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Correlated scattering states ofN-body Coulomb systems
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For N charged particles of equal masses moving in the field of a heavy residual charge, an approximate
analytical solution of the many-body time-independent Schro¨dinger equation is derived at a total energy above
the complete fragmentation threshold. All continuum particles are treated on equal footing. The proposed
correlated wave function represents, to leading order, an exact solution of the many-body Schro¨dinger equation
in the asymptotic region defined by large interparticle separations. Thus, in this asymptotic region the
N-body Coulomb modifications to the plane-wave motion of free particles are rigorously estimated. It is shown
that the Kato cusp conditions are satisfied by the derived wave function at all two-body coalescence points. An
expression of the normalization of this wave function is also given. To render possible the calculations of
scattering amplitudes for transitions leading to a four-body scattering state, an effective-charge method is
suggested in which the correlations between the continuum particles are completely subsumed into effective
interactions with the residual charge. Analytical expressions for these effective interactions are derived and
discussed for physical situations.@S1050-2947~97!01103-7#

PACS number~s!: 34.80.Dp, 34.10.1x, 25.10.1s
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I. INTRODUCTION

Many-body Coulomb scattering states arise in vario
fundamental reactions in atomic and molecular physics.
though the Coulomb interactions governing the motion
charged particles possess a simple analytical dependenc
theoretical treatment of Coulomb scattering states is a c
lenging task even in the asymptotic region. The main di
culties in the theoretical description of such states arise f
the infinite-range behavior of the Coulomb interaction. T
is already revealed in the exactly solvable two-body~Kepler!
problem in which case the asymptotic free motion in t
relative coordinate is modified by the notorious Coulom
phase. For the three-body system the theoretical treatme
much more involved due to the nonseparability of the ma
body Schro¨dinger equation. Asymptotic states for the thre
body problem have been reported at large interparticle s
rations @1–4#. Only recently @5,6# have asymptotic three
body scattering states been derived that are valid in the e
asymptotic region defined by large hyperradius. The int
duction of coupling between individual two-body su
systems~in the form of local relative momenta in Ref.@5#
and local Sommerfeld parameters in the case of Ref.@6#! in
deriving these asymptotic states underlines the complexit
the theoretical descriptions of Coulomb systems in the c
tinuum. For systems with more than three particles in
continuum only little is known. Employing hyperspheric
coordinates in the 3N-configuration space, Peterkop@2# has
derived an estimate of the Coulomb phase modification to
outgoing (3N21)-dimensional spherical free wave ofN
electrons receding from a massive nucleus. The Coulo
phase modifications to the asymptotic plane-wave motion
the individualN electrons as well as the propagation of su
asymptotic scattering states to finite distances have not b
given. Due to unpublished work by Redmond, an express
for the Coulomb distortions of the asymptotic plane-wa
relative motions inN-body Coulomb scattering systems h
551050-2947/97/55~3!/1994~10!/$10.00
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been reported in Ref.@1#, however, without derivation.
In this work we derive an approximate analytical expre

sion for the solution of the non-relativistic, time-independe
Schrödinger equation ofN charged particles moving in th
field of a residual ion. The total energy of the system
assumed to be above the complete breakup threshold.
study is restricted to continuum particles with compara
masses and, with respect to these masses, a very heavy
of the residual charge so that mass-polarization terms ca
neglected and the center-of-mass motion can be sepa
out in a relative-coordinate frame of reference. The wa
function is determined by separately solving for t
N-independent Coulomb particle motion in the residual i
field and the correlated motion between the continuum p
ticles with disregard of the residual-charge field. These t
solutions are then subsequently coupled by an arbitrary fu
tion that is determined from the Schro¨dinger equation of the
system. The derived correlatedN-body wave function coin-
cides with known expressions@4,6–8# in the case of three-
body system and, for a two-body system, with the exact tw
body Coulomb wave function. It is shown that the propos
wave function constitutes an exact solution of the ma
body problem in the asymptotic region of large interpartic
distances. In this region the asymptotic expression of
derived wave function tends to the asymptotic form su
gested in Ref.@1#, hence providing the proof for this sugge
tion. In addition, the normalization of the proposed wa
function is derived by requiring that the total flux, generat
by the wave function derived here, through a large multi
mensional manifold defined by large, but constant, interp
ticle separations should be the same as the flux due to
malizedN plane waves of the receding particles.

The inclusion of the correlations between the continu
particles presents an obstacle in actual calculations of s
tering amplitudes using the derived wave function since
this case a 3N-dimensional integral has to be evaluated. T
reactions for which such Coulomb scattering amplitudes
1994 © 1997 The American Physical Society
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55 1995CORRELATED SCATTERING STATES OFN-BODY . . .
currently needed are the double ionization of atomic syste
upon charged particle impact and the electron-impact sin
ionization of atomic inner shells followed by an Auger dec
@9#. Both of these processes lead to a four-body Coulo
continuum states in the final channel. Measurements of s
reactions have already been performed@10–14,16,15#. In
light of the absence of theoretical descriptions under sit
tions where the four-body problem cannot be reduced
three-body one using the Born approximation, it appe
timely to investigate methods of simplifying the propos
wave function such that reaction cross sections can be ca
lated. In a method proposed in Ref.@17# the correlations
between the continuum particles are taken into account a
effective interaction between the continuum particles and
nucleus. However, as shown below, the effective prod
charges given by the method of Ref.@17# exhibit some un-
desirable features. Therefore, maintaining the philosoph
effective charges, an alternative set of effective prod
charges is derived by requiring that the many-body wa
function constructed by this method should analytica
match the known solution of the many-body Schro¨dinger
equation in some limiting cases. The derived product char
are then well behaved. Properties of the proposed effec
product charges are discussed in the case of positron-im
double ionization of He(1Se) . Using the method develope
in this work, pilot calculations for the multiple differentia
cross sections of the electron- and positron-impact dou
ionization of He(1Se) have already been reported@18#.

