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Abstract. In the asymptotic limit, the interlayer exchange coupling decays as D−2, where D is the spacer
thickness. A systematic procedure for calculating the preasymptotic corrections, i.e., the terms of order
D−n with n ≥ 3, is presented. The temperature dependence of the preasymptotic corrections is calculated.
The results are used to discuss the preasymptotic corrections for the Co/Cu/Co(001) system.

PACS. 75.70.Cn Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices, mag-
netic heterostructures) – 75.30.Et Exchange and superexchange interactions – 73.20.Dx Electron states
in low-dimensional structures (superlattices, quantum well structures and multilayers)

1 Introduction

Since its discovery in 1990 [1], the phenomenon of oscilla-
tory interlayer exchange coupling has been the subject of
an intense experimental and theoretical activity [2,3]. Its
mechanism is now well understood and can be attributed
to the quantum size effect due to spin-dependent confine-
ment of electrons in the non-magnetic spacer layer [4–7].

A remarkable result of the theory of interlayer ex-
change coupling is that it becomes particularly simple in
the limit of large spacer thickness D (asymptotic regime):
(i) the periods of oscillations versus spacer layer thick-
ness are uniquely determined by stationary spanning vec-
tors of the bulk Fermi surface of the spacer material [8],
(ii) the oscillation amplitude has a universalD−2 decay [9]
(except for special nested Fermi surfaces which give rise
to a D−3/2 or D−1 decay law [10]), (iii) the amplitudes
and phases of the oscillatory components are determined
respectively by the modules and arguments of the spin
asymmetry of the (complex) electron reflection coefficients
on the ferromagnetic layers bounding the spacer layer
[5–7].

Although these simple rules strictly speaking hold only
in the limit of infinite spacer thickness, they proved to
be extremely successful in explaining and predicting the
interlayer exchange coupling observed experimentally for
spacer thicknesses down to less than 10 atomic layers
(AL) [11,12]. The surprisingly good results of the asymp-
totic approximation are also confirmed by first-principles
calculations [13–16].

The exact expression of the interlayer exchange cou-
pling may be expanded in a series of powers of 1/D. The
first non-zero term is the D−2 term; it corresponds to
the asymptotic approximation. The higher order terms
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(varying like D−n with n ≥ 3) are called the preasymp-
totic corrections.

The overall success of the asymptotic approximation
in explaining the experimental results obtained at fairly
low spacer thicknesses is a priori surprising and raises
the question of a quantitative determination of the range
of validity of the asymptotic approximation. In addition,
there are also some cases where the asymptotic approx-
imation fails in providing an accurate description of the
interlayer coupling for small spacer thicknesses.

The inadequacy of the asymptotic approximation for
an accurate description of the interlayer exchange cou-
pling is best illustrated by the Co/Cu/Co(001) system.
The “exact” calculations (i.e., not relying on the asymp-
totic approximation) show that theD−2 decay law of short
period oscillation is not obeyed until the spacer thickness
reaches approximately 20 AL [17]. In addition, the am-
plitude of the long period oscillation for Co/Cu/Co(001)
with thick Co layers as calculated from the asymptotic ap-
proximation [18–23] is typically at least one order of mag-
nitude too small as compared to the one obtained from
calculations which do not rely on the asymptotic approxi-
mation [16,17]. The inadequacy of the asymptotic approx-
imation to describe accurately the long period oscillation
of the Co/Cu/Co(001) system with thick Co layers is also
illustrated by the fact that the corresponding amplitude,
as well as the period itself depends on the Cu thickness
range which is used to determine it [17,24] and usually
does not agree with the one calculated from the bulk Cu
Fermi surface [25].

The present paper is devoted to a detailed discus-
sion of the validity of the asymptotic approximation and
of the preasymptotic corrections. It is organized as fol-
lows. First, in Section 2 I recall the assumptions underly-
ing the asymptotic approximation, and the results that it
yields. Next, in Section 3 I present a systematic method
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for calculating the preasymptotic corrections to arbitrary
order and their temperature dependence, and I carry out
explicitly the calculation of the first preasymptotic cor-
rection, i.e., the D−3 term. The Section 4 is devoted
to the discussion of the results with emphasis on the
Co/Cu/Co(001) system, and concluding remarks are given
in Section 5.

