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Integration over two-dimensional Brillouin zones by adaptive mesh refinement
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Adaptive mesh-refinement~AMR! schemes for integration over two-dimensional Brillouin zones are pre-
sented and their properties are investigated in detail. A salient feature of these integration techniques is that the
grid of sampling points is automatically adapted to the integrand in such a way that regions with high accuracy
demand are sampled with high density, while the other regions are sampled with low density. This adaptation
may save a sizable amount of computation time in comparison with those integration methods without mesh
refinement. Several AMR schemes for one- and two-dimensional integration are introduced. As an application,
the spin-dependent conductance of electronic tunneling through planar junctions is investigated and discussed
with regard to Brillouin zone integration.
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I. INTRODUCTION

The computation of physical quantities often requires
tegration over the Brillouin zone~BZ!. Standard methods to
obtain BZ integrals are special-point~SP! schemes1 and tet-
rahedron methods.2 Since both methods rely on equal
spaced grid points, they may be regarded as inefficien
there are small regions in the BZ that give a sizable con
bution to the integral, while large regions give almost
contribution: Either the number of grid points may be t
small to sample the ‘‘important regions’’ with high accurac
or the number of grid points may be too high and the ‘‘u
important regions’’ are sampled with a dispensable high
curacy, thus leading to an unnecessarily large computa
time. An integration method that automatically adapts
grid to the integrand’s structure would overcome this pro
lem. Such an adaptive mesh refinement~AMR! would find
the important regions with high accuracy demand a
sample them with high resolution, while the unimportant
gions with low accuracy demand are sampled by a f
points. Consequently, discretization on a very fine grid c
ering the entire BZ is avoided.

Bruno and Ginatempo proposed as an AMR scheme
n-dimensional integrals a cascade of adaptive integra
techniques for one-dimensional integrals.3 In this paper, fur-
ther adaptive integration schemes based on the partitio
of the integration domain by simplexes will be introduc
and investigated, with a focus on the computation of phys
quantities of layered systems, e.g., the magnetic anisot
energies of ultrathin films~see Refs. 4 and 5! and magnetore-
sistances of planar tunnel junctions~for a few recent publi-
cations see Refs. 6–9!.

Coherent tunneling of electrons through planar magn
junctions provides a test for the proposed AMR’s. The co
putation of the spin-dependent conductance requires the
tegration of the transmission of Bloch electrons through
junction over the two-dimensional BZ. This transmission c
depend strongly onki ~cf. Ref. 10!. First, for increasing
spacer thickness, the transmission at largeukiu becomes sup-
pressed, leaving a sizable contribution to the conducta
only near the BZ center. Second, electronic states local
at the lead/spacer interfaces can dominate the transmissi
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very small regions of the BZ~‘‘hot spots’’!, not necessarily
near the BZ center. In both cases, the regions with high
curacy demand are small in comparison with the area of
BZ and their locations area priori unknown. While special-
point schemes appear inefficient, an AMR provides a met
of choice since it can efficiently treat both large- and sma
scale variations of the integrand.

This paper is organized as follows. After having illu
trated the basic idea and the main features of AMR’s
means of one-dimensional integration~Sec. II!, adaptive
mesh refinements for two-dimensional integration are int
duced in Sec. III. Exemplary results for the spin-depend
tunneling conductance for planar junctions are presente
Sec. IV in order to show the properties of the various p
posed AMR’s.

II. ADAPTIVE MESH REFINEMENT FOR
ONE-DIMENSIONAL INTEGRALS

Adaptive mesh refinements aim to integrate numericall
function f (x):R→R over the interval@xi ,xf# with a given
accuracye but with the numbern(e) of function evaluations
as small as possible. They rely on three main ingredient11

~i! a crude approximationI ap(xi ,xf) to the exact integral
I ex(xi ,xf)5*xi

xf f (x)dx @gray area in Fig. 1~a!# that uses only

the interval boundariesxi and xf , ~ii ! a fine approximation
I ap8(xi ,xf) that uses~at least! one inner pointxm in addition,
and ~iii ! a refinement rule that in dependence onI ap, I ap8 ,
ande determines whether the interval has to be refined.