The plan of the paper is as follows. In Sec. II, after fo
mulating the theoretical framework, the correlated ma
body wave function is derived and the asymptotic behav
of the Schro¨dinger equation is investigated. In Sec. III th
proposed wave function is shown to satisfy the Kato cu
conditions@19# at all N(N21)/2 two-body collision points.
Section IV deals with the normalization of the derived wa
function, whereas in Sec. V the method is applied to
four-body Coulomb continuum problem. To render possi
the calculations of scattering amplitudes, the proposed w
functions is simplified using a method based on the effect
product-charge method. Conclusions are drawn in Sec.
Atomic units are used throughout.

II. FORMULATION OF THE PROBLEM
AND ASYMPTOTIC SCATTERING STATES

We considerN charged particles of equal massesm and
with chargesZj , jP@1,N# moving in the field of a residua
chargeZ. The massM of the chargeZ is assumed to be
much larger thanm (M@m). In this work only continuum
states are considered, i.e., the total energyE of the system is
larger than the complete fragmentation-threshold energy.
glecting terms of the ordersm/M , the center-of-mass system
and the laboratory frame of reference can be chosen to
identical. The nonrelativistic time-independent Schro¨dinger
equation of theN-body system can then be formulated in t
relative-coordinate representation as

FH01(
j51

N
ZZj
r j

1 (
i , j

j. i51

N
ZiZj

r i j
2EG C~r1 , . . . ,rN!50,

~1!
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where r j is the position of particlej with respect to the
residual chargeZ andr i j :5r i2r j denotes the relative coor
dinate between particlesi and j . The kinetic-energy operato
H0 has the form ~in the limit m/M→0)
H052(L51

N DL/2m, whereDL is the Laplacian with respec
to the coordinaterL . We note here that for a system o
general masses the problem is complicated by an additi
mass-polarization term that arises in Eq.~1!. Upon introduc-
tion of N-body Jacobi coordinates,H0 becomes diagonal
however, the potential terms acquire a much more comp
form. Assuming the continuum particles to escape with re
tive asymptotic momentak j ~with respect to the chargeZ), it
has been suggested in Ref.@1#, due to unpublished work by
Redmond, that for large interparticle distances the wa
functionC(r1 , . . . ,rN) takes on the form

lim
r lm→`
r n→`

C~r1 , . . . ,rN!→~2p!23N/2)
s51

N

js~r s!cs~r s!

3 )
i , j51
j. i

N

c i j ~r i j !

; l ,m,nP@1, N#; m. l , ~2!

where the functionsj j (r j ),c j (r j ),c i j (r i j ) are defined as

j j~r j !:5exp~ ik j•r j !, ~3!

c j~r j !:5exp@7 ia j ln~kj r j6k j•r j !#, ~4!

c i j ~r i j !:5exp@7 ia i j ln~ki j r i j6k i j •r i j !# . ~5!

The1 and2 signs refer to outgoing and incoming bounda
conditions, respectively, andk i j is the momentum conjugat
to r i j , i.e., k i j :5(k i2k j )/2. The Sommerfeld parameter
a j ,a i j are given by

a i j5
ZiZj

v i j
, a j5

ZZj
v j

. ~6!

In Eq. ~6! v j denotes the velocity of particlej relative to the
residual charge, whereasvi j :5vi2vj . In this work we re-
strict the considerations to outgoing-wave boundary con
tions. The treatment of incoming-wave boundary conditio
runs along the same lines. The total energy of the systemE is
given by

E5(
l51

N

El where El5
kl
2

2m
. ~7!

To derive asymptotic scattering states in the limit of lar
interparticle separations and their propagations to finite
tances we assume forC(r1 , . . . ,rN) the ansatz

C~r1 , . . . ,rN!5NF I~r1 , . . . ,rN!F II ~r1 , . . . ,rN!

3x~r1 , . . . ,rN!, ~8!

whereF I ,F II are appropriately chosen functions,N is a
normalization constant, andx(r1 , . . . ,rN) is a function of an
arbitrary form. The functionF I is chosen to describe th
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1996 55JAMAL BERAKDAR
motion of N-independent Coulomb particles moving in th
field of the chargeZ at the total energyE, i.e.,F I is deter-
mined by the differential equation

SH01(
j51

N
ZZj
r j

2EDF I~r1 , . . . ,rN!50. ~9!

Since we are interested in scattering solutions with outgo
wave boundary conditions that describeN particles escaping
with asymptotic momentak j , jP@1,N#, it is appropriate to
factor out the plane-wave part and write forF I

F I~r1 , . . . ,rN!5F̄I~r1 ,•••,rN!)
j51

N

j j~r j !. ~10!

Upon substitution of the ansatz~10! into Eq. ~9! it is readily
concluded that Eq.~9! is completely separable and the reg
lar solutionF I can be written in closed form

F I~r1 , . . . ,rN!5)
j51

N

j j~r j !w j~r j !, ~11!

wherew j (r j ) is a confluent-hypergeometric function in th
notation of Ref.@20#

w j~r j !5 1F1@a j ,1,2 i ~kj r j1k j•r j !#. ~12!