2 Asymptotic approximation

The general form of the interlayer exchange coupling is [7]

J(D,T ) = −Im
∫ +∞

−∞
dεf(ε, T )

×
∫

d2k‖M(ε,k‖)eiq(ε,k‖)D. (1)

In this expression, q(ε,k‖) ≡ k+
z − k−z is the difference

between wave-vectors of an electron propagating through
the spacer layer in the +z and −z directions (the z axis
is taken perpendicular to the layer plane). Here a single
contribution has been considered; in the general case there
would be several such contributions, due to multiple bands
in the spacer materials and to higher harmonics (i.e.,
higher order terms in an expansion in powers of eiq(ε,k‖))
but the calculation of the various contributions is exactly
the same; thus, for the sake of simplicity, a single contri-
bution is considered here. As explicitly indicated, q(ε,k‖)
varies with the energy ε and with the in-plane wave-
vector k‖. The other factor in the integrand of equation (1)
are the Fermi-Dirac function f(ε, T ) and the complex am-
plitude M(ε,k‖) which depends on the spin-asymmetry
of the reflection coefficients at the spacer-ferromagnet
interfaces [7]. The range of the integration over k‖ in
equation (1) is the surface Brillouin zone corresponding
to the crystalline orientation of the layers.

The asymptotic approximation is based upon the ob-
servation that, because of the strong variation of the
Fermi-Dirac function at the Fermi energy, and because of
the rapid variation with ε and k‖ of the exponential fac-
tor, the behavior of equation (1) at large D is dominated
by the contribution of states on the Fermi surface, such
that the spanning vector of the Fermi surface, q(ε,k‖),
is stationary with respect to k‖ [8]. In the general case,
there may several such stationary spanning vectors, each
of them giving rise to an oscillatory component of the in-
terlayer exchange coupling, but for simplicity, I shall con-
sider the case of a single component; the generalization to
the case of multiple components is immediate.

The in-plane wave-vector k?‖ corresponding to the sta-
tionary spanning vector q? of the Fermi surface is taken as
the origin for k‖ and the Fermi level is taken as the origin
for ε.

The variation of M(ε,k‖) with ε and k‖ is neglected,
i.e., we assume

M(ε,k‖) ≈M0;0,0 (2)

where M0;0,0 is a constant (the motivation for the choice
of the notations will appear clearly below). Further, we
expand q(ε,k‖) near q? as

q(ε,k‖) ≈ q? +
2ε
~vF
− kx

2

κx
− ky

2

κy
, (3)

where vF is the Fermi velocity, and κx and κy the curva-
ture radii of the Fermi surface corresponding to k?‖ (the
x and y axes are chosen so as to eliminate the term pro-
portional to kxky). Finally, since only the neighborhood of
k?‖ contributes significantly to the integral, we extend the
integration range for kx and ky from −∞ to +∞. Then,
we obtain easily [7]

J(D,T ) ≈ Im
[

eiq?D

D2
A0(DT )

]
(4)

with the complex amplitude determined by

A0(DT ) ≡ π

2
~vF(κx)1/2(κy)1/2M0;0,0

×F0

(
2πkBTD

~vF

)
. (5)

The temperature dependence is given by the function

F0(x) ≡ x

sinhx
· (6)

The predictions of the asymptotic approximation are sum-
marized as follows: (i) at T = 0 the coupling is given by a
periodic function of D multiplied by a decay factor D−2,
(ii) the phase of the oscillations is independent of the tem-
perature, (iii) the complex amplitude factor varies with
spacer thickness and temperature only as a function of
the product DT .