A crude approximationI ap(xi ,xf) is for example given by
the trapezoidal rule@the area hatched with thin lines in Fig
1~a!#.12 For a fine approximationI ap8(xi ,xf), f (x) is inte-
grated by Simpson’s rule, which uses the inner po
xm5(xi1xf)/2. Instead, one could also use the simpler b
less accurateI ap9(xi ,xf)5I ap(xi ,xm)1I ap(xm,xf) @the area
hatched with thick lines in Fig. 1~a!#. The refinement rule
states thatI ap8(xi ,xf) is accepted as an approximation f
I ex(xi ,xf) if uI ap8(xi ,xf)2I ap(xi ,xf)u,e ~absolute error!
or uI ap8(xi ,xf)2I ap(xi ,xf)u,euI ap8(xi ,xf)u ~relative error!.
Otherwise the mesh is refined by applying the above sch
to the intervals@xi ,xm# and @xm,xf# @an analog can be for
©2001 The American Physical Society12-1
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J. HENK PHYSICAL REVIEW B 64 035412
mulated withI ap9(xi ,xf) instead ofI ap8(xi ,xf)#.
The main properties of this AMR are revealed by cons

ering the function f (x)5exp(22uxu) with I ex(2`,`)51
@see Fig. 1~b!#. It has been integrated numerically via th
above AMR ~using trapezoidal and Simpson’s rules! from
220.15 to 19.85 with an initial grid of 11 points.~The large
interval @220.15,19.85# is first partitioned into 10 equally
large subintervals which are then treated by the AMR. T
initial partitioning determines the large-scale resolution
the adaptive scheme. The small-scale resolution is de
mined bye.! Whether the AMR is able to recognize the cu
can be tested by choosing the interval asymmetrical w
respect tox50. In this case, the cusp is not hit directly b
the initial grid and its first refinement. For largeuxu, f (x) is
rather flat and henceI ap and I ap8 do not differ significantly.
In this unimportant region the demand of accuracy is l
and therefore a coarse grid can be maintained. The c
however, represents an important region with high accur
demand and thus requires a fine grid@see the inset in
Fig. 1~b!#.

FIG. 1. Adaptive mesh refinement for one-dimensional in
grals. ~a! The integral of the functionf (x) ~thick line! over the
interval @xi ,xf# is given by the gray area. A crude approximatio
uses onlyxi andxf and results in the area hatched with thin lines.
fine approximation usesxm in addition and leads to the area hatch
with thick lines. ~b! Adapted meshes@x, f (x)# ~dots! of f (x)
5exp(22uxu) for absolute accuraciese ranging from 100 down to
1025 ~bottom to top, as indicated on the left of each curve!. The
inset shows the same data but in a small interval aroundx50 for
e51022, . . . ,1026 ~bottom to top!. The curves are shifted with
respect to each other for clarity. Vertical dashed lines emphasize
mirror symmetry off (x) at x50.
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In Fig. 2, the numbersn(e) of grid points are shown
~diamonds!. An increase of accuracy by one order of mag
tude requires an increase ofn(e) by a factor of about 2.15
The integration errorDI (e)5uI (e)2I exu ~circles! is always
less thane. The efficiency of the AMR becomes evident
one considers the integralsI ap8„n(e)… of f (x) by Simpson’s
rule with the same numbern(e) of grid points as used by the
AMR. For comparably largen(e), the integration error
DI ap8„n(e)…5uI ap8„n(e)…2I exu ~squares! is about four orders
of magnitude larger thanDI (e). Thus, in order to achieve a
accuracy ofe51029 in the Simpson integration, a grid o
about 32 000 points is needed. This corresponds to an
crease in speed by a factor of about 5 in favor of the AM

III. ADAPTIVE MESH REFINEMENTS FOR
TWO-DIMENSIONAL INTEGRALS

An obvious generalization of the above AMR to integr
tion in n dimensions was proposed by Bruno a
Ginatempo.3 The integral I ex

(n)5* [xi ,xf]
f (x) dnx of f (x):Rn

→R over the interval@xi ,xf# is decomposed into successiv
one-dimensional integrals, the AMR of Sec. II being appli
to each of them. In a computer program, one would deal w
a cascade of AMR’s for linear meshes, and hence the n
cascading linear mesh refinement, CLMR(n) wheren indi-
cates the dimension. To give an explicit example, e.g.
CLMR~2! scheme, for the integralI ex

(2)5*BZf (ki) d2ki of the
function f (ki):R2→R, ki5(kx,ky), over the two-
dimensional BZ @ki

i ,kf
i#, the cascade is given byI ex

(2)

5*
k

i
y

kf
y

I ex
(1)(ky) dky, I ex

(1)(ky)5*
k

i
x

kf
x

f (kx,ky) dkx.

