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Abstract—The variation of anisotropy constants is
studied within the three-constant approximation to
the anisotropy free energy. The anisotropy-flow con-
cept for tracing the evolution of the system in the
anisotropy space of the system is introduced. Unex-
pected features of the variation of anisotropy are un-
covered for realistic values of the intrinsic parameters
as, e.g., two zero points for the first anisotropy con-
stants and, correspondingly, two successive reorien-
tation transitions between phases with different easy
axes of magnetization. The question of the ulti-
mate possible peculiarity of variation of anisotropy
and magnetostriction is addressed by formulating and
proving a far-reaching theorem by virtue of which
the superposition of p different functions with certain
widely met properties inay not have more than p—1
zeroes or internal extrema.

I. INTRODUCTION

Magnetic anisotropy (MA) can be characterized either
by the set of anisotropy constants K; or by the equiva-
lent set of anisotropy coefficients R, [1],[2). These sets
carry the temperature (T) and field (H ) dependence of
the anisotropy energy. The variation of magnetostriction
(MS) with the magnetization m in a given ferromagnetic
system can be addresed within the fundamental theory of
(1], whereby one needs to know once again the anisotropy
coefficients &,(m). One way to get the T and H depen-
dences of the MA constants {KX;} and of the MS constants
{A;} is by inserting the experimentally measured depen-
dences m(T', H). The theoretic alternative is to compute
the functions K, within a statistic-mechanical treatment.
It has recently been shown how to carry out effectively
the required calculations [3] for a whole class of untrivial
theories [4]. On the first stage, the MA and MS constants
are expressed as linear combinations of the fundamental
anisotropy coefficients %,. These are defined as the nor-

malized statistical averages of the Stevens’ operator equiv-
alents [5]:

Rn(T) =< 05 > (T)/ < 02 > (0) .. ‘(1)
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The bracket denotes statistical averaging with respect to
the dominant exchange-interaction part of the Hamilto-
nian. It has already been explained in detail how to im-
plement a powerful parametric approach to compute the
canonic dependences &, (m) [3], [6] and this comprises the
second stage of the computation. On the last stage, the
temperature dependence can be obtained with the help of
the same parametric approach by computing m(T) within
the mean-field theory or, for cubic lattices, within the
random-phase approximation [7]. At this level the de-
pendences &,(T) are already specific for each particular
theory from within the class of [4]. :

It turns out possible to exploit the method for an ex-
haustive classification by general arguments of the possi-
ble types of variation of single-ion MA in the two-constant
free-energy approximation [3]. One is naturally led to in-
troduce the concept of temperature-driven flows in the
anisotropy space of the corresponding system. The tra-
Jectory described by a given system under variation of

. temperature can be explicitly computed and monitored

which, beside the rather appealing presentation of the
anisotropy-related phenomena in the system, allows one
to quantify in great detail the possible exchange of stabil-
ity of preferential axes of orientation of magnetization.

II. UNIAXIAL SYSTEMS WITH HIGHER-ORDER
SINGLE-ION ANISOTROPY

Below, we neglect in-plane anisotropies to avoid a re-
dundant complication. In the case when three constants
Ki(i = 1,2,3) have to be considered in the phenomeno-
logic free energy

Fi= Ky  sin® 0‘+ Ky -sin*8 + K5 -sin® 4 , (2)

the matrix relating the set of experimentally measured
conslants {K;} to the theoretically computed coefficients
{%n) is a three-dimensional triangular one and contains
two independent parameters [8]. They can profitably
be cast as the ratios K§/K{ and K§/K?, where K0 =
Ki(T = 0) are the inirinsic anisotropy constants. The
intrinsic constants ‘play: the role of initial conditions for
the temperature-driven flow in the anisotropy space 3}
Any given trajectory or flow is in this sense deterministic.
The relations between:constants and coefficients for this
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case are given by [9]:

- 8 8 8 144 \ _ 8 _
Ky = (l-i-?:z:-i-:‘:y) (7:c+-,ﬁ'y) Ks + HUNG,
_ 18 18

K = (:L‘-{--I-I) 4—-1—1yx,5,

yRe (z=KI/K?, y=K3/K)).

If one is interested in studying the variation of the
anisotropy constants, one recognizes in (3) a clearly posed
mathematical problem of investigating the outcome of su-
perposing a set of functions {%,} for different values of
the constitutional parameters z and y. An analytic ex-
haustion of the possible types of variation of the K;’s as
in the case with only K| and K, included does not seem
possible. The only guiding lines remain the parametric
approach which underlies the anisotropy-flow concept and
the experience gained in analyzing the much simpler two-
constant case [3].