3 Calculation of the preasymptotic
corrections

Let us compute the preasymptotic corrections that appear
when we release the approximations made in the previous
section. First, instead of assuming that M(ε,k‖) is a con-
stant, we expand it around εF ≡ 0 and k?‖ ≡ 0 as

M(ε,k‖) ≡
∑

p,q,r≥0

Mp;q,rε
pkx

qky
r, (7)

which defines the expansion coefficients Mp;q,r. In addi-
tion, we extend the expansion of q(ε,k‖) beyond the first
order in ε and the second order in kx and ky:

q(ε,k‖) = q? +
2ε
~vF
− kx

2

κx
− ky

2

κy
+Q(ε,k‖) (8)

Q(ε,k‖) ≡
∑

2s+t+u>2

Qs;t,uε
skx

tky
u (9)
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which defines the expansion coefficients Qs;t,u. The fac-
tor eiqD (the ε and k‖ arguments will be dropped in the
following) in equation (1) is then rewritten as

eiqD = eiq?D exp
(

2iεD
~vF

)
exp

(
−ik2

xD

κx

)
× exp

(
−ik2

yD

κy

)∑
n≥0

(iQD)n

n!
· (10)

Then the product M(ε,k‖) with the last factor of the
above equation is expanded in powers of ε, kx and ky as
follows

M
∑
n≥0

(iQD)n

n!
=

∑
p,q,r≥0

Cp;q,r(D) εp kxq kyr, (11)

which defines the new expansion coefficients Cp:q,r(D).
Their explicit expression in terms of the coefficients Mp;q,r

and Qs;t,u can be obtained by a straightforward term-by-
term identification.

Inserting the above expressions in equation (1), we ob-
tain

J(D,T ) = −Im
[
eiq?D

∑
p,q,r≥0

Cp;q,r(D)

×
∫ +∞

−∞
dε εp f(ε, T ) exp

(
2iεD
~vF

)
×
∫ +∞

−∞
dkx kxq exp

(
−ikx2D

κx

)
×
∫ +∞

−∞
dky kyr exp

(
−iky2D

κy

)]
(12)

The above expression is non-zero only if q and r are even.
Performing the integrations as explained in the Appendix,
we obtain

J(D,T ) = Im
[

eiq?D

D2

π

2
~vF (κx)1/2 (κy)1/2

×
∑

p,q,r≥0

Cp;2q,2r(D)
1

Dp+q+r

× (−1)q+r ip+q+r

2p+q+r
p!

(2q + 1)!!
2q + 1

(2r + 1)!!
2r + 1

× (~vF)p κxq κyr Fp

(
2π kBT D

~vF

)]
, (13)

with

(2n+ 1)!! ≡ (2n+ 1)!
2n n!

, (14)

and where the functions Fn(x) governing the temperature
dependence of the coupling are defined by

Fn(x) ≡ (−1)n

n!
xn+1 dn

dxn

(
1

sinhx

)
. (15)

Finally, we reorder the terms of equation (13) so as to
express it as a series in powers of 1/D:

J(D,T ) = Im

eiq?D

D2

∑
n≥0

An(DT )
Dn

 . (16)

The expressions of the functions An(DT ) in terms of
the coefficients Mp;q,r and Qs;t,u are obtained from
equation (13) and from the explicit expression of the ex-
pansion coefficients Cp;q,r(D) after tedious but straight-
forward algebraic manipulations. Below, I give the explicit
expression of the asymptotic approximation term A0 and
of the first preasymptotic correction term A1:

A0 =
π

2
~vF (κx)1/2 (κy)1/2 M0;0,0 F0 (17a)

A1 =
π

2
~vF (κx)1/2 (κy)1/2

×
{
− i

2
(M0;2,0 κx +M0;0,2 κy)F0

− 3
4

[(M0;0,0Q0;4,0 +M0;1,0Q0;3,0)κx2

+ (M0;0,0Q0;0,4 +M0;0,1Q0;0,3)κy2]F0

− 1
4

(M0;0,0Q0;2,2 +M0;1,0Q0;1,2

+ M0;0,1Q0;2,1)κx κy F0 +
i
2
M1;0,0 ~vF F1

+
1
4

[(M0;0,0Q1;2,0 +M0;1,0Q1;1,0) ~vF κx

+ (M0;0,0Q1:0,2 +M0;0,1Q1;0,1) ~vF κy]F1

−1
2
M0;0,0Q2;,0,0 (~vF)2 F2

}
. (17b)

4 Discussion

4.1 Symmetry considerations

As discussed in detail in reference [7], the various critical
points k?‖ of the two-dimensional Brillouin zone giving the
oscillatory contributions to the interlayer exchange cou-
pling can classified according to their symmetry: follow-
ing the terminology introduced in reference [7], critical
points corresponding to high-symmetry points of the two-
dimensional Brillouin zone are termed essential , critical
points located on high-symmetry lines are termed semi-
essential , while critical points possessing no particular
symmetry are termed accidental .

