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Polarization, correlation, and distortion effects in excitation processes

Jamal Berakdar*
Max-Planck Institut fu¨r Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

~Received 15 May 1998!

Analytical expressions are derived for the asymptotic correlated three-body state of a Coulomb compound
consisting of a continuum particle and an electron bound to a residual ion. The extension of these expressions
to finite distances is also given. The distortion of the continuum particle’s motion by the Coulomb nuclear field
and the field of the bound electron is investigated as well as the amount of polarization of the bound system
due to coupling of the bound electron to the continuum particle.@S1050-2947~98!50609-9#

PACS number~s!: 34.10.1x, 34.80.Dp
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In recent years, considerable progress has been mad
the analytical description of highly excited few-particle Co
lomb complexes. Such excited systems are usually gener
upon the impact of photons and charged particles. E.g.,
photon- and electron-impact fragmentation processes
lead to three interacting continuum particles, a number
analytical approaches have been put forward@1–6#. One
strategy to derive approximate expressions for the three-b
wave functions is to start from the asymptotic eigenstate
the three-particle Hamiltonian and to search for reasona
extensions of these states to finite distances@2,5,7#. One
well-known approximation obtained this way@1,2,5# regards
the three-body Coulomb system as the sum of three, in c
figuration space, noninteracting two-body subsystems~on the
two-body energy shell!. The mathematical reflection of thi
point of view is that the three-body continuum stateC3C is a
product of three two-body Coulomb waves~on the two-body
energy shell!, each simulating the interaction within a sp
cific two-body subsystem, i.e.~atomic units are used
throughout; outgoing wave boundary conditions are con
ered!,

C3C~ra ,rb!5~2p!23 exp~ ika•ra1 ikb•rb!

3Na 1F1@ iaa ,1,2 ika~r a1 k̂a•ra!#

3Nb 1F1@ iab ,1,2 ikb~r b1 k̂b•rb!#

3Nab 1F1@ iaab ,1,2 ikab~r ab1 k̂ab•rab!#,

~1!

where ra/b are the coordinates of the continuum partic
escaping with momentaka/b ~with respect to a residual ion!,
Nj5G(12 ia j )exp(2paj/2), j P$a,b,ab% are normaliza-
tion constants,1F1@a,b,x# is the confluent hypergeometri
function, andrab5ra2rb is the interparticle relative coordi
nate withkab being its conjugate momentum. In Eq.~1! the
Sommerfeld parameters area j52Z/kj , j 5a,b, and aab
51/(2kab), whereZ is the charge of the residual ion.

This resulting 3C wave function, so called since it con
sists of three Coulomb waves, has, in some cases, cons
able success in predicting the relative angular distribution
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correlated electron pairs emitted upon photon and part
impact @2,8,9#. In addition to the, meanwhile well-known
shortcomings of this model@5,9,10#, its mathematical struc-
ture suggests that it is only designed for total breakup re
tions without regard to any virtual intermediate excitation

The basic mathematical concept of starting fro
asymptotic states and then propagating to finite distan
has, however, been recently employed to consider inter
diate and direct excitations@11,12#. In Ref. @11# a scheme
has been proposed to include the~off-shell! virtual excita-
tions to discrete and continuum levels in the three-body s
tering states. In actual calculations of ionization probab
ties, however, only virtual continuum states have be
included.

In a second approach by Dewangan@12# a version of the
3C wave function has been suggested to deal with dir
electron-impact excitation of hydrogen. He applied t
theory to the 1s→2p transitions and evaluated the angul
correlation parameters l and R (l5^ f 0f 0* &/s,
R5Rê f1f0* &/s, wheref ml

is the excitation amplitude of the

magnetic sublevelml , s is the differential cross section, an
^¯& denotes the average over spin!. Remarkable agreemen
with experimental data was found in the backward direct
for theR parameter, yet some serious discrepancies rema
unexplained at a certain angular region.

Dewangan suggested that a wave function for the pro
tile electron and the excited atom can be obtained from
~1! upon a straightforward replacement of the ejecte
electron Coulomb wave,

~2p!23/2Nb exp~ ikb•rb! 1F1@ iab ,1,2 ikb~r b1 k̂b•rb!#,

by a bound atomic eigenfunctionF f(rb) for the excited tar-
get state in the exit channel. Subsequently the wave vectokb
is set to zero. Thisad hocreplacement reduces Eq.~1! to the
two-center wave function~TCW!

CTCW
2 ~ra ,rb!

5~2p!23/2uG~11 iaa!u2 exp~ ika•ra!

