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Temperature-Driven Reorientation Transitions in Ultrathin
Ferromagnetic Films
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Abstraci—The anisotropy-flow concept is applied to
analyze in detail the reorientation transitions, driven
by either thickness or temperature variations. The
analysis brings to the fore the common underlying
features in both cases. Three generic scenarios for
the occurrence of the reorientation are predicted and
described in both cases on general thermodynamic
grounds. The method is especially effective when un-
derpinned by the usual assumption about the explicit
thickness dependence of the first two anisotropy con-
stants.

I. INTRODUCTION

Ultrathin ferromagnetic (FM) layers exhibit a remark-
able transition accompanied by reorientation of the mag-
netization from a perpendicular to an in-plane direction.
This may happen at fixed temperature T' with variation
of thickness d or at fixed d with variation of T below T,

“[1]-[4]. Both types of transition can be suitably presented,
in principle, in a (T, d)-diagram [5], [6]. Qualitatively, the
reorientation transition (RT) is traced back to the com-
petition between bulk, surface, and shape anisotropies.
Below, both types of transition are treated on equal foot-
ing by applying the concept of anisotropy flows, put for-
ward in the context of bulk single-ion magnetic anisotropy
(MA) [7]. The anisotropy free energy in zero applied
field is cast as in the bulk two-constant approximation:
F = K;sin?0 + Kysin* 6, where 6 is the angle between
the magnetization M and the normal n to the film sur-
face, the reference zero state is the one with M || n, and
K=K - poM?/2. Denoting with 1,2, and 3 the per-
pendicular, in-plane, and canted phases, respectively, one
finds in a standard analysis of thermodynamic stability
that the phase boundaries in the anisotropy space are

12 Ky=-EK; (K >0); (1)
2603 Ky=-Ki/2 (K <0) (2)
31 Ki=0  (Ky>0). (3)

The boundaries are given by the thick lines in Fig. 1.
Besides, there are two wedges in the fourth quadrant, de-
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fined by —K1 < Ky < —K1/2 (B > 0) and K, < K,
(K1 > 0), where the neighbors 1 and 2 are metastable
across the common border (hatched regions in Fig, 1).

II. THE ANISOTROPY FLOW CONCEPT

Quite generally, if the anisotropy constants are func-
tions of m + 1 parameters, any one of them would
drive a corresponding evolution (flow) with the re-
maining n parameters (yi,...4,) held fixed: K
Ki(2;y1, < ¥n)y Ko = Ks(z;p,...,yn). Varying the flow
parameter z reversibly between an initial and a final state
will force the system evolve along a specific trajectory.
Any general additional information (monotonicity, con-
servation of sign of Kj, etc.) leads to a considerable re-
duction in the allowed basins for the anisotropy flow. In
the present context, the usual phenomenologic assump-
tion is made [1),[8], [9]:

K(d, T)
K(d,T)

= | K,H(T) + 21{1,(T)/d¥;
bi(T)+2I{25(T)/€{:, L

(4)
(5)
Thus bulk (b) and surface (s) contributions are treated as

additive. Besides, the d-dependence is ezplicit, while the
T-dependence is practically unknown. :

ITI. THICKNESS- AND TEMPERATURE-DRIVEN RTS

A. Thickness-driven anisoiropy flows

In the thickness-driven case, with T held fixed and elim-
inating d from (4), one finds that this type of flow is simply
a segment of a straight line

(6)

where the slope a and the intercept b depend on
Kis, Ko, K18, Ko3, and M. The flow is completely speci-
fied if one knows the initial and final states. An immediate
generalization results by noting that the thickness-driven
flow would be linear whenever the d-dependent part of K
and K3 is of the same functional form for both K and Ky:
Kqi(d,T) = K1y +2K,/f(d), Ka(d, Ty = Kap+2K2, /f(d) '
with any f(d). Three generic cases of thickness-driven
flows can immediately be specified as corresponding to
whether the intercept b 1s zero, positive, or negative. In

Ky=a-Ki+b,
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Fig. 1. Anisotropy space for the effective two-constant free energy.
Thick lines: phase boundaries; thin lines: generic thickness-driven
flows; hatched regions: domains of metastability of a neighboring
phase, For any RT, the evolution starts from within phase 1 and
flows into the small rectangle Z belonging to the in-plane phase.

each of them, there are three possible subcases according
to the sign of the slope a. The full description thus in-
volves a set of defining inequalities involving the K’s and
M. In Fig. 1 each generic case b =0,b>0,0rb <0
is represented with the corresponding segment A;Z; for a
- single subgeneric case only. All anisotropy flows end up
within the rectangular target Z of dimensions 2K15 X 2K
whose vertices have coordinates —-é-quz:ilelb], | Kqp).

For b = 0, the system crosses over from phase 1 to

phase 2 via the origin (412, in Fig. 1), The condition for
" the occurence of this scenario is the lack of higher-order
anisotropy at the point of RT only. Hence, a necessary
condition for a nontrivial scenario to occur is Ky # 0.
Since no intermediate phases are involved, the RT is re-
versible and abrupt and takes place at a critical thickness
d. given by the conditon K1(d.,T) = 0. Provided that
| K1) < poM?/2, one finds that d.(T) = 4Ky, [paM?.
This sets the first characteristic thickness in the problem.
One may recognize that the smallness of the critical thick-
ness of a film that would exhibit a RT is dictated by the
relative smallness of Ky;.

