(x)). V o is determined by the energy at 
the band bottom F 1 and the work function, and the position of the gap of size 2 [ Vg [ is given by the lower band 
edge L2,. On the other hand, the image potential with the image plane position x i is truncated in a way that the 
potential - V 1 continuously matches the crystal potential at x = 0. xi and xj do not coincide in general but x~ 
is slightly outside the jellium, a and x i are the true free parameters of the model, whereas V 1 is fixed by ot 
and the value of the work function. The surface bound states sensitively depend on these parameters. Since we 
are considering solely crystal-induced surface states in this paper, we restrict ourselves to a single free parameter 
a ,  which was shown [21] to be crucial, i.e., we set x i = xj. Note, however, that for a fixed the surface state 
energy is reduced by enlarging the trapping region. For that reason, on the other hand, some authors fix a and 
choose x i to be the free parameter [22,23]. The binding energy of 0.4 eV of the Cu(111) surface state 
corresponds to a = 0.32. The band parameters which are used in the calculations are summarized in Table 1. 

The potential is completed by a homogeneous complex energy-dependent optical potential. In order to 
describe damping of the initial and final state, it suffices to use two pure imaginary functions 0-1 and 0-2. The 
wave vector with respect to k 0 = g / 2  fulfils 

g x :  = e +  2/zk 2 - D ( e ) ,  

o(,) -- ¢(, + + Iv (- 

, = E - Ixk02 - 0-, (36) 

where K should not be confounded with the wave vectors r,~ of the electromagnetic field. The reduced zone is 
chosen such that - k  0 < r < k 0. The two complex solutions represent a pair of ingoing and outgoing Bloch 
waves. The branches of the roots should be chosen such that I m ( k + ( E  + )) > 0 and I m ( k _ ( E  + )) < 0. Further 
solutions to the original eigenvalue equation do not contribute to the integrals since they are outside the reduced 
zone. The residues of the Green's functions are 

Res G c = 1 (/xK~ - 2 /xk0K±-  , -]Vgleia ) (37) 
K. 2/~2K+D 1 -IVg[e-ia /xK2+ 2 t z k ° r ± -  • ' 

which according to e± = • _+ iT~2 and taking into account r + ( • + )  = r_* ( • _ ) =  - K  ( •+)  correspond to G + 
and G- .  All crystal-dependent functions fie, ' i f+ ,  5 ,  .~" and .A/" are fully determined by (36) and (37). 

G b and its surface projected objects in (9) are determined by numerical integration using a real surface 
potential. According to (8) and taking into account ~b 2 = ~b]*, ~b 1 has to be calculated. Inspecting (13) suggests 
the amplitude to be split off the amplitude yielding 1~1 = "q(x)e ipx. The amplitude ~/(x) is then determined by a 
transformed equation obtained by inserting this form into the Schr6dinger equation. The integration for the 
image potential is performed starting at point x * far away from the surface where r/(x * ) = 1, dr/(x * ) / d x  = O. 
In a similar manner, G b is determined for E < E v. 
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The wave vectors of longitudinal and transverse fields in (21) are determined by the corresponding dielectric 
functions. Then the amplitudes are calculated by using Fresnel equations for metal optics which include plasma 
waves. This has been discussed in detail in literature [24-26] so that the derivation of these equations will not 
be pointed out again. By the definition of the matching plane, the internal field is used for calculating both bulk 
state and surface state. The calculation of the surface photoemission arising from the barrier would also require 
the careful determination of the field in the barrier region. As mentioned above, this is neglected in the present 
paper. The (transverse) dielectric function E(to) is given by 

2 top 
e( to)  = 1 ~ + 47rX(to), (38) 

where top is the plasma frequency. For the interband contributions 

X0 
47rx(to)  = i ~/o,)2 _ 41gg 12 

(39) 

is used. This expression contains the essential square root singularity, which can be derived in the two-band 
model [27], but the analytical structure is much simpler than the exact one. The exact result [28], however, 
permits one to estimate the value of X0. The expression of 

8 Iv l 
3 (40) X o -  3 G top 

yields Xo = 0.249, if the band parameters ~ = 0.114, &2 = 2.43, and the plasma frequency top = 0.261 (in 
atomic units) are used. The longitudinal wave vector is determined by 

4~-i 
e L = 1 + - - 0 "  L = 0, (41) 

to 

where the hydrodynamical model [26] yields 

ito 1 
= . (42) 

O'L 4rr (1 - e)  -1 /3 K, 2 

top 

Formula (42) is also assumed to be valid if the interband contribution is taken into account. The second term in 
3 2 the denominator arising from the Fermi gas pressure (/3 = ~UF~ U F is the Fermi velocity) causes a strong 

nonlocality of the longitudinal field. Using Maxwell's equations and (41) and (42) yields 

~ to2 
K T = - ~ - e ( t o )  -- KI~, (43) 

2 , ( t o )  top 

KL = /3 ( 1 - - , ( t o ) )  KI~' (44) 

which verifies that KL/K T is of the order of c / v  F = 100. 
At very low energies (E 2 - E F < 10 eV) the electron inverse lifetime strongly depends on energy. For a free 

electron gas the dependence [29] is given by 
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,9 

;~ 70 

, 

-2 -1 0 
binding energy (eV) 

~... ,~ (ev) 

8.0 

~x-...~ 7.5 

Fig. 2. Calculated normal-emission spectra for p-polarized light with the angle of incidence ~p = 30 ° and photon energies of 6 ~< to ~< 8 eV 
with A = 5.0 eV. 