Applying the parametric approach to probe the
anisotropy space systematically, one finds several unex-
pected features for the variation of single-ion MA. In the
first place, three generic types of variation of K3 are pos-
sible depending on the ratio of the intrinsic constants K9
and K only: a monotonic-type variation and two non-
monotonic, untrivial types of variation with an additional
maximum or with a zero point of K, at some internal
point between 0 and Tg, respectively. Second, we find
a range of values of the intrinsic parameters where K
develops fwo internal extrema upon varying the temper-
ature (Fig. 1). Besides, the first anisotropy constant K
exhibits {wo zero poinis (iwo changes of sign, respec-
tively) for realistic values of the constitutional parame-
ters (the lowest-lying eurve in Fig. 1). Finally, we have
detected regimes of variation of the anisotropy constants

- which bring about {wo successive reorienialion transitions
of the easy axis of magnetization, This feature is inti-
mately connected with the number of zeroes of K; and
could only be studied by implementing the parametric
approach to track down the trajectories of the system in
the anisotropy space. In Fig. 2(ab) we give a typical
flow diagram exhibiting the feature of a system crossing
over from an easy axis along the c-axis to a canted-axis
phase and then back along the c-axis upon increasing the
temperature. When K tends to its first zero, the trajec-
tory goes to infinity in the chosen standard presentation
and, following the change of sign of K, reemerges in an-
other section of the anisotropy space where the magneti-
zation prefers another direction. This runaway to infinity
takes place twice for each of the internal zero points of
K{. Physically, we have detected two successive reorien-

’tatmns: c-axis = canted easy axis — c-axis. Besides, this

T tra]ectory as well as all other possible trajecto-

arescomputed with the help of the parametric

‘ e valid forthe whole class of theoriés, since they
= are pararnetrlzed by the generahzed eﬁ'ect;We field z of [4],

Ky =

(3)
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Fig. 1. Regimes with two internal extrema of K and with two zero
points of K, (K? = Ki(T = 0)).

although physically the evolution is driven by the varia-
tion of temperature.

III. ULTIMATE PECULIARITY OF VARIATION

The question arises about the admissible ultimate pecu-
liarity of variation of MA and MS constants in the general
cases when any one of them is represented by a superposi-
tion of p basis functions {g,} (4 = 1,2,...,p). It makes no
physical sense to consider more than three basis functions
in uniazial symmetry (gu(z) = Rou(z), 4 = 1,2,3) or
more than two basis functions (gu(z) = Raus1)(2), 1 =
1,2) in cubic symmetry if only single-ion contributions are
considered. However, there are a number of physical ef-
fects whose account naturally leads to extending the basis
of functions. Such effects are, e.g., the two-ien contri-
bution to MA and MS, higher-order perfurbation effects,
magnetoelastic contributions to MA, etc. To address gen-
erally such realistic and, in fact, unavoidable extensions of
the physical effects considered, we have been able to for-
mulate and prove a rather general theorem whose valid-
ity is independent of whether one is examining single-ion
contributions only. The theorem states that, given p suf-
ficiently smooth, strictly monotonic, bounded functions
which are defined on a finite interval and given that there
they are of constant-sign convexity, one can always con-
struct a p-term linear superposition which has at most
p — 1 internal zeroes and/or extrema. On the ezisience
side, sufficiently peculiar variation of MA or MS constants
is guaranteed for some values of the constitutional param-
eters; the set of such parameters will itself be extended to
mclude all relevant ground-state propeties and ‘not only
the K{’s of the pure single-ion case. On the restricting
side, no more than p — 1 internal extrema or zeroes are



allowed for any values of the constitutional parameters.
The conditions of the theorem can be relaxed, but for the
present applications may it suffice to observe that the typ-
jcal functions which appear in the theory of MA and MS
qualify. Apart from &n, such are the powers of the magne-
tization m which appear in the n{n + 1)/2-law for &,(m)
at low temperatures [1] or in the mean-field treatment of
two-lon contributions to anisotropy where one assumes a
m?-variation {11]. Moreover, products of the type & &,
(s = q being allowed) which may appear in a higher-order
perturbative treatment or may originate in non-negligible
magnetoelastic effects, also possess the required proper-
ties.
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Fig. 2. Two-dimensional mapping of an anisotropy flow with two
successive reorientations: (a) K1 > 0; (b} K1 < Q. Physically, the

flow is driven by variation of temperature. Thick: borders between

Phases of different easy axes [10); dashed: a trajectory consisting
of 3 pieces, numbered accordingly and computed with the intrinsic
parameters for the lowest curve in Fig. 1 (see text).
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Since, on the other hand, the theorem given above is
a purely mathematical staterment, one might expect that
there are other interesting situations where it should ren-
der physical insights. We point out in a way of example
that by virtue of the same theorem the overall magneti-
zation in a ferrite of p magnetic sublattices may have up
to p — 1 compensation points upon variation of temper-
ature, provided the individual sublattice magnetizations
vary with temperature as required by the theorem. The
result for p = 2 is well-known and amounts to the exis-
tence of a single compensation point as predicted by L.
Néel long ago.

IV. DiscussioN

We have shown that recent advances with the statis-
tical computation of the fundamental anisotropy coeffi-
cients make possible an extensive analysis of the varia-
tion of the experimentally measured single-ion anisotropy
constants. This varjation is studied in the three-constant
approximation to the free energy of uniaxial systems. Un-
expected features are detected such as: three types of
variation of R', up to two zero points of Ky, and up to
two successive reorientations. Guided by the anisotropy-
flow concept and the insights offered by the underlying
parametric approach, we have addressed the problem of
the ultimate possible peculiarity of variation of MA and
MS by formulating and proving a far-reaching theorem
by virtue of which the superposition of p functions which
satisfy certain conditions may not have more than p — 1
zeroes or internal extrema on a bounded interval. The
physical applicability of the theorem to the study of MA
and MS is guaranteed by the fact that the typical func-
tions arising in statistical treatments which can be seen to
form the basis set meet its requirements. A consequence
of direct practical significance is that experimental obser-
vation of k zeroes or extrema mandates the use of at least
k + 1 parameters to fit data.
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