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Abstract  This work aims at visualizing the role of the inelastic electron-electron
relaxation time in metal cluster. We develop a quantum mechanical
model for the description of inelastic electronic collisions from metal
cluster and applies it to the ionization of Cgo by low-energy electrons.
The results show evidently that the measured spectrum for the produc-
tion of CJ, depends strongly on the screening of the electron-electron
collisions. The value of the screening length we obtain is in accord with
previous studies on the relaxation in metal clusters.

Keywords: Interacting electron liquid, metal clusters, electronic correlation, vari-
able phase approach, ionization.

1. INTRODUCTION

In series of seminal papers [1], Pines and Bohm have shown that a
dense, interacting electron gas can be described quantum mechanically
by expressing the long-range part of the inter-electronic Coulomb inter-
actions in terms of collective fields. These represent organized plasma
oscillations of the electron gas as a whole. The total Hamiltonian can
then be written in terms of these collective fields and a set of individ-
ual electrons which interact with one another via short-range screened
Coulomb potentials. There is, in addition, a mixing term for the field-
particle coupling which can be eliminated under certain conditions. The
short-range part of the electron-electron interaction can be parameter-
ized remarkably well by a Yukawa-type potential (exponentially screened
Coulomb potential) with a screening length being on the order of the
inter-electronic distances. This insightful knowledge has profound con-
sequences as to how electronic collisions within an interacting electron
liquid proceed at energies off the plasma frequencies and how they can
be formulated theoretically: Two particles colliding at an impact pa-
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rameter that is larger than the finite range of the potential are not
scattered. Therefore, in this case free (unscattered) asymptotic states
can be defined (in contrast to the case of infinite-range (unscreened)
Coulomb interaction) and standard methods of quantum scattering the-
ory are applicable. In particular, perturbation expansions (for the Green
operator, the transition operator or for the wave function) can be ap-
plied and are expected to provide a useful mean for description. This
brings about a simplification in the treatment of scattering events within
a dense electron gas as contrasted to the scattering theoretic treatment
of few charged particle collisions. The above remarks give also a first
hint that a direct comparison of the outcome of electronic collisions from
pure-Coulombnic systems, e.g. atoms, and from an electron gas (e.g. sp
metals) is to be made cautiously.

To follow up the above idea with calculations on real systems we en-
visage in this work the ionizing collisions of low-energy electrons from
metallic clusters. This case is particularly interesting as the valence elec-
trons of metal clusters can be modeled satisfactorily by an interacting
electron gas and experimental studies on the inelastic electronic collisions
do already exist. The proper account of such collisions is imperative for
a precise estimate of the relaxation time [2] in clusters and hence is of
importance for the understanding and description of transport proper-
ties.

For the calculations presented in this work we construct the bound
states of the cluster by means of the non-local variable phase method
[3, 4] and we calculate the total electron-impact ionization cross section
from Cgp by evaluating the transition matrix elements in first order per-
turbation theory with respect to the electron-electron interaction. We
find a decisive effect of the screening length of the electron-electron inter-
action: The cross section increases monotonically for lower energies and
then rather saturates at energies above 100 eV. For Cgg the theoretical
results are in reasonable agreement with the experiment at a screening
length of 3 a.u. which is in accord with the predictions of Pines the-
ory for the screening length in metals (see also Ref.[2]). The neglect of
screening results in atomic like character of the cross section and is not
supported by the experiment.

2. THEORETICAL METHODS

There is a number of experimental studies on the total and partial
cross sections for the production of various charged cluster fragments
upon inelastic electron scattering from metal clusters[5, 7]. Previous
theoretical treatments are based either on a semi-empirical formula [8]
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or on an additivity rule [6]. Recently Keller et al [9] report quantum
mechanical calculations within the local-density approximation (of the
density-functional theory) for the generation of the single-particle or-
bitals of the clusters. The scattering dynamics has been treated within
the a plane-wave impulse approximation. The screening of the electron-
electron scattering has not been taken into account. Nevertheless, in
contrast to previous methods, the study of Keller et al [9] has some suc-
cess in explaining the high energy behavior of the measured spectrum
but fails evidently at low energies. In particular, it has not been possible
to give a reasoning for to the absence of the pronounced peak in the total
cross section as observed in the atomic case.