The symmetry considerations impose a number of re-
strictions on the coefficients Mp;q,r, Qs;t,u and Cp;q,r .
These are given below:

(i) For an essential critical point, we have Mp;q,r = 0,
Qp;q,r = 0 and Cp;q,r = 0 if q or r is odd. If in addition, the
critical point corresponds to a rotation axis of order equal
to or larger than 3, then κx = κy, Mp;2q,2r = Mp;2r,2q,
Qp;2q,2r = Qp;2r,2q, and Cp;2q,2r = Cp;2r,2q.
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(ii) For a semi-essential critical point (without restric-
tion, we chose the y axis parallel to the high-symmetry
line), we have Mp;q,r = 0, Qp;q,r = 0 and Cp;q,r = 0 if
q = 0.

(iii) For an accidental critical point, no restriction ap-
plies.

4.2 Preasymptotic corrections at T = 0

If we retain only the first preasymptotic correction term
in equation (16), the coupling may be expressed as

J ≈ Im
[

eiq?D

D2
A0

(
1 +

∆

D

)]
, (18)

where the complex length

∆ ≡ A1

A0
(19)

characterizes the preasymptotic correction. Thus, for D�
|∆|, one has

J ≈ |A0|
D2

(
1 +
|∆| cos δ

D

)
sin
(
q?D + φ+

|∆| sin δ
D

)
,

(20)

where φ and δ are respectively the arguments of A0 and
∆. From the above equation, it appears that the real part
of ∆ yields a correction of the amplitude of the oscillatory
coupling; depending on whether cos δ is positive or nega-
tive, one has an increase or a decrease of the amplitude.
On the other hand, the imaginary part of ∆ contributes
to a correction of the phase of the oscillation; i.e., for low
spacer thickness, the apparent period of the oscillations
differs from the asymptotic one [26]

Λ? ≡ 2π
|q?| (21)

and becomes

Λapp ≈ Λ?
(

1− |∆| sin δ
q?D2

)
; (22)

depending on whether sin δ and q? are of the same sign
or not, one as a decrease or an increase of the oscillation
period.

Finally, the above discussion shows that a quantitative
criterion for the validity of the asymptotic approximation
is given by two following conditions

D � |∆| cos δ, (23a)

D �
(
|∆|| sin δ|
|q?|

)1/2

. (23b)
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Fig. 1. Plot of the functions Fn(x) with n = 0− 3.

4.3 Temperature dependence of the preasymptotic
corrections

The temperature dependence of the coupling is governed
by the functions Fn(x) defined by equation (15). The func-
tions Fn(x) with n = 0 – 3 are given explicitely below:

F0(x) =
x

sinhx
(24a)

F1(x) =
x2

sinh2 x
coshx (24b)

F2(x) =
x3

sinh3 x

(
1 +

sinh2 x

2

)
(24c)

F3(x) =
x4

sinh4 x
coshx

(
1 +

sinh2 x

6

)
. (24d)

They are displayed in Figure 1. The functions Fn(x) have
the following general properties:

Fn(x) ≈ 1 + βnx
2 for x� 1, (25a)

Fn(x) ≈ 2
n!
xn+1 e−x for x� n+ 1, (25b)

where the constants βn are given by

β0 = −1
6
, (26a)

β1 =
1
6
, (26b)

βn = 0 for n ≥ 2; (26c)

Fn(x) with n ≥ 1 has a maximum at

x?n ≈ n+ 1, and (27a)

Fn(x?n) ≈ 2
n!