The functionF I describes the motion of the continuum pa
ticles in the extreme case of very strong coupling to
residual ion, i.e.,uZZj u@uZjZi u; i , jP@1,N#. In order to in-
corporate the other extreme case of strong correlat
among the continuum particles (uZjZi u@uZZj u; i , jP@1,N#)
we chooseF II to possess the form

F II ~r1 , . . . ,rN!5F̄II ~r1 , . . . ,rN!)
j51

N

j j~r j !, ~13!

with

F̄II ~r1 , . . . ,rN!:5 )
j. i51

N

w i j ~r i j !, ~14!

where w i j (r i j ):5 1F1@a i j ,1,2 i (ki j r i j1k i j •r i j )#. It is
straightforward to show that the expressi
w i j (r i j )) l51

N j l(r l) solves for the Schro¨dinger equation~1! in
the case of extreme correlations between particlei and par-
ticle j , i.e., uZZl u!uZiZj u@uZmZnu; l ,m,nÞ i , j . In terms of
differential equations this means

SH01
ZiZj

r i j
2EDw i j ~r i j !)

j51

N

j j~r j !50. ~15!

It should be stressed, however, that the function~13! does
not solve for Eq.~1! in the case of weak coupling to th
residual ion (Z→0), but otherwise comparable strength
correlations between the continuum particles. This is due
the fact that two-body subsystems formed by the continu
particles are coupled to each other. To derive an expres
for this coupling term we note first that
-

e

s

to
m
on

DmF̄II5 (
l51

m21

Dmw lm)
j. i
iÞ l

N

w i j 1 (
n5m11

N

Dmwmn)
j. i
jÞn

N

w i j

1Am , mP@1,N#, ~16!

where the differential operatorAm has the form

Am52(
l51

m21 F ~“mw lm!•S (
n5m11

N

“mwmnD G )
j. i

jÞn,iÞ l

N

w i j

1 (
l51

m21 F ~“mw lm!•S (
lÞs51

m21

“mwsmD G )
j. i

sÞ iÞ l

N

w i j

1 (
n5m11

N F ~“mwmn!•S (
t5m11
tÞn

N

“mwmtD G )
j. i

jÞtÞn

N

w i j ,

mP@1,N#. ~17!

To obtain the differential operator that couples the two-bo
subsystems in the absence of the chargeZ we neglect in Eq.
~1! the interactions between the residual charge and the
tinuum particles (Z50) and substitute the function~13! into
Eq. ~1!. Making use of the relation~16! it is straightforward,
however cumbersome, to show that the coupling term t
prevents separability has the form

A5 (
m51

N

Am . ~18!

Equations~17! and~18! warrant comment. The termAm is a
mixing operator. It couples an individual two-body su
system formed by two continuum particles to all other tw
body subsystems formed by the continuum particles in
absence of the residual ion. Hence it is clear that all the te
in the sum~17! vanish for the case of the three-body syste
since in this case only one two-body system exists in
field of the residual charge. The second remark concerns
structure ofAm and henceA. From Eq.~16! it is evident that
the remainder term~17! is part of the kinetic-energy opera
tor. Thus it is expected that, under certain circumstances,
term has a finite range, which indicates that asymptotic se
rability, in the sense specified below, exists for many-bo
continuum Coulomb systems. In fact, as the functional fo
of w i j (r i j ) is known, the termA can be calculated explicitly
which will be done below.

Now with F I andF II determined, the exact wave func
tion ~8! is given by the expressionx(r1 , . . . ,rN). Upon sub-
stitution of the expressions~13! and ~11! into the ansatz~8!
and inserting in the Schro¨dinger equation~1!, a differential
equation for the determination ofx(r1 , . . . ,rN) is derived

HH02
A

F̄II

2 (
L51

N

@~“LlnF I 1“LlnF II !•“L

1~“LlnF I !•~“LlnF II !#1EJ x~r1 , . . . ,rN!50 . ~19!
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From the derivation of the functionsF I andF II @Eqs. ~9!
and ~13!# it is clear that all long-range two-body Coulom
interactions have already been diagonalized byF I andF II
because the total potential is exactly treated by these w
functions. Hence the functionx, to be determined here, con
tains information on many-body couplings, which are, un
certain conditions~see below!, of finite range. To explicitly
show that, and due to flux arguments we write the funct
x in the form

x~r1 , . . . ,rN!5)
j51

N

j* ~r j !@12 f ~r1 , . . . ,rN!#, ~20!

where f (r1 , . . . ,rN) is a function of an arbitrary structure
Inserting the form~20! into Eq. ~19! we arrive, after much
differential analysis, at the inhomogeneous differential eq
tion

HH02 (
L51

N

@“L~ lnF I 1 lnF II !1 ikL#•“LJ f1R~12 f !50,

~21!

where the inhomogeneous termR is given by

R:5 (
m51

N H ~“mlnF̄I !•~“mlnF̄II !

1 (
l51

m21

(
p5m11

N

~¹mlnw lm!•~¹mlnwmp!

1
1

2(
l51

m21

(
sÞ l

m21

~¹mlnw lm!•~¹mlnwsm!

1
1

2 (
n5m11

N

(
nÞq5m11

N

~¹mlnwmn!•~¹mlnwmq!J .
~22!