For b > 0, the flow traverses the canted phase (A22,
in Fig. 1). The RT occurs via a continuous change of
8. The entrance into, and the exit out of, phase 3 upon
increasing d are at the points P and Ry, respectively, i.e.
at Ky(dy,T) = 0, Ka(ds, T) = —K1(d2)/2, where dy and
dp correspond to the onset and completion of the reorien-
tation process. For bulk contributions much smaller than
the shape-anisotropy contributions, one finds

4Ry, 4(2Ka, + K1y)
R

It is suitable to take as a second characteristic thickness

X, X, Driving parameter
A

e s

Fig. 2. Evolution of the canting angle # driven by z (z =d or T).
The slopes at z; and 3 are infinite by general considations (cf. (9)).
The curve is centrosymmetric with respect to the point G only if
the bulk contributions are negligible.
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- Fig. 3. Hysteresis features of 0 for flows driven byz(zr=dorT)

and proceeding via the metastable domains of Fig. 1. The abrupt
RT takes place at Z; (Z3) for increasing (decreasing) values of the
driving parameter. The critical values correspond to the crosspoints
of the trajectory AgZs with the thick dashed lines in Fig. 1. &m
corresponds to Q3 in Fig. 1.

ANy =dy—~dy = 8K2,-/ﬂ0M2‘ Obviously, the width of
the RT is controlled by the relative smallness of Ko;. The
onset and the width of the RT are experimentally well-
defined quantities. One thus comes to the estimate

I(]_,/I{QJ %2dc/A (8)

While the system evolves along the segment P;Rj in the
canted phase, 6(d) varies between 0 and #/2 with infinite
slopes at dy and do. For negligible bulk contributions,
8(d) ~ arcsin \/(d — d.)/A and the curve §(d) in phase 3
is centrosymmetric with respect to the point G = [(di +
d2)/2,7/4] (o Fig. 2). ‘

For b < 0, the anisotropy flow proceeds via the
metastable states in the fourth quadrant (AsZs in Fig.
1). Hence, the RT is discontinuous with the typical fea-
tures of a first-order transition [10] and with the thickness
as a driving parameter (Fig. 3}.

The characteristic thicknesses are once again deter-
mined by the crosspoints Ps, @3, and Rg of the linear flow

with the phase boundaries, The characterization proceeds



under the restrictions of the full set of defining inequali-
ties (b < 0 with a > 0, a < 0, or a = 0) plus additional
obvious restrictions on the thlcknesses

B. Temperature-driven RTs

The explicit determination of K (T) and K(T) for thin
films exhibiting RTs is far from resolved [11],{12]. Conse-
quently, the trajectories are not explicitly known. How-

ever, with the realistic assumption of monotonicity of vari-

ation with T', the continuity of the reversible flow between

the initial and final points gives rise once again to three
general lypes of (not necessarily linear) evolution accord-
ing to the sign of K5(T) at the point of change of sign
of K1(T). The conditions defining the crossover points to
neighboring phases are now implicit. However, the same
considerations about how the RT proceeds in each generic
case hold true. Furthermore, a general proof of the infin-
ity of the slopes of §(T") at the entrance and exit of the
canted phase may be given by noting that

2_[0(‘” ) B _2K2 | S 1
3z Yly=const = 2 '1+_,-_;:_L '4(1{2)2

(Kz?-fﬁ- -k aK?) . (9)
Y

0 Oz

For either z = d, y = T (subsection A)or 2 =T, y=4d
(this subsection), the denominators in the first two factors
become zero at the crosspoints with the phase boundaries.

As regards the range in the relevant driving parame-
ter over which the RT is accomplished, experimental and
theoretical evidence agree on a remarkably small range
in the d-driven case, but disagree in the T-driven case,
where experiment favors relatively large ranges on the T
scale [3],[4] in contrast to restricted theoretical evidence
{12]. In an attempt to determine the conditions which
would bring about a small range AT, consistent with the-

oretical predictions, one may observe that a small AT -

means that the corresponding portion of the trajectory in
the anisotropy space is covered at a large speed or rate of
change. Exploiting the implied mechanical analogy, one
comies to the criterion that any portion of a particular tra-
jectory Kg(Iil(T)) will be covered *quickly”, if the rate
of change as given by
o(T) =V (K2)? + (K1)? (10)
1s large along this portion, i.e., if v(T) 3> vy(T), where
vo(T) is a reference rate of change corresponding to the
physical situation under discussion but neglecting the sur-
face terms. The dots in (10) denote differentiation with
respect to the driving parameter (here: T'). In the lack of
knowledge of the explicit T dependence of the quantities
involved, one could still derive sufficient conditions for the
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smallness of AT
[K1sl/d > poM (M, 1Ko /d > Kol (11)

That is to say, an expectation of a small AT would be
met if the rates of change of K, and K, are larger than
the rates of change of the dipolar anisotropy energy and
Koy, respectively,

IV. DIsCUssSION

The anisotropy-flow concept provides far-reaching and
systematizing insights into both types of RT in ultrathin
FM films. 1t allows a clear presentation of the problem
in the anisotropy space. In the thickness-driven case, one
identifies two characteristic thicknesses. The onset of the
RT is controlled by Ki,, whereas K3, controls the width
of the RT. A simple estimate of their ratio in terms of the
experimentally measured quantities d. and A is given.
Furthermore, the curves dy(7") and dy(T), although not
explicitly known, are definitely connected with more com-
plicated (T', d) phase diagrams than has been possible to
detect by now. In principle, for any given system they
may lead to the subdivision of the FM portion of this
diagram into up to four further subdomains. The cross-
point of these two curves, if it exists, would correspond
to zero effective anisotropy in the system which might
lead to a rather peculiar behavior of the system. Further
complications (magnetoelastic effects, roughness, in-plane
anisotropy, etc.) can be incorporated into the scheme
without loss of generality and without conmderable in-
crease of mathematical complexity.
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