(
n+ 1

e

)n+1

. (27b)

Because of the marked difference between F0(x) and the
functions Fn(x) with n ≥ 1, the temperature dependence
of the preasymptotic corrections is in general not the same
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as the one of the asymptotic term. In other words, the pa-
rameter∆ characterized the preasymptotic corrections de-
fined in Section 4.2 generally varies with the temperature;
thus, the extension of the asymptotic regime may depend
on the temperature. As expected and appears clearly from
equation (17b), the temperature dependence of ∆ arises
from the terms proportional to F1 and F2, i.e. from the
corrections due to the ε variation ofM(ε,k‖) andQ(ε,k‖).

4.4 Comparison with previous work

The question of preasymptotic corrections has been ad-
dressed previously by Mathon et al. [19,22,23]. They have
considered the correction due to the energy dependence
of the argument of M(ε,k‖). This correspond to assume
that the only non-zero correction parameter is M1;0,0 and
that the ratio M1;0,0/M0;0,0 is purely imaginary. In this
case, they find that the preasymptotic corrections mod-
ify the amplitude and the temperature dependence of the
coupling. This conclusion is in agreement with the result
of the present paper, if we restrict our analysis to the
same assumptions. However, even within these restrictive
assumptions, the method used by Mathon et al. is cor-
rect only to the order D−3 because the the terms order
D−n with (n ≥ 4) which are neglected are of the same
magnitude as the ones which are included.

Furthermore, as the present analysis shows, there are
other sources of preasymptotic corrections, for example
the k‖ variation of M(ε,k‖), that a priori, are equally
important as the ones considered by Mathon et al.

4.5 Discussion of the Co/Cu/Co(001) case

We shall now focus on the particular case of the
Co/Cu/Co(001) system, which is often considered as a
model system for the problem of interlayer exchange cou-
pling.

4.5.1 Summary of the available data

Let us first recall the predictions of the asymptotic ap-
proximation for this system. The most striking result of
the asymptotic approximation here is that the interlayer
exchange coupling comprises a long-period oscillation orig-
inating from the center Γ of the two-dimensional Brillouin
zone (essential critical point) and of a short-period oscil-
lation originating from 4 equivalent semi-essential critical
points located on the Γ–X lines [7,8]; this prediction is
confirmed unambiguously both by experiments [27] and
by “exact” (i.e., not relying on the asymptotic approxi-
mation) calculations [13–17], and the periods are in good
agreement with the ones predicted by the asymptotic ap-
proximation. In the following, quantities related to the
short-period and long-period components will be labelled
by S and L indices, respectively.

Quite generally, the function M(ε,k‖) determining the
strength of the coupling is given by [5–7]

M(ε,k‖) ≡
(
r↑ − r↓

)2
8π3

, (28)

where r↑ (r↓) is the reflection coefficient for electrons with
the spin parallel (antiparallel) to the majority spin of Co.
Since the majority spin band structure of Co is very close
to the Cu band structure, one has r↑ ≈ 0 and it is sufficient
to consider r↓.

For the short period oscillation, one has total reflec-
tion for minority spin electron, due to a local gap (for the
bands of relevant symmetry) in the minority spin band
structure of Co, i.e., |r↓S| = 1 [19–23]. As a consequence,
the amplitude of the short period oscillation is large and
depends only very weakly upon the Co thickness. These
facts are confirmed by “exact” calculations [13–17]. The
period of oscillation obtained from an “exact” calculation,
(ΛS = 2.53 AL) [24] is in excellent agreement with the one
calculated within the asymptotic approximation with the
same set of potential parameters (ΛS = 2.50 AL) [25]; fur-
thermore, the apparent period agrees very well with the
asymptotic one down to Cu thicknesses as low a 5 AL. On
the other hand, as appears very clearly from the Figure 3a
of reference [17], the asymptotic D−2 decay law is satisfied
only for Cu spacer thicknesses larger 20 AL; in practice,
this means that for a quantitative comparison with ex-
periment results (which are usually obtained for spacer
ticknesses smaller than 20 AL), the amplitude calculated
from the asymptotic approximation is inappropriate.