It is the inhomogeneous termR that contains the coupling
between all individual two-particle subsystems. For exam
the first term in Eq.~22! describes the coupling of a two
body subsystems formed by particlesi and j to all two-body
subsystems formed by the individual continuum particles
the residual ion. The second term originates from Eq.~18!
and, as explained above, is a measure for the coup
among two-body subsystems of the continuum particles~in
the absence ofZ). To these couplings to be negligible th
norm of the termR must be small. To get some insight in
the functional form ofR, given by Eq.~22!, we note that

“LlnF̄I5aLkLFL~rL!, ~23!

where

FL~rL!:5
1F1@11 iaL ,2,2 i ~kLr L1kL•rL!#

1F1@ iaL ,1,2 i ~kLr L1kL•rL!#
~ k̂L1 r̂L! .

~24!

In addition, we remark that
ve

r

n

-

,

d

g

¹mlnF̄II5 (
n5m11

N

¹mlnwmn1 (
l51

m21

¹mlnw lm

5 (
n5m11

N

amnkmnFmn~rmn!2 (
l51

m21

a lmklmFlm~r lm!,

~25!

where

Fi j ~r i j !:5
1F1@11 ia i j ,2,2 i ~ki j r i j1k i j •r i j !#

1F1@ ia i j ,1,2 i ~ki j r i j1k i j •r i j !#
~ k̂ i j1 r̂ i j ! .

~26!

Thus the behavior of the coupling termR is controlled by
the generalized functionsFi j (r i j ),Fl(r l) since Eq.~22! can
be written in the form

R:5 (
m51

N H amkmFm~rm!•F (
n5m11

N

amnkmnFmn~rmn!

2 (
s51

m21

asmksmFsm~r sm!G
2 (

l51

m21

(
p5m11

N

a lmampklmkmpFlm•Fmp

1
1

2(
l51

m21

(
sÞ l

m21

a lmasmklmksmFlm•Fsm

1
1

2 (
n5m11

N

(
nÞq5m11

N

amnamqkmnkmqFmn•FmqJ .
~27!

The simplest approximation is to neglect the termR alto-
gether. In this case the functionf50 solves for Eq.~21!.
Then the solution of Eq.~1! takes on the approximate form

C~r1 , . . . ,rN!'N )
m. l , j51

N

j j~r j !w j~r j !w lm~r lm!. ~28!

Thus the justification of the approximation~28! reduces to
the validity of neglecting the inhomogeneous term~27!. One
region in which this term can be disregarded is the asym
totic region of large interparticle separations. This is imm
diately deduced from the asymptotic behavior of the gen
alized functionsFi j (r i j ),Fl(r l), which dictate the asymptotic
properties ofR, as readily concluded from Eq.~27!. From
the asymptotic expansion of the hypergeometric functio
@20# we infer that

lim
r i j→`

uFi j ~r i j !u→U k̂ i j1 r̂ i j

k i j •~ k̂ i j1 r̂ i j !r i j
U

1O~ uki j r i j1k i j •r i j u22! . ~29!

An asymptotic relation similar to Eq.~29! holds forFl(r l). It
should be noted that the functionsFi j (r i j ),Fl(r l) have to be
considered in a distributive~operator! sense, which mean
that, asymptotically, only terms ofFi j ,Fl that fall off faster
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1998 55JAMAL BERAKDAR
than the Coulomb potentials can be disregarded. SinceR is
essentially a sum of products ofFi j ,Fl , the expressionR is
of finite range, in the sense that it diminishes faster than
Coulomb potential in the asymptotic regime, only in the ca
where all particles are far apart from each other, i.e.,

lim
r i j→`
r l→`

R → O~ uki j r i j1k i j •r i j u22,uklr l1k l•r l u22!

; j. i ,lP@1,N#. ~30!

Therefore, in the limit~30!, the termR can be asymptoti-
cally neglected and the approximation~28! is justified. In
fact, it is straightforward to show that the wave function~28!
tends to the asymptotic form~2! in the limit of large inter-
particle separations, which proves the assumption mad
Ref. @1#. However, if two particles are close together, rega
less of whether all other particles are well separated,
coupling term is of infinite range, as seen from Eqs.~29! and
~27!. In this case the relation~30! does not hold. Conse
quently, the wave function~28! is not an exact asymptoti
eigenfunction of the total Hamiltonian in this limit. It is im
portant to note that the limit Eq.~30! is energy dependent
With increasing momenta of the escaping particles the
ymptotic region, i.e., the limit Eq.~30!, is reached faster. In
other words, at a certain interparticle separations, the rem
der termR, which has been neglected to arrive at the a
proximate form~28!, diminishes with increasing velocities o
the emerging particles. In this sense the approximation le
ing to the wave function~28! is a high-energy approxima
tion.

III. TWO-BODY CUSP CONDITIONS

In the preceding section it has been shown that the
proximation ~28! is, to leading order, exact for large pa
ticles’ separation. In addition, it is concluded below that t
function exhibits a behavior compatible with Eq.~1! at all
two-body coalescence pointsr i j→0,r l→0, with j. i ,l
P@1,N#. To guarantee regular behavior of the wave funct
at these collision points, at which the corresponding C
lomb two-body potential is divergent, the solutio
C(r1 , . . . ,rN) of Eq. ~1! must satisfy the Kato cusp cond
tions @19,21# ~provided the solution does not vanish at the
points!. At a collision pointr i→0 these conditions are

F ] C̃~r1 , . . . ,rN!

]r i
G
r i50

5kia iC~r1 , . . . ,r i50, . . . ,rN!