3 1F1@ iaa ,1,2 ika~r a1 k̂a•ra!#

3 1F1$2 iaa ,1,2 1
2 @ ika~r ab1 k̂a•rab!#%. ~2!
R1641 © 1998 The American Physical Society
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To maintain proper asymptotic behaviorrab is to be replaced
by 2rab .

The procedure leading toCTCW
2 is motivated by physica

and practical considerations, yet it leaves in the dark
actual mathematical justification and foundations for the
pression~2!. Nonetheless, as shown in Ref.@12#, the com-
parison with the experimental findings shows that some
the physics of the excitation process is captured byCTCW

2 .
Therefore, it seems worthwhile to derive Eq.~2! from first
principles, which might open the way for more elabora
methods beyond that of Eq.~2!. The relation of the approxi-
mation~2! to conventional perturbative approaches has b
discussed in Ref.@12#.

In this work a mathematical method is sought to der
~asymptotic! eigenstates of highly excited three-body sy
tems with one particle moving in the continuum of a tw
body compound. For clarity a system consisting of two el
trons and a heavy ion with chargeZ is considered; the
general case can be treated along the same lines~mass-
polarization terms then have to be neglected!.

The time-independent Schro¨dinger equation for this sys
tem reads

FDa1Db1
2Z

r a
1

2Z

r b
2

2

r ab
12EGc~ra ,rb!50. ~3!

The total energyE is the sum of the energy of the continuu
electronka

2/2 and that of the bound electron in a state spe
fied by the principle, orbital, and magnetic quantum numb
n,l ,m, respectively, i.e.,

E52
Z2

2n2 1
ka

2

2
. ~4!

The unperturbed state of the bound electronb has the
form @13#

zn,l ,m
b ~rb!5

1

r b
n21 xn,l ~r b!expS 2

Zrb

n DYl ,m~ r̂b!, ~5!

where xn,l (r b) and Yl ,m( r̂b) are, respectively, the radia
wave functions and the spherical harmonics in the nota
of Ref. @13#. The asymptotic uniform motion of the projectil
electron is generally (ZÞ1) modified by a Coulomb phase
Therefore, for the solution of Eq.~3! we make the ansatz

C~ra ,rb!5c̄~ra ,rb!

expS 2
Zrb

n D
r b

(
k50

`

jk , ~6!

with the definitionc̄(ra ,rb)5exp(ika•ra1 if). In Eq. ~6!
f is a ~complex! function yet to be determined and

jk5
1

r b
k xn,l ~r b!Yl ,m~ r̂b!. ~7!

Substitution of Eq.~6! into Eq. ~3! yields
e
-

f

n

-

-

i-
s

n

F2S 2Z

n
1

2

r b
D ]

]r b
1Db12ika•“a1Da

1
2Z

r b
1

2Z

r a
2

2

r ab
Geif( jk50. ~8!

Furthermore we deduce the differential equation

FDa1Db1 i ~Da1Db!f2~“af!22~“bf!212i ~“bf•“b

1“af•“a!22i S Z

n
1

1

r b
D S ]f

]r b
2 i

]

]r b
D22ka•“af

12ika•“a1
2Z

r b
1

2Z

r a
2

2

r ab
G( jk50. ~9!

Asymptotically, terms that fall off faster than the Cou
lomb potential can be neglected. Therefore, we end up w
an asymptotic differential equation from which the functio
f can be determined:

iZ

n

]f

]r b
1ka•“af2

Z

r a
2

Z

r b
1

1

r ab
50. ~10!

For the solution of Eq.~10! an ansatz is appropriate tha
possesses the form

f652 in ln~r b!1F6, ~11!

F657
Z

ka
ln~kar a7ka•ra!1f̃6, ~12!

where f̃6 is a complex function yet to be specified
Incoming- or outgoing-wave boundary conditions can be
counted for by choosing the1 or 2 sign in Eq.~12!, respec-
tively. The first term in Eq.~11! leads in Eq.~6! to a real
exponential factor that describes the behavior of the stat
the electron bound to the residual ion. For the following th
term is basically irrelevant and can be included in the fu
tions jk , as defined in Eq.~7!. The first term in Eq.~12!
signifies the dephasing of the unbound electrona by virtue
of the nuclear field and can thus be considered as a mea
of the distortion of this electron’s motion due to coupling
the residual ion.

The phasef̃6 in Eq. ~12! is due to the electronic corre
lation. Substitution of Eq.~11! into Eq.~10! leads, in case of
incoming-wave boundary conditions, to

iZ

n

]f̃1

]r b
1ka•“af̃11

1

r ab
50. ~13!