For the long period oscillation, the situation is quite
different. Here, the reflection coefficient r↓L is quite small
for a semi-infinite Co layer (|r↓L| ≈ 0.15) [7,18,20,21,28]
which leads to a very small amplitude for the long-period
oscillatory component; all theoretical calculation, whether
“asymptotic” [18–23] or “exact” [13–17] agree on this
point. In addition, there is a strong variation of the ampli-
tude of the long period oscillation with Co layer thickness,
which is due to quantum interferences in the Co layer [29],
a prediction which has been confirmed experimentally [30]
and by “exact” theoretical calculations [14–17,28]. How-
ever, although both asymptotic [18–23] and “exact”
[14–17] calculations agree on the fact that the long pe-
riod oscillation has a very weak amplitude for thick Co
layers, they disagree on the value of the amplitude: while
“exact” calculation yield an amplitude of the long period
oscillation of the order of 10% of the short period ampli-
tude [14,16,17], asymptotic calculations yield a ratio of
the order of 1% only [19–23]. In addition, the value of the
long period coupling obtained from “exact” calculations,
ΛL = 5.09 AL [24], differs markedly from the one calcu-
lated from the asymptotic approximation with the same
set of potential parameters, ΛL = 6.49 AL [25], and de-
pends on the thickness range which is used to determine
it as is seen from Figure 2 of reference [17].

So, our purpose is to explain why the asymptotic ap-
proximation works well for some aspects of the coupling
and departs markedly from “exact” calculations for some
other aspects.
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For both the long-period and short-period contribution,
the preasymptotic corrections due to Q(ε,k‖) is unimpor-
tant, so that we shall focus on the corrections due the
variation of M(ε,k‖). Thus, by taking the symmetry con-
siderations mentioned in Section 4.1, the corrections are
given by

∆L = −i
ML

0;2,0

ML
0;0,0

κL
x +

i
2
ML

1;0,0

ML
0;0,0

~vL
F

FL
1

FL
0

, (29a)

∆S = − i
2

(
MS

0;2,0

MS
0;0,0

κS
x +

MS
0;0,2

MS
0;0,0

κS
y

)

+
i
2
MS

1;0,0

MS
0;0,0

~vS
F

F S
1

F S
0

, (29b)

respectively. Let us now recall that within elementary
models such as the free-electron model or the single-band
tight-binding model, the reflection coefficient for a semi-
infinite barrier is either a real number of module smaller
than 1 (partial reflection) or a complex number of mod-
ule equal to 1 (total reflection). As shown in reference [7],
this remains approximately true for realistic multi-band
systems under rather general circumstances.

4.5.2 Short-period oscillation

Thus, for the short period oscillation, only the phase of the
reflection coefficient varies with ε and k‖, and as a con-
sequence, ∆S is a real number. Hence, according to the
discussion of Sections 4.2 and 4.3, the preasymptotic cor-
rection affects only the amplitude of the coupling and its
temperature dependence, while the period is not affected
by the preasymptotic corrections; these conclusions are
in agreement with the results summarized above. Similar
conclusions have been obtained by Mathon et al. [23] who
have considered the preasymptotic correction associated
with the energy dependence M(ε,k‖), i.e., with MS

0;0,1

and neglected the one associated with its k‖ dependence,
i.e., with MS

0;2,0 and MS
0;0,2; indeed in view of the simi-

larity of their corrected results (see Fig. 13 of Ref. [23])
with those of “exact” calculations (see Fig. 3 of Ref. [17]),
it seems that the MS

0;0,1 term already accounts for a large
part of the total preasymptotic correction. Further work
would be needed to assess the importance of the MS

0;2,0

and MS
0;0,2 terms.

4.5.3 Long-period oscillation

For the long-period oscillation, on the other hand, since
r↓L is real, only the magnitude varies with ε and k‖ and
the phase is constant; thus, ∆L is purely imaginary. As
discussed above, this leads to an apparent shift of the pe-
riod in the preasymptotic range, which is precisely what
happens in this case. Let us attempt to estimate the value
of ∆L. As seen from, e.g., Figure 22 of reference [7], r↓ in-
creases with decreasing energy. Furthermore, as seen from

Figure 2 of reference [18] and Figure 2 of reference [21],
r↓ increases very strongly with k‖ and full reflection is
reached at a distance 0.1 × π/a from Γ ; indeed, the low
reflectivity arises only in a narrow window around Γ . Tak-
ing these two contributions into account, we arrive at the
result:

∆L ≈ −i× 50 AL. (30)

Because q?L is negative, this result implies that the
preasymptotic correction will lead to an apparent oscil-
lation period in the preasymptotic regime that is shorter
than the asymptotic one; this conclusion provides an con-
sistent explanation for the discrepancy on the long oscilla-
tion period mentioned above. However, the preasymptotic
regime here has an unusually large extension and asymp-
totic behavior is expected to hold only for D � 50 AL;
thus, the analysis of Section 4.2, which was limited to the
lowest order in 1/D, is certainly not sufficient to analyse
the results obtained from experiments and from “exact”
calculations and it is not surprising that not only the pe-
riod itself, but also the amplitude of the long period os-
cillation predicted from the asymptotic approximation is
inappropriate for spacer thicknesses D ≤ 50 AL.

Actually, 90% of the result (30) for ∆L is due to the k‖
dependence of r↓, so that the unusually long preasymp-
totic regime for the long-period oscillation is to be at-
tributed to the presence of a narrow window of low reflec-
tivity near Γ in a region of otherwise total reflectivity, for
minority spin. This pecularity can in turn be explained by
a rather simple following argument: The relevant band in
the Cu is mostly of pz character. The reflectivity is due
to the hybridization of the corresponding pz band in Co
with the minority spin d bands. At the center Γ of the
two-dimensional Brillouin zone, only the d↓3z2−r2 band is
allow by symmetry to hybridize with the p↓z band, and
hence to contribute to the reflectivity; however, because
the d↓3z2−r2 band is almost full, it yields only a weak reflec-
tion coefficient at the Fermi level, and total reflection is
attained only 0.5 eV below εF. But, as one moves away for
Γ , the d↓xz and d↓yz bands that lie close to the Fermi level
are allowed to hybridize with the p↓z band, which yields a
strong increase of r↓ and, eventually, total reflection.

5 Conclusion

I have presented a detailed discussion of the question of
preasymptotic corrections for the interlayer exchange cou-
pling. A systematic method for computing exactly the
preasymptotic corrections to arbitrary order in D−1 has
been presented, and the explicit expression of the first cor-
rection term (of order D−3) has been given.

This method allows one to assess quantitatively the
spacer thickness range in which the asymptotic approxi-
mation is expected to be reliable, and the one in which
preasymptotic corrections should be taken into account.
In the latter case, I have shown that the preasymptotic
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correction alters the amplitude and/or the apparent oscil-
lation period, depending on the argument of the correction
parameter ∆.

The case of Co/Cu/Co(001) has been discussed in de-
tail. I have shown that most of the discrepancy between
the asymptotic approximation and “exact” calculations
for the system can be understood on the basis of the the-
ory for preasymptotic corrections presented in this paper.

Appendix

Appendix A.1: Integration over energy

We consider here the following integral

In(T ) ≡
∫ +∞

−∞
dεf(ε, T )εn exp (2iεα) . (A.1)

We can compute it by using the method of residues. The
Fermi-Dirac function f(ε, T ) has poles for

εp = iπ(2p+ 1)β−1 (A.2)

where p is an integer and β ≡ (kBT )−1. The corresponding
residues are equal to −β−1. Closing the integration path
in the upper half of the complex plane, we obtain

In(T ) = −2
(

iπ
β

)n+1 +∞∑
p=0

(2p+ 1)n e−2π(2p+1)α/β . (A.3)

Finally, we obtain

In(T ) = I0
n Fn

(
2πα
β

)
(A.4)

whith

I0
n = −in+1α−(n+1)n! (A.5)

and

Fn(x) ≡ (−1)n

n!
xn+1 dn

dxn

(
1

sinhx

)
. (A.6)

Appendix A.2: Integration over wave vector

Here we calculate the following integral.

B2n ≡
∫ ∞
−∞

dk k2n exp
(
−iγk2

)
. (A.7)

We can deform the integration path in the complex plane
in such a way that the point k = 0 be traversed along
the direction of steepest descent [31]. The integral is then
easily calculated, and we get:

B2n =
(
−i
γ

)n+1/2 (2n+ 1)!!
2n(2n+ 1)

√
π. (A.8)
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