Another type of AMR is based on the refinement of sim
plexes. A simplex inRn is a geometrical object that consis
of n11 points and all its constituents~which are themselves
simplexes! with dimensionsm (0<m,n), e.g., corners (m
50), line segments (m51), triangular surfaces (m52),
etc. Since a simplex is uniquely defined by i
corners x1 ,x2 , . . . ,xn ,xn11 it can for short be denoted
^1 2•••n (n11)&. The central point of a simplex, i.e.
( i 51

n11xi /(n11), will be denoted aŝ1•••(n11)&. For ex-
ample, the centerx45(x11x21x3)/3 of a triangle^1 2 3&
can be written aŝ 4&5^1 2 3&. Further, lengths, areas, o
volumes will be written asu^1•••n&u.

-

he

FIG. 2. Numbersn(e) of mesh points~diamonds! and integra-
tion errors DI (e) ~circles! of the AMR for f (x)5exp(22uxu) in
dependence on the absolute accuracye. Squares give errors
DI ap8„n(e)… of a Simpson integration with the same numbersn(e)
of points as determined by the AMR.
2-2
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INTEGRATION OVER TWO-DIMENSIONAL BRILLOUIN . . . PHYSICAL REVIEW B64 035412
Any simplex can be partitioned into smaller simplexes
adding points that are the centers of them-dimensional con-
stituents of the initial simplex (1<m<n). These new points
in conjunction with the initial points serve as corners of t
new ~smaller! simplexes, which have to be disjunct an
space filling. Consequently, the simplex mesh refineme
introduced below can be labeled SMR(n,m).

Suppose we want to integrate numerically a funct
f (x):R2→R over a trianglê 1 2 3&. A crude approximation
to the exact integralI ex(^123&) is the volumeI ap(^1 2 3&)
5@ f (^1&)1 f (^2&)1 f (^3&)#u^1 2 3&u/3 of the prism. For
the mesh refinement SMR~2,2! the center^4&5^1 2 3& is
chosen as an additional point~see Fig. 3!, and thus
I ap8(^1 2 3&)5I ap(^1 2 4&)1I ap(^2 3 4&)1I ap(^3 1 4&) is
taken as a fine approximation. Or one might utilize f
SMR~2,1! the edge centerŝ4&5^1 2&, ^5&5^2 3&, and
^6&5^3 1& with the fine approximation I ap9(^1 2 3&)
5I ap(^1 4 6&)1I ap(^2 5 4&)1I ap(^3 6 5&)1I ap(^4 5 6&).

As for one-dimensional integration,I ap8(^1 2 3&) is ac-
cepted in the case of SMR~2,2! if uI ap8(^1 2 3&)
2I ap(^1 2 3&)u,e ~absolute error! or uI ap8(^1 2 3&)
2I ap(^1 2 3&)u,e uI ap8(^1 2 3&)u ~relative error!. Otherwise
the AMR is applied to the refined triangles, namely,
^1 2 4&, ^2 3 4&, and ^3 1 4&. An analog can be formulate
for the SMR~2,1! scheme.

It is straightforward to extend the above mesh refineme
to three-dimensional integrals~Fig. 3!. Using the center of
the initial tetrahedron@SMR~3,3!# the centers of its four sur
faces@SMR~3,2!# or the centers of its six edges@SMR~3,1!#
yield 4, 11, or 8 small tetrahedra, respectively.

Note that the accuracye is directly related to the integral
over a simplex but only indirectly related to the accuracy
the integral over the complete domain@xi ,xf#. In the case of

FIG. 3. Simplex mesh refinements SMR(n,m) for triangular
(n52, top row! and tetrahedral (n53, bottom row! grids. The
mesh refinements are illustrated by dashed lines. Top row:
initial triangle ^1 2 3& is refined using as additional points the ce
ter of the trianglê 4& @left, SMR~2,2!# or the edge centerŝ4&, ^5&,
and ^6& @right, SMR~2,1!#. Bottom row: The initial tetrahedron
^1 2 3 4&, with corner^3& lying behind the front surfacê1 2 4&, is
refined using the central point@left, SMR~3,3!#, the centers of the
surfaces@middle, SMR~3,2!#, or the edge centers@right, SMR~3,1!#.
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the refinement rule based on absolute accuracy, the tota
solute error can roughly be estimated ase N(e) whereN(e)
is the number of simplexes used in the evaluation of
integral over the domain.