which was verified to be valid up to approximately E//EF < 2.5 [30]. Here the energy refers to the F-point. 
Parameter A can be determined from photoemission by comparison with calculations. From theory [29], 

= (  "/T ] 3/2 

AQF ~ 4-~r s ] × 13.6 eV (46) 

is obtained with b = 0.521 and r s being the electron density parameter. For Cu, one gets ,)tOE = 5.7 eV. The 
electron inverse lifetime obtained from fitting the FWHM of d-band peaks [1] with Eq. (45) approximately 
yields At, HE = 4.9 eV, where the enlarged value of E v = 8.7 eV is used owing to the hybridization with 
d-bands. The discrepancy between these A-values is explained by the large Fermi-surface anisotropy of Cu, 
which is neglected in the derivation of Eq. (46). In contrast to Y2, the intensities are nearly independent of ~/1 as 
it can be deduced from (24) and from calculations. Therefore here, unlike to the peak width, it is not necessary 
to take into account the energy dependence of YI- Moreover, Knapp et al. [1] observed a weak energy 
dependence of the inverse hole lifetime for binding energies below 2 eV. As it is insignificant for intensities, we 
use their estimate of 0.2 eV in spite of even smaller values cited in the literature [3]. A series of spectra 
calculated for sp-bands is shown in Fig. 2 using A = 5.0 eV and the angle of incidence q~ = 30 ° [31]. Fig. 3 
shows the ratio of bulk-to-surface state peak intensities for various A values. The intensities are determined by 
Lorentz-fits, which in the calculations correspond to the residua of Eqs. (14), (24) and (27), by using (26). The 
experimental bulk-to-surface state ratios are obtained from the spectra published by Knapp et al. [1], and by 
Gartland and Slagsvold [31]. The errors are due to the estimation from their published figures. Especially the 
surface state intensity taken from Knapp's spectra implies some uncertainty, and the bulk state intensities for 
very low energies also have errors because of the low intensities and the small separation from the surface state. 
In the range of 8 < to < 10 eV no values are available owing to the crossing with the d band. Estimations from 
spectra for energies larger than 10 eV approximately correspond to AKrIE , or slightly below, which verifies that 
the intensity ratio is mainly determined by electron lifetimes. The experimental curve shows a more pronounced 
maximum at about 11 eV, whereas the respective calculation yields a maximum at about 9 eV. At low energies 
the intensity ratio calculated with A = 6 eV agrees well with the result of Gartland and Slagsvold [31], but for 
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Fig. 3. The bulk-to-surface state intensity ratio calculated for various A-values and ~o = 30 °. The experimental values are obtained from 
Knapp et al. ( 0  from Ref. [11) and from Garfland and Slagsvold (11 from Ref. [31]). The error is due to the estimating procedure of the 
values from the spectra. The inset magnifies the threshold region. 

higher energies the value of h which yields coincidence with experiments is smaller. The main reasons for the 
deviation from A¢F are the rough approximations of the bands by NFE bands and of the dielectric function. 
Furthermore, the nearer the energy approaches the band gap the larger is the effect of anisotropy. The surface 
state intensity weakly depends on h since the electron mean free path is much larger than the surface state 
decaying length ~. Thus the effective information depth for the surface state is saturated to ff for which the NFE 
calculation yields the value of 8.7 ,~. The actual value is approximately half the NFE value [13]. This 
discrepancy corresponds to an incorrect effective mass at the band bottom obtained from NFE calculations [13]. 
The surface state intensity as a function of photon energy only decreases at higher photon energies. For low 
energies the surface barrier (work function and electron transmission) should be considered. The inset of Fig. 3 
shows the intensity near the threshold. Calculations from (12) reveal, however, the transmission amplitude [ J r  [ 
to differ from the function for the step potential by less than 10% for energies larger than 1 eV above the 
vacuum threshold. In other words, the transmission is not important for intensity ratios. The correct barrier 
potential is required to obtain the surface state with binding energies below the Fermi energy. 

4. Conclusions 

The peak intensities arising from surface states and bulk states are calculated in dependence on inverse 
lifetimes of holes and electrons, which are given by the imaginary parts of the corresponding optical potentials 
- 71/2 and - 72/2, respectively. The intensities are almost independent of 71, whereas the bulk peak strongly 
increases with decreasing 72. Thus the ratio of bulk-to-surface state intensities directly depends on electron 
lifetime since it is also unaffected by instrumental broadening. For Cu( l l l )  the intensity analysis yields a 
reasonable agreement with lifetimes estimated from FWHM. At very low photon energies (to < 8 eV) the 
intensity analysis yields values larger for the inverse electron lifetime than estimated for homogeneous electron 
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gas. In contrast to Y2, Yl can be determined solely by  measur ing  the peak widths. Especial ly the peaks of  

surface states depend solely on Yl, which  includes the inverse hole l ifetime as well  as contr ibut ions by surface 
imperfections.  The inverse hole l ifetime contains  a dispersive contr ibut ion if defects are laterally extended. 

The calculat ion of  the photoelectric current on the basis of  Eq. (14) can be extended to quan tum wells  and 

layered systems where other methods  often are not  suitable. However,  more realistic models  are required 
especially to obtain the correct bands  near  the local gap as well  as the optical matrix elements.  Therefore, 

expressions (15) to (17) have to be calculated on a basis  which is completed by atomic-l ike functions.  In spite of 

be ing tested only for a very simple model  the method of calculat ing photoelectron spectra on the basis of  
Green ' s  funct ion matching  seems to work very efficiently. 
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