;~r i /r j !→0,~r i /r lm!→0; m. l , iÞ jP@1,N# .

~31!

The quantity C̃(r1 , . . . ,rN) is the wave function
C(r1 , . . . ,rN) averaged over a sphere of small radi
r d!1 around the singularityr i50. A relation similar to Eq.
~31! holds in the case of the coalescence pointsr i j→0. To
prove that the wave function~28! satisfies the conditions~31!
we linearizeC(r1 , . . . ,rN) aroundr i50 and average over
sphere of small radiusr d!1 to arrive at
e
e

in
-
e

s-

in-
-

d-

p-

n
-

e

C̃~r1 , . . . ,rN!5N D~r i ! )
iÞ j51
l.m

N

j jw j~r j !w lm~r lm!,e i lmÞ0,

~32!

where

D~r i !5
2p

4pr d
2E

21

1

r d
2dcosu@11 ik icosu1a iki r i~11cosu!#

511a iki r i . ~33!

To arrive at Eq.~33! one takes thez axes ask i and defines
cosu5k̂ i• r̂ i . From Eqs.~33! and ~32! it is obvious that

F ] C̃~r1 , . . . ,rN!

]r i
G
r i50

5a ikiN )
iÞ j51
l.m

N

j jw j~r j !w lm~r lm!

5a ikiC~r1 , . . . ,r i50, . . . ,rN!,

e i lmÞ0. ~34!

In deriving Eq.~34! we made use of the fact that in the lim
(r i /r i j→0) the distancer i j tends tor j . The proof that the
wave function~28! fulfills the cusp conditions at the collision
points of two continuum particles (r j i→0) runs along the
same lines. Finally, we remark that the wave function~28! is
not compatible with the expansion of the exact solution
the Schro¨dinger equation~1! at the three-body collision
points ~e.g., r i→0 and r j→0,jÞ i ) since in this case the
exact wave function is known to satisfy a Fock expans
@22# in the coordinater:5A(r i21r j

2), which contains, in ad-
dition to powers inr, logarithmic terms inr, whereas the
wave function~28! possesses a regular power-series exp
sion aroundr i→0 andr j→0.

IV. NORMALIZATION

The knowledge of the normalization factorN of the wave
function ~28! is imperative for the evaluation of scatterin
amplitudes using the wave function~28! as a representation
of scattering states. In principle,N is derived from a
3N-dimensional integral over the norm of the function~28!
which, for largeN, is an inaccessible task. Thus, for th
determination ofN we resort to the requirement that the flu
through an asymptotic manifold defined by a constant la
interparticle separations should be the same in the case o
wave function~28! and a normalized plane-wave represen
tion of the scattering state, i.e.,

JPW5JC , ~35!

where the plane-wave flux is given by
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JPW52
i

2
~2p!23NF)

l

N

j l* ~r l !“)
l

N

j l~r l !

2)
l

N

j l~r l !“)
l

N

j l* ~r l !G
5~2p!23N(

l51

N

k l . ~36!

In Eq. ~36! the total gradient“:5( l51
N

“ l has been intro-
duced. To evaluate the flux generated by the wave func
~28! we note that, by taking advantage of Eqs.~23! and~25!,
we can write for the total gradient of the wave function~28!

¹C:5PN(
m51

N H ikmC1amkmFmC

1F (
n5m11

N

amnkmnFmn~rmn!)
j. i
jÞn

N

w i j

2 (
l51

m21

a lmklmFlm~r lm!)
j. i
iÞ l

N

w i j G)s51

N

js~r s!ws~r s!J ,
~37!

whereFmn is given byFmnwmn . The decisive point now is
that since we are considering the flux at large interpart
distances only the first term of Eq.~37! is relevant. This is
readily deduced from Eqs.~24! and~26! which state that all
other terms in Eq.~37!, except for the first term, can b
neglected asymptotically. Note, in this context, that terms
the wave function that are asymptotically of the ord
O(1/r j ,1/r lm) correspond to parts of the Hamiltonian fallin
off faster than the Coulomb potentials and hence can be
regarded in the asymptotic regime. Now making use of
asymptotic expansion of the confluent hypergeometric fu
tion @20# and taking leading order in the interparticle di
tances, the fluxJC can be deduced

JC5N 2)
j51

N
exp~pa j !

G~12 ia j !G* ~12 ia j !

3 )
m. l51

N
exp~pa lm!

G~12 ia lm!G* ~12 ia lm! (n51

N

kn , ~38!

whereG(x) is the Gamma function. From Eqs.~35!, ~36!,
and ~38! it follows that

N5~2p!23N/2 )
j51,m. l51

N

exp@2p~a lm1a j !/2#

3G~12 ia j !G~12 ia lm!. ~39!