The AMR schemes are not restricted to integration
real-valued functions. Even matrix-valued functio
f (x):Rn→Rr 3c can be integrated, the integrals being the
selves matrices. As a distance in matrix spaceRr 3c one
could use the matrix normuuAuu5Atr(AA†). An example for
operating with matrix-valued functions is a multiple
scattering calculation which takes into account substitutio
disorder within the coherent potential approximation13

There, one has to average the scattering-path oper
t(E,k) over the BZ, the latter being represented in angul
momentum space.14

IV. APPLICATION TO THE SPIN-DEPENDENT
CONDUCTANCE OF PLANAR TUNNEL JUNCTIONS

We now apply the AMR schemes for two-dimension
integration to the computation of the spin-dependent cond
tance of planar tunnel junctions.9 The conductance is calcu
lated for parallel or antiparallel alignment of the magne
moments of the semi-infinite ferromagnetic leads which
separated by an insulating spacer. If the layer unit cells of
leads and the spacer are commensurable, the in-plane w
vectorki5(kx,ky) is conserved in the scattering process~co-
herent tunneling!. According to Landauer and Bu¨ettiker,15

the conductanceG at the Fermi energy can then be express
as G5(e2/h)*BZT(ki) d2ki. The transmission is given by
T(ki)5(m,nuSmL→nR

(ki)u2, whereS is the scattering matrix
of the spacer expressed in terms of lead Bloch states.
sums run over all incoming Bloch statesmL of leadL which
are scattered into those outgoing in leadR (nR). Computa-
tion of the conductance by means of a layer Korringa-Koh

e

FIG. 4. TransmissionT(ki) of Ni~001!/vacuum/Ni~001! for
three spacer layers of vacuum and parallel alignment of the
magnetizations. In the gray-scale contour plot covering one-qua
of the Brillouin zone, zero transmission corresponds to black, w
maximum transmission (0.036) corresponds to light gray. Equ
spaced contour lines are displayed in white„ki5(kx,ky) with re-

spect to@110# and @ 1̄10#, respectively….
2-3
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FIG. 5. Adapted meshes~dots! obtained by the CLMR~2! ~left column!, SMR~2,2! ~middle!, and SMR~2,1! ~right! schemes for the
transmission shown in Fig. 4. In the top right corner of each panel, the absolute accuracye and the numbern(e) of mesh points in the entire
Brillouin zone are given. The transmission is displayed in addition by gray contour lines.
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Rostoker ~KKR! calculation closely follows the work by
MacLaren and co-workers.10

For the purpose of this paper, we focus in the followi
on the system Ni~001!/vacuum/Ni~001! with the magnetic
moments in the leads aligned along the@001# direction. Be-
causeT(ki) shows the symmetry of the point group 4mm, it
is sufficient to present results for a quarter of the tw
dimensional BZ. The wave vector componentskx andky are
chosen with respect to@110# and @ 1̄10#, respectively.

Due to the insulating spacer, the conductanceG decreases
exponentially with spacer thickness. Further, the transm
sion T(ki) gets focused at the BZ center. For three spa
layers of vacuum and parallel alignment of the lead mag
tizations, most of the contributions toG come from the re-
03541
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gion with rather smallukiu, say,ukiu,0.25a0
21 ~Fig. 4!. Note

that due to the band structure of NiT(ki) has a plateau-
shaped local minimum atki5(0,0) which is surrounded by
small ‘‘ridges.’’

Adapted meshes obtained by the CLMR~2!, SMR~2,2!,
and SMR~2,1! schemes for selected absolute accuraciese are
shown in Fig. 5. The quarter of the BZ was initially part
tioned by a 10310 grid for all three schemes. As expecte
the density of mesh points is rather low for smalle ~bottom
row in Fig. 5!. A decrease ofe leads to a high sampling
density of the region with smallukiu, in accordance with the
transmission shown in Fig. 4. A slightly increased point de
sity is observed atukiu'0.1a0

21, just where the above
mentioned plateau has its boundary. The local minimum
2-4
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INTEGRATION OVER TWO-DIMENSIONAL BRILLOUIN . . . PHYSICAL REVIEW B64 035412
the BZ center requires a lower density than the surround
ridge, as can be seen best for SMR~2,1!. In other words, the
meshes are adapted to the integrandT(ki).

