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Abstract—The influence of external field on thin
ferromagnetic films with spin-reorientation transitions
(SRTs) is explored in the presence of different orders
of thickness-dependent uniaxial anisotropy. The two
principal configurations are addressed and the first
two anisotropy contributions are examined. A sim-
ple and natural representation of the field-induced
SRTs has been found. It preserves the linearity of
the thickness-driven trajectories even with field. The
crosspoints of these trajectories with the phase bor-
derlines correspond to crossover thicknesses of a lin-
ear type for positive second-order anisotropy contribu-
tions and of both linear and nonlinear types for nega-
tive second-order anisotropies. In the latter case, the
nonlinear boundaries correlate with the coexistence
of phases which brings about first-order-like reorien-
tations and concommittant hysteresis effects. Practi-
cal schemes are proposed for the determination of the
complete set of anisotropy parameters from measured
field dependences of the crossover thicknesses.

Indez Terms—Anisotropy, ultrathin films

I. INTRODUCTION

Systems undergoing spin reorientation transitions
(SRTs) under variation of some parameter have been the
object of considerable interest for several decades now
[1]-[4]- Recently, SRTs in quite a number of thin and ul-
trathin ferromagnetic systems have been intensively stud-
ied because of the fundamental and technological issues
which are at stake here [5]. A systematic discussion of
thickness and temperature driven spontaneous (zero-field)
SRTs in ultrathin films of uniaxial symmetry has been
given very recently [6]. Here, we analyze the most impor-
tant features of the behavior of such systems in an applied
field within the framework of a general phenomenologic
description of the competing effects. The thickness depen-
dence of the anisotropy energy provides for an additional
degree of freedom which makes possible the study of SRT's
at fixed temperature and is best exploited in wedge-shape
geometry.

II. SOURCE REPRESENTATION IN APPLIED FIELD
Spontaneous SRTs occur whenever the lowest-order
contribution to the magnetic anisotropy energy goes to
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zero under variation of some pdrameter like temperature,
concentration of a component, thickness, etc. At the zero
point, the behavior of the system is stabilized by the
higher-order contributions. S¢ far as only the angular
dependence is concerned, the ftee enthalpy

ga(6) =a-sin?0 +b-sin*6 - H-M (1)

provides the common basis for the analysis of bulk and
thin film systems on equal footing. Here, the last term is
the unidirectional Zeeman contribution, favoring parallel
(conforming) alignment of magnetization M and applied
field H, which must be added to the intrinsic uniaxial
anisotropy contributions described by the first two terms;
@ is the angle between M and the crystallographic axis n
of uniaxial symmetry. The quantities g4, a, b have the
dimension of energy per unit volume. a and b are the
first and second anisotropy constants. Standard analysis
of stability of possible equilibrium orientations, or phases,
requires that g4(6) be minimized: gA(B) =0, g4(8) >0.
The boundaries of stability of 4 given minimum are found
by simultaneous examination of the equalities in the last
expressions. In zero field, given the presence of higher
anisotropies, one finds coexistence of phases over large
portions of the a.msotropy space of the system. This cir-
cumstance gives rise to first-order SRTs and to the related
hysteresis effects upon variation of the driving parameter
causing the change of the anisotropy constants. When
a field is applied, continuity considerations suggest that
coexistence of phases would persist in some form and to
some extent. This expectation is proven in the follow-
ing for the two principal orientations of the applied field
that are typically used in the experiment, the coaxial one
(H|ln) and the in-plane one (H 1 n). It is in these con-
figurations that the minimization problem is analytically
solvable. More precisely, defining z = My /M where My
is the magnetization component along thle field in either
configuration, one has to solve the cubic z3 + pr+q= 0in
order to find the minima. We are only interested in situa-
tions where the angle between H or M and n does not ex-
ceed /2, hence, 0 < z < 1. The coaxial case is recovered
with the identities p=—1-a/2b, ¢ = —HM/4b, whereas
the m—pla.ne case results in p = a/2b, ¢ = —HM/4b. The
fact that in such normalization one gets the mathemati-
cally canonic form suggests that the (p, g)-representation
is a source representation for the problem at hand. The
results of the stability .analysis in this representation are
given in Fig. 1. Two different types of solution exist, a
conforming and a canted one. The important borderhnes
areq=0,p+q+1=0, andp3/27+q2/4 0(0<¢g<2).
The most intriguing feature is the coexistence of these
phases within the curvilinear triangle OCT. OC is a line
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Fig. 1. Source representation ({p, q)-diagram) valid for both prin-
cipal field configurations. Dotted regions correspond to a canted
solution for the equilibrium magnetization. The remaining portions
admit a conforming solution only (M along H). Both phases coexist
within the curvilinear triangle OCT.

of discontinuous transitions, while C (p=-3,¢=2)isa
multicritical point where critical lines of continuous (CT)
and discontinuous (OC) transitions merge.