For two charged particles moving in the field of a hea
nucleus the wave function~28! with the normalization, given
by Eq. ~39!, simplifies to the three-body wave function pr
posed in Refs.@4,7#.
n
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V. APPLICATION TO THE FOUR-BODY COULOMB
CONTINUUM PROBLEM

Apart from the Rutherford scattering, the simplest app
cation of the theory presented in the previous sections is
description of three-body Coulomb continuum states that
for example, achieved as final states of electron-impact i
ization and doublephoto ionization of atomic and molecu
systems. In this case the wave function~28! simplifies to the
three-body wave function proposed in Refs.@4,7# and exten-
sively used by various authors. The second step in comp
ity is the description of the four-body scattering states. Th
states arise in the final channel of various reactions suc
the double ionization of atomic systems by electron and p
itron impact as well as the triplephoto ionization. Experime
tally there has been an increased interest in such reac
due to recent advances in coincidence-detection techniq
@10–13#. The measurement of fully differential cross se
tions of reactions leading to four-body Coulomb continuu
states was reported in Refs.@10,11#. In this study argon and
krypton targets have been double ionized by a fast projec
electron under conditions where little momentum is be
transferred to the target atoms. To describe the final state
standard theoretical treatment@23–30# has been to reduce th
four-body Coulomb continuum problem to a three-bo
problem by employing a first-order Born-type approximati
~FBA! in the projectile-target potential, which is justified fo
the conditions under which the experiment has been p
formed. Recently, measurements for electron-impact dou
ionization have been performed at intermediate incident
ergies using the cold-target recoil-ion momentum spectr
copy @12,14#. In this case the FBA model is inappropriat
The last statement was also inferred from recent meas
ments@15# of the cross section for the double ionization
magnesium by electron impact at moderate incident ene
In view of these recent experiments and the absence of
equate theoretical models it appears timely to consider
applicability of the theory developed in the previous sectio
for the case of the four-body problem.

A. Product charges according to Jetzke and Faisal

For N continuum particles the wave function~28! de-
scribesN(N21)/2 two-body Coulomb subsystems. The co
pling between these two-body subsystems through the r
tive coordinates presents a serious problem for
calculations of scattering amplitudes. To overcome these
ficulties further simplifications are needed. In Ref.@17# a
procedure has been proposed in which the correlations
tween the continuum particles are completely subsumed
an effective interactions of each continuum particle with t
nucleus. This is achieved by rewriting the total Coulom
potential in the form

(
j51

N
ZZj
r j

1 (
i , j

j. i51

N
ZiZj

r i j
5(

i

N Zi
JF

r i
, ~40!

where the local product chargesZi
JF are given by

Zi
JF~r1 , . . . ,rN!5ZZi1(

jÞ i

N

ZiZj

r i•r i j r i
r i j
3 . ~41!
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The position dependence of the product chargesZi
JF is then

converted into a velocity dependence by making use of
asymptotic approximationr i5vi t, wheret is the time. This
approximation is valid at large interparticle separations
which case Eq.~41! reduces to

Zi
JF~v1 , . . . ,vN!5ZZi1(

jÞ i

N

ZiZj

vi•vi jv i
v i j
3 . ~42!

Upon substitution of Eq.~42! in Eq. ~40!, the differential
equation~1! becomes completely separable. The solution
obtained from the function~28! in the special case
a j5Zj

JF/v j and a i j[0. When two continuum particlesi , j
approach each other in momentum space (ki j→0) the effec-
tive charges, given by Eq.~41!, diverge so as to simulat
attractive~if ZiZj,0) or repulsive~if ZiZj.0) interaction
between these particles. However, since these pro
charges contain scalar products between the velocity vec
of the escaping particles they exhibit unphysical behavio
the limit vi ivj , v i→v j6d,1@d.0. This is clearly illus-
trated in Fig. 1, where we envisage the case of two electr
and one positron moving in the triple continuum of a resid
chargeZ52. This is the final state achieved by positro
impact double ionization of He. We focus on the case
which one electron and the positron emerge in the same
rection. When this electron approaches the positron~in mo-
mentum space! the positron-nucleus interaction~product
charge! becomes strongly attractive in order to simulate
attractive electron-positron interaction. However, as the e
tron passes the positron the positron-nucleus interac
~product charge! varies rapidly from an attractive to a repu
sive interaction. In other words, at the removable singul
ties v i j50 of the product charges~42! the functions
Zi
JFv i j

2 ,Zj
JFv i j

2 are discontinuous in the limitv i j→0. This be-
havior is quite unphysical and must be considered as a re

FIG. 1. Case where one positron and two electrons are mo
in a nuclear field of a chargeZ52. The velocity vectors of all
particles lie in the same plane. One electron, particle 2, and
positron, particle 1, are assumed to escape in the same dire
with the positron having a fixed velocityv151 a.u. The remaining
electron, particle 3, is ejected in a direction perpendicular tov1, i.e.,
v̂1• v̂350, with a fixed velocityv351 a.u. The positron-nucleu
product chargeZ1

eff , determined according to Eq.~42!, is studied as
function of v2.
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of the way in which these product charges are construc
We remark in passing that the same behavior of these p
uct charges also arise for different charge states of the c
tinuum particles as well as for a different number of the
particles, in particular for a three-body system.

B. Product charges for the four-body Coulomb system
in the continuum

In order to construct product chargesZ̄j , jP@1,3#, for a
four-body system, that do not exhibit the unphysical beh
ior shown in Fig. 1, we maintain the philosophy of com
pletely subsuming the correlations between the continu
particles into an effective interaction of these particles w
the nucleus. In other words, the wave function~28! is written
in the form

C~r1 , . . . ,rN!'Ceff~r1 , . . . ,rN!5N)
j51

N

j j~r j !w̄ j~r j !,

~43!

where w̄ j (r j )5w j (r j )ua j5āj
and N5Nua j5āj

, where

ā j (r1 , . . . ,rN)5Z̄j (r1 , . . . ,rN)/v j . The local product
chargesZ̄j (r1 , . . . ,rN) are then determined by requiring th
the solution~43! should match the known solutions of th
Schrödinger equation~1! in some limiting cases. In wha
follows we investigate these limiting cases of the four-bo
Schrödinger equation. However, for brevity, only the stru
ture of Eq.~1! is discussed. The corresponding wave fun
tions in these cases are easily deduced.