The convergence behavior of the conductanceG with de-
creasing e, and hence increasing numbern(e) of mesh
points, is displayed in Fig. 6~a!. For smalln(e), the conduc-
tance is far from being converged since it shows a signific
variation for the CLMR~2! and SMR~2,2! schemes. The
SMR~2,1! scheme instead appears to converge faster.
grids of about 5000 to 10 000 points, however, the cond
tances obtained by all three schemes are almost converge
further increase ofn(e) reveals that the AMR’s are robus
i.e., the conductance shows no considerable oscillati
Since the transmission shows a shape rather similar to th
the function f (x)5exp(22uxu) one finds a similar genera
convergence behavior~cf. Sec. II!. The AMR’s have been
investigated for both a variety of test functions and cond
tances of other systems~changing lead and spacer materia
as well as spacer thicknesses!: in all cases, these adap
tive integration methods were robust and led to ra
convergence.

In addition to the AMR schemes, the conductance
been calculated with a special-point scheme.16 The number
of mesh points in the entire BZ ranged from 2500 up
160 000. The conductanceG` obtained from the larges
number of points represents the converged value ofG and
can hence be regarded as a reference. For all calculated
ues, the errorDG5uG„n(e)…2G`u of the AMR’s is less
than that of the SP scheme, i.e., the AMR points lie with
the gray area in Fig. 6~b!. Thus, AMR schemes can outpe
form SP schemes if the integrand shows unimportant reg
of considerable size~here,ukiu.0.3a0

21).
A particularly interesting case is tunneling through o

FIG. 6. ConductanceG of Ni~001!/vacuum/Ni~001! for three
spacer layers of vacuum and parallel alignment of the lead ma
tizations in dependence on the numbern(e) of mesh points.~a!
Conductance as obtained by the three adaptive mesh refinem
CLMR~2! ~squares, solid lines!, SMR~2,2! ~triangles, dashed lines!,
and SMR~2,1! ~triangles, dash-dotted lines!, as well as by a special
point scheme~SP, circles, dotted lines!. The arrows mark the con
verged value of the conductanceG` . ~b! Same data as in~a!, but
displayed as the absolute deviation fromG` , DG5uG„n(e)…
2G`u.
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spacer layer for antiparallel alignment of the magnetizatio
The transmission for this system decays smoothly with
creasingukiu, thus leading to a rather large region with a
most zero contribution to the conductance@say ukiu
.0.5a0

21; black area in Fig. 7~a!#. Consequently, the adapte
mesh@Fig. 7~b!# as obtained by SMR~2,1! with e51026 and
a 10310 initial grid is coarse in this area. However, interfa
resonances produce ‘‘hot ridges’’ with a large transmiss
~see Sec. I; cf. also Fig. 5 in Ref. 10!. The AMR leads to a
fine mesh right at these ridges@similar meshes were obtaine
by both the CLMR~2! and the SMR~2,2! schemes#. This
clearly proves that the AMR’s discussed in this paper
capable of finding even tiny important regions and theref
may considerably reduce the computation time.

V. CONCLUDING REMARKS

Adaptive mesh-refinement schemes for Brillouin zone
tegration provide robust numerical methods which autom
cally find regions with a high accuracy demand. These
gions are sampled with high density, while the other regio
are sampled with low density. This salient feature may s
a considerable amount of computational time as compare
integration methods that rely on equally spaced mesh po

e-

nts

FIG. 7. TransmissionT(ki) of Ni~001!/vacuum/Ni~001! for one
vacuum layer as spacer and antiparallel alignment of the lead m
netizations.~a! T(ki) is shown as gray-scale contour, with black f
zero transmission and light gray for maximum transmiss
(0.857). Equally spaced contour lines are displayed in white.~b!
Adapted mesh~dots! as obtained by the SMR~2,1! scheme. The
contour lines of~a! are shown in gray.
2-5
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J. HENK PHYSICAL REVIEW B 64 035412
regardless of the particular AMR used~cascading linear or
simplex mesh refinement!.

In our computer code for electron spectroscopies whic
based on the layer-KKR method, a special-point scheme
well as three AMR’s~the cascading linear and two simple
mesh refinements! for integration over the two-dimensiona
Brillouin zone were implemented. Since it is written inC11,
the recursive algorithms of the AMR’s could easily be imp
mented. The nesting is terminated if either the integrat
error is smaller than the prescribed accuracy or a maxim
n

03541
is
as

-
n
m

recursion level is reached. One minor disadvantage of
AMR’s might be that the execution time of a calculation
hard to estimate since the number of mesh points is unkn
a priori.

Adaptive mesh-refinement schemes, like other grid te
niques, are of course not restricted to Brillouin zone integ
tions ~for application of grid techniques in density-function
theory see Ref. 17!. We suggest considering the impleme
tation of AMR’s in computer codes for electronic-structu
calculations.
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