Equation~13! can be solved by the ansatz

f̃15
1

l
ln~lr ab1c•rab!. ~14!

Here the independentcomplexquantitiesl andc are still to
be determined. Upon substituting Eq.~14! into Eq. ~13! and
after some lengthy algebraic manipulations we obtain
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c52ka1 i
Z

n
r̂b ,

l25S ka2 i
Z

n
r̂bD 2

. ~15!

In a similar manner we obtain for outgoing-wave bounda
conditions

f̃252
1

l
ln~lr ab2c•rab!. ~16!

From Eqs.~15! it follows that if r a@r b , ka@Z/n, then
Eq. ~12! simplifies to F657(Z21)/kaln(kara7ka•ra).
Thus, for a two-body compound consisting of a neut
bound system (Z2150) and a continuum electron, there
no distortion of the asymptotic uniform motion of the co
tinuum particle and no polarization of the bound system d
to the presence of the free electron in the asymptotic reg

In the general case, to get an insight into the amoun
polarization of the bound state and the phase distortion of
in- or outgoing electrons due to interelectronic correlation
is instructive to inspect the real and imaginary parts of
complex function exp(if̃2).

To this end we rewritel as

l5x1 iy , ~17!

wherex,y are real quantities. Thus,f̃2 attain the form

f̃25
l*

ulu2 ln@v21u2#1/21 i arctanS u

v D . ~18!

The real functionsv,u are given by

v5xrab2ka•rab ,

u5yrab1
Z

n
r̂b•rab . ~19!

On the other hand, we can characterize the complex fu
tion exp(if̃2) in the Gauss plane by the real phasew and the
amplitudeA, i.e.,

exp~ i f̃2!5A exp~ iw!. ~20!

The amplitudeA describes the polarization of the initial sta
due to the electronic correlation, whereasw is a measure for
the distortion of the continuum particle’s motion. ForA we
obtain

A5exp~2Im f̃2!5@v21u2#y/2ulu2 expF2
x

ulu2 arctan
u

vG .
~21!

In an analogous way the phasew is represented by
y

l

e
n.
f
e

it
e

c-

w5Re f̃25 ln@v21u2#x/2ulu21F y

ulu2 arctan
u

vG . ~22!

Expressions forx and y are then derived by substitutin
Eq. ~18! into Eq. ~13!, which yields two coupled differentia
equations. After algebraic manipulations the final expr
sions forx andy are deduced as

x5H F1

4 S ka
22

Z2

n2D 2

1
Z2

n2 ~ r̂b•ka!2G1/2

1
1

2 S ka
22

Z2

n2D J 1/2

,

~23!

y52
Z~ r̂b•ka!

xn
. ~24!

In the limit of fast projectile electronska@Z/n the quantities
x and y reduce tox'ka and y52Zr̂b• k̂a /n, respectively,
and the amplitudeA simplifies to unity, which means that th
polarization of the bound state diminishes in this asympto
case.

The above asymptotic analysis can be extended to fi
distances~the mathematical details are somewhat more
volved!. The termc̄ in Eq. ~6! then reads@cross terms of the
kinetic-energy operators that appear in Eq.~9! had to be
neglected#

c̄75N exp~ ika•ra! 1F1@6 iaa ,1,7 ika~r a6 k̂a•ra!#

3 1F1@6 ial ,1,7 i ~lr ab7c•rab!#, ~25!

where the complex vectorc and l are given by
Eqs. ~15! and al51/l. The normalization constan
N5(2p)23/2uG(11 iaa)u2 is derived from the requiremen
that the asymptotic flux generated by Eq.~6! should be
equivalent to that of the plane wave@7#.

It is straightforward to show that the wave functio
CTCW

2 , as given by Eq.~2!, derives from Eqs.~25! and~6! in
the high-energy limit, i.e.,ka@Z/n @cf. Eq. ~15!#, provided
that in Eq.~2! we replacerab by 2rab . That the wave func-
tion @Eqs.~25! and ~6!# satisfies the proper asymptote with
out any further modification is to be expected since t
property was imposed in the course of the derivation of E
~25! and ~6!.

Summarizing, in this work we envisaged correlated thr
body wave functions for Coulomb compounds consisting
a bound two-body subsystem and a continuum particle.
asymptotic properties have been explored and the exten
to finite distances has been pointed out. In addition, we s
ied the relation of the derived expressions to the polariza
of the bound system and the distortion of the continu
particle’s motion. In the high-energy limit (ka@Z/n), the
present wave function has already been employed for
calculations of the angular correlation parameters of
1s→2p transitions in hydrogen with encouraging results
compared to experiment@12#.
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