~a! Since all particles appear in the Schro¨dinger equation
~1! in a symmetrical way all three continuum particles mu
be treated on equal footing, which results in the relations

Z̄j~Zi ,r i ;Zj ,r j !5Z̄i~Zj ,r j ;Zi ,r i !. ~44!

~b! When two particles i , j approach each othe
(r i j→0,r i j /r k→0) their mutual interaction increases a
ZiZj /r i j and dominates the other interactions appearing
Eq. ~1!. Hence the interactions of particlei and particlej
with the nucleus must change in a way that simulates th
mutual Coulomb interaction regardless of the direction
which particlei is approached by particlej . The interaction
of the remaining continuum particles with the nucleus m
remain finite, i.e.,

lim
r i j→06d
r i j /r l→0

Z̄i ,Z̄j→C
ZiZj

r i j
,Z̄l finite, udu!0,e i j l Þ0,

~45!

whereC is a positive real number. Condition~45! is violated
by the product charges, given by Eq.~41!.

~c! If one particle is moving in the vicinity of the nucleu
it experiences the full nuclear charge. Assuming the rema
ing two continuum particles to be far away from the nucle
their interaction with the nucleus must remain finite,

lim
r i→0,r i /r j→0

Z̄i→ZiZ,Z̄j finite ; iÞ jP@1,3#. ~46!
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~d! In order to treat the total potentialV in an exact man-
ner,V, and hence the Schro¨dinger equation~1!, must be in-
variant under the local product chargesZ̄j ,

(
j51

3
Z̄j

r j
5V. ~47!

~e! From the Schro¨dinger equation~1! it is readily con-
cluded that if one particle, say particlel , is far away from the
remaining three particles, this particle (l ) experiences a ne
charge ofZ1Zi1Zj , i.e.,

lim
r l→`

r l /r i ,r l /r j→`

Z̄l→Zl~Z1Zi1Zj !,e i j l Þ0. ~48!

In addition, if in the three-body system, formed by t
nucleus, particlei , and particlej , particle i approaches the
nucleus, particlej experiences a net nuclear charge
Z1Zi , as immediately concluded from Eq.~1!. Mathemati-
cally this condition can be formulated as

lim
r l→`

r i→0,~r i /r j ,r j /r l !→0

Z̄j→Zj~Z1Zi !. ~49!

~f! It is established that for three electrons moving in t
field of a residual positive chargeZ the gradient of the tota
potential vanishes when the three electrons recede equ
tant from the nucleus forming an equilateral triangle with t
nucleus residing in the center of this triangle@31#. In this
case the force exerted on the three electrons by the nuc
vanishes and the interelectronic correlations are minimiz
The Schro¨dinger equation~1! reduces in this configuration t

F H01(
j51

3 2Z1
1

A3
r j

2EGC~r1 ,r2 ,r3!50. ~50!

The eigenfunction of Eq.~50! can be given in closed form
To account for this Wannier-type configuration@32#, which
is known to dominate the escape dynamics at lower exc
energiesE, we impose on the local chargesZ̄j , jP@1,3#, in
the case of three continuum electrons, the relations

lim
r i→r j→r l

r̂ i , r̂ j5cosp/3

Z̄j→2Z1
1

A3

; i , j ,lP@1,3#, e i j l Þ0, Z15Z25Z3521. ~51!

We note that all the conditions listed above are directly
duced from the Schro¨dinger equation~1! in the respective
~dipole! limits. To incorporate the above relations into loc
product chargesZ̄j , which are analytical functions in th
whole configuration space, except for the poles given by
~45!, we define effective two-body potentialV̄j5Z̄j /r j and
introduce the linear transformation

V̄j5aj1V11aj2V21aj3V31aj4V121aj5V131aj6V23,

jP@1,3#, ~52!
f

is-

us
d.

ss

-

l

q.

whereVi5ZZi /r i andVi j5ZiZj /r i j are the physical two-
body potentials. Equivalent transformations of the char
Z̄j5V̄j r j immediately derive from Eq.~52!. To determine
the product chargesZ̄j the 633-matrix A with elements
ai j has to be derived. The conservation of the total poten
@conditiond# requires

(
i51

3

ai j51 ; jP@1,6#. ~53!

Relation~46! implies

aii51 ; iP@1,3#, a125a135a215a235a315a32[0.
~54!

Imposing condition~45! leads to

a1650, a2550, a3450. ~55!

Thus the product charges are determined by the equatio

Z̄15ZZ11ā14
r 1

r 11r 2

Z1Z2r 1
r 12

1ā15
r 1

r 11r 3

Z1Z3r 1
r 13

,

~56!

Z̄25ZZ21ā24
r 2

r 11r 2

Z1Z2r 2
r 12

1ā26
r 2

r 21r 3

Z2Z3r 2
r 23

,

~57!

Z̄35ZZ31ā35
r 3

r 11r 3

Z1Z3r 3
r 13

1ā36
r 3

r 21r 3

Z2Z3r 3
r 23

,

~58!

where the coefficientsai j have been transformed toāi j to
simplify subsequent calculations. The relations, given by
~48!, yield, in the limits (r 1 /r 2 ,r 1 /r 3)→`,
(r 2 /r 1 ,r 2 /r 3)→`, and (r 3 /r 2 ,r 3 /r 1)→`, respectively,

Z1~Z21Z3!5ā14Z1Z21ā15Z1Z3 , ~59!