In this work we show that this behavior in metal clusters is due to the
screening of the electron-electron interaction induced by the delocalized
electrons. For a theoretic formulation we consider a monoenergetic elec-
tron beam with momentum kg impinging onto a cluster in its ground
state ¢;, the cluster is ionized and two electrons escape into the vacuum
with momenta k; and ky. The transition matrix element for this process
reads (unless otherwise stated explicitly we use atomic units [a.u.])

T(ko, k1, ko, ¢5) = (ki1,ko|(1 + VG)Viz|ko, ;). (1)

Here G = Go+GoV G is the total Green operator of the projectile-cluster
system with the total potential V. The interaction potential between the
projectile electron and the cluster electrons is designated V12.

In this work we report on the calculation of the first order term of
Eq.(1) which can be written as

T(ko, ki, ko, ¢5) = (ki,ka[Viz|ko,¢;5) =
(2m)~3/% . (ko — (k1 + k2) | ¢5) (ko — k1| V12)(2)

The differential electron-impact ionization cross section is to be summed
over ionization events from all the initial bound states accessible within
the energy conservation law, i.e.

e - (27:))4 Z lT(kOakla ks, ¢J)|2 6(E0 - (6;0" +Ei+ E2)) (3)
J

a3k, Bky  k

As clear from Egs.(2,3) an expression for the scattering potential Vy2
is needed for the calculation of the cross sections. Recently [2], there has
been an attempt to estimate the importance of electron-electron collision
for the relaxation in metal clusters. A crucial input for this estimation
is the effective electron-electron cross section whose evaluation requires
the knowledge of the screened electron-electron potential. To calculate
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the latter the consideration has been restricted to the static screening
and the screened potential have been computed. The results can be
fitted well by a Yukawa potential with a screening length comparable to
that known for metals (3 [a.u.] for sodium clusters). Thus we follow this
work and assume for V;5 the form

exp(—Ar
V(rg) = ZR(EAM2) (4)
€T12
Here, € is the dielectric function and the screening length is 1/)\. For
the present calculations we adopt € = 1. The Fourier components of the
potential (4) are given by the form factor

2 1
V(ki —ko|) = \/;m (5)

The quantum states of the fulleren cluster are constructed within
the Hartree-Fock approximation and within the spherical jellium model.
The potential of Cgg, which is a superposition of atomic potentials, is
replaced by a simple model potential of a fulleren shell. This shell is
formed by delocalized valence electrons that move within the potential

well
Vo R—-AR<r< R+ AR

Vir) = { 0 elsewhere. (6)

Here, R ~ 6.7 ag is the radius of the fulleren, the thickness of the shell
is taken as 2AR ~ 2ag where ay is being the Bohr radius.

With this potential the bound state wave functions are calculated in
the frame of the non-local variable phase approach [3, 4]. We developed
the implementation of the latter formalism in order to use it for the case
of non-spherical potentials in future.

We consider the scattering of a spinless particle with an energy E = k?
and an orbital angular momentum £ subject to the nonlocal poten-
tial V(r,r'). The radial motion of this particle is described by the
Schrédinger equation

¢e+1)

r2

Ll + (k2 _ )Ut(f’) = [ @ity (@
0

In the variable phase approach one replaces the radial part ug(r) of
the wave function by amplitude and phase functions ay(r) and dy(r)
according to the parameterization

ug(r) = op(r) F(de(r)) 8
dug(r) = oy(r) dG(de(r)). (9)
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Here the functions F' and G are given as

F(6(r

)) = cosde(r)je(kr) — sin dg(r)ne(kr) (10)
dG(de(r))

= cos &g(r)dje(kr) — sindg(r)dng(kr). (11)

In this way Schrodinger’s second order differential equation transforms
into a system of first-order Riccati-type differential equations

diiF(sZ(T‘) (- )F2 (Oe(r fdr’V r, ') exp fdg(&iz(r” } 12)

in § k 1) k

adFaE(T) — ay(r)® 2(r) Jt(FT‘()g(C:)S) e (r)m( T)dgr_ae( ).