Z2~Z11Z3!5ā24Z1Z21ā26Z2Z3 , ~60!

Z3~Z11Z2!5ā35Z1Z31ā36Z2Z3 . ~61!

Making use of Eq.~59!, relation~56! reduces to

Z̄15ZZ11@Z1~Z21Z3!2ā15Z1Z3#
r 1
2

~r 11r 2!r 12

1ā15
r 1

r 11r 3

Z1Z3r 1
r 13

. ~62!

Now we impose condition~49! on Eq.~62! and arrive at

lim
r2→`, r3→0
r2@r1@r3

Z̄15Z1~Z1Z3!5ZZ11ā15Z1Z3 ~63!

which leads to ā1551. From Eq. ~59! we deduce that
ā1451. Similar considerations yield ā245ā26
5ā365ā3551. Thus the final form of the product charges
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Z̄15ZZ11F Z1Z2
~r 11r 2!r 12

1
Z1Z3

~r 11r 3!r 13
G r 12 , ~64!

Z̄25ZZ21F Z1Z2
~r 11r 2!r 12

1
Z2Z3

~r 21r 3!r 23
G r 22 , ~65!

Z̄35ZZ31F Z1Z3
~r 11r 3!r 13

1
Z2Z3

~r 21r 3!r 23
G r 32. ~66!

It is straightforward to verify that all the conditions~44!–
~51! are satisfied by the functions~64!–~66!. For practical
applications the position dependence of the effective cha
~64!–~66! has to be converted into velocity dependence
applying the asymptotic approximationr j5vj t. Using this
method, pilot calculations of the fully differential cross se
tions for the electron- and positron-impact double ionizat
of He(1Se) have been reported@18#. A more extensive study
of these reactions is in preparation@33#. For the case of pos
itron impact the positron-nucleus product chargeZ̄1 is de-
picted in Fig. 2~a!, whereas Fig. 2~b! shows the electron

FIG. 2. For a four-body Coulomb system consisting of two el
trons and one positron in the field of a residual chargeZ52, the
effective charges, given by Eqs.~64! and~65!, are depicted for the
case where all particles escape in the same plane with veloc
v15v251 a.u. andv351.2 a.u. The positron is taken to be partic

1. All angles are measured with respect to the directionv̂1. ~a!
shows the angular dependence of the positron-nucleus effe
product chargeZ̄1, whereas in~b! the product charge of electro
1 with the nucleus (Z̄2) is investigated.
es
y

-
n

nucleus product charge in a typical scattering geome
where all momenta of the outgoing particles lie in the sa
plane. From Figs. 2~a! and 2~b! it is evident that when one o
the electrons approaches the positron in velocity space
interaction of this electron with the nucleus and the positr
nucleus interaction become strongly attractive, which sim
late the capture of the respective electron to the continuum
the positron. With diminishing interelectronic velocity th
electron-nucleus interactions become strongly repulsive@see
Fig. 2~b!# as to signify the repulsive electron-electron fina
state interaction.

Three final remarks concerning the use of effect
charges are due here. As our conditions~44!–~51!, which
have been used to determine the product chargesZ̄j , are
limits, there will naturally be other functional forms of loca
product charges that smoothly connect between these lim
The procedure used here is based on the transformation~52!,
which is motivated by physical arguments rather than
strict mathematical reasoning. A different procedure mig
well lead to different product chargesZ̄j . Thus the bench-
mark for such approximate methods is that the derived ef
tive product charges must be compatible with the phys
picture of the dynamics of many-body continuum Coulom
states.

The second remark concerns the Kato cusp condition
the collision point of two continuum particles. All effective
charge methods yield many-body wave functions of the fo
given by Eq.~43!. Since]Ceff/]r i j50 such wave functions
do not satisfy the Kato cups condition at the coalesce
point of two continuum particles, as immediately conclud
from Eq. ~31!.

The final remark concerns the applicability of this meth
for calculating scattering amplitudes. The basic idea of t
work is to propagate~approximate! asymptotic solutions of
the many-body Schro¨dinger equation to finite distances. Th
region around the origin where the reaction takes place, h
ever, is not covered by this procedure. Therefore, the suc
or failure of employing this method to calculate reacti
cross sections will decisively depend on how the proc
under consideration is treated at shorter distances around
origin. For example, in Refs.@34,35# the one-photon double
ionization of helium has been considered. In both cases
wave function of the two electrons in the continuum
He21 was taken, at large distances, in the form of Eq.~43!.
However, due to different treatments of the reaction arou
the origin, the cross section presented in Ref.@34# is in very
good agreement with experimental finding, whereas
method used in Ref.@35# yielded quite disappointing results

VI. CONCLUSION

In this work a many-body correlated scattering Coulom
wave function has been derived forN charged particles of
equal masses moving in theN continuum of a massive re
sidual charge. It has been shown that the derived wave fu
tion solves, to leading order, for the many-body Schro¨dinger
equation in the asymptotic regime defined by large interp
ticle distances, which provides an expression for the asy
totic many-body Coulomb scattering states. It has been v
fied that the Kato cusp conditions at all two-body collisio
points are fulfilled by the derived wave function. In additio
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the normalization of the proposed wave function has b
deduced. The developed scattering states have been co
ered in the case of the four-body continuum Coulomb s
tem. A method based on the effective-product-charge s
egy has been suggested to simplify the proposed w
function so as to make feasible the calculations of reac
cross sections.
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