The Riccati-Bessel functions j¢(kr) and ng(kr) are regular and irregu-
lar solutions of the free Schrédinger equation. For the local potential

f V(r —r)dr' , 3g(r) and oy(r) have clear physical in-

terpretatlon They are the asymptotic scattering phase and scattering
amplitude of the wave function u(r) of the cutoff (at the point r) po-
tential.

The eigenenergies are calculated by finding the poles of the partial scat-
tering amplitude in the imaginary half-axis of the wave vector k =ik, (k
is pure real). The scattering amplitude is related to the scattering phase
by the relation f; = —e“”3 sin §; and is determined from the Volterra-type
equation for fy

r

W IO _ (-2). ZFue) / ar'V (') %

X exp / - f(") - dg(kr") + B%dp(kr) . (13)

F(f(r"))
F(f(r))=1-f(r)-q(sr) + ﬁ2p(ﬁr) ;

where p; and g are modified Riccati-Bessel functions of the real argu-
ment xr and 8 = (i)
The initial condition for the integration is fg(r = 0) = 0.

Due to the spherical symmetry we have only 7 one-electron orbitals,
the lowest five of these have the orbital momenta 0 < £ < 4 and the
two highest occupied orbitals 0 < £ < 1. Each orbital is 2(2¢ + 1) fold
degenerate. All shells are closed and the total number of the electrons
is equal to 60.
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3. RESULTS AND DISCUSSION

In Fig.1 the results for the production of Cg’o upon electron impact are
shown for various values of the screening length (1/)). The biggest effect
of screening is seen at lower electron energies. This can be understood
from the form factor of the scattering potential (5). At lower impact en-
ergies Ey the maximum momentum transfer ¢ in Eq.(5) is on the order
of /2Ey. Thus, for A > +/2E, the momentum-space potential V2 be-
haves as lim,y, 55 V12 — Xlg and hence is very much dependent on the
value of )\, but otherwise is constant for a fixed value of A. This explains
the saturation effect of the cross section in Fig. 1(a). This behavior
is in contrast to the atomic case where the cross section is dominated
by events with small momentum transfer (limy_,o V12 = 517, also com-
pare the inset of Fig.2). At very high energies Eq > A the maximum
momentum transfer allowed is much larger than A and hence the effect
of screening diminishes at higher energies. For the case of extremely
high screening A — oo we arrive at a hard-sphere-type electron-electron
collision and the cross section is then constant.

Compared with the experiment (Fig.2) we see a remarkable agreement
with the measured values of the cross section (on an absolute scale)
when the screening length given in Ref.[2] is used. Obviously the neglect
of screening yields the results of Ref.[9] and is at variance with the
experimental data at low energies.

Moreover, in line with the above explanations, a vanishing screening
leads to an atomic type-behavior of the cross section, as clearly seen by
comparing the cross section for atomic carbon (inset of Fig.2) and for
Ceo. The semi-empirical model [8] fails to give a quantitative description
of the measurement.

4. CONCLUSIONS

In this work we developed a quantum scattering theory for the de-
scription of the production of C§; by electron impact. The cluster has
been described on the basis of the Hartree-Fock method and within the
variable-phase approach. The cluster potential has been modeled by the
spherical jellium model. We calculated the transition matrix element
within the first order perturbation theory with regard to the electron-
electron interaction. The results shows a marked effect of screening on
the measured cross sections. Furthermore, this effect can be explained on
the basis of the Fourier components of the electron-electron interactions.
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Figure 2 The total cross-section for production of Cg; upon the impact of an electron
impact with energy Eo [eV]. The experimental cross-section (full dots) [5] are shown
along with the result of semi-empirical model [8] (dashed line). The crosses present
the calculations of [9](line is to guide the eye). Present results (dotted line) have been
obtained using a screening length of 1/A = 3a.u.. Inset: Integrated cross-section for
electron impact ionization of atomic carbon, multiplied by 60. Full symbols are the
experimental data of Ref.[10], whereas the full curve is the calculation of Ref.[9].
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