ITI. SPECIFICATION TO ULTRATHIN FILMS

A. Internal structure of the antsotropy constants

In order to describe the behavior of ultrathin films with
a SRT, one needs more detailed information about the
structure of the anisotropy constants a and b. We address
thickness-driven SRTs only and suppress the temperature
dependence whose analysis is a complicated problem on
its own both in the bulk [7] and in thin films [8). For
the thickness dependence, there is enough evidence both
on the theoretical [9], [10] and on the experimental side
(5], [11] that in quite a number of very thin films inverse
proportionality of the interface anisotropy contribution to
the thickness d holds and that this contribution is additive
to the bulk one. More specifically,

G=—A+K1,/d, b=K2b+K23/d’ (2)

where A = —Kj, 4+ (N, — N:)M?/2, K and K;, with
i =1 or 2 are the effective bulk and surface contributions
to the magnetocrystalline anisotropy, while N, and N, are
the demagnetization factors along the axis n and perpen-
dicular to it [12]. An explicit determination of a(d) and
b(d) in ultrathin films of CofAu(111) is given in {13] for
the annealed case and in [14] for the non-annealed case.
On the analytical side, (2) underpins a nonlinear,
though tractable, transformation from the canonic (p, q)
variables of the previous section to film-specific variables.

B. Trajectories describing the system under applied field

Now we introduce a representation which is character-
ized by linear trajectories of the thickness-driven evolu-
tion of the ultrathin system under field. To this end, we
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Fig. 2. Linear trajectories for thickness-driven SRTs in applied field.
Here,a = a/HM, 8 =b/HM and the explicit form is given by (3).
The borderlines for the different phases are obtained by transform-
ing from (p, ¢} to film-specific variables according to (2).

normalize (2) against the Zeeman-term amplitude HM.
Let us define & = a/HM and B8 = b/HM. Following the
procedure given in [6] for the zero-field case, we eliminate
the thickness d from the resulting relations, i.e. we pass
over from a parametric representation a(d), 8(d) to an
explicit relation 8 = B(a) which turns out to be linear
just as in the zero-field case [6):

B = (K2s/Krs)a+ (8- Kag + Kop - K1) /K1s - (3)

Here, 6 = A/JHM and k, = K,/HM (u = 1b,2b,1s,2s).
Note that xj,/k1, = K,/K),, hence, the slope of the
linear trajectories is given, even with field, by the ratio of
the surface constants.

The structure of the (@, B)-space is easily deduced by
transforming the equations for the borderlines from the
(P, q) representation and is depicted in Fig. 2 for the in-
plane field configuration together with a family of illus-
trative trajectories under thickness variation. There are
considerable advantages in using the (a, 8)-representation
with regard to both simplicity and usefulness. First, as
noted above, the slope of any trajectory is independent
of the field and equals the ratio K>, /K1s. Therefore, tra-
Jectories corresponding to different field magnitudes are
parallel to each other in either field configuration. Sec-
ond, for a given system the intercept of any trajectory
with the ordinate is inversely proportional to the field in
each of the field configurations. For H — 0, the intercgpt
and the trajectory itself go to infinity in accordance with
the fact that the zero-field case cannot be "observed” in
this representation. For H — oo, the intercept goes to
zero from above or below depending on its sign. Like
the slope mentioned above, the sign of the intercept is
independent of the field. Hence, for a given system t-he
sign of the intercept and the slope of a trajectory are in-
variants of this representation and do not depend on the
field strength. While 2 more detailed description of the
whole construction will be given elsewhere, it may suffice
to summarize here that the isolines of constant thickness
are represented by the family of rays going into the origin
with increasing field, while the isolines of constant field
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are given by the family of parallel segments {A,B,} (Fig.
2). These are the eventual thickness-driven trajectories.

C. Crossover (critical) thicknesses for SRT in field

A crossover thickness corresponds to the point where a
given trajectory crosses a given phase boundary. There
are three nontrivial types of trajectory distinguished by
one, two, or three cross points. For the determination
of the crossover thicknesses, one notes that these relate
to two distinct conditions, a linear (nonlinear) one for a
crosspoint X (Xn) of a trajectory with a linear (nonlin-
ear) phase boundary in the (a — 3) representation.

For the coazial field configuration, the defining equa-
tion for the crossover thickness d; at a crosspoint of
type X is a(dr) = -1/2, while dy at a crosspoint of
type Xy is given by the expression a{dy) = —28(dn) +
(3/2) [B(@n)]'3.

For the in-plane field configuration, d; s defined by
a{dy) + 28(dr) = 1/2, while dy is giver. by fB(dn) +
8a3(dn)/27 = 0.

It is especially instructive to analyze the expressions for
the linear crossover thicknesses d;. One finds that

1/dy — [M/2Ky,])H ; (4)
1/dy + [M/2(K;, + 2K2,)1H,

where d; = K;,/A and d; = (K], + 2K2,)/(A - 2K25)
are the characteristic zero-field thicknesses found in [6)].
Note that in the coaxial configuration (H|jn) dy is sensi
tive to the first-order contributions only. Should both de-
pendences (4) be determined experimentally, they provide
for four conditions (two slopes and two intercepts) bind-
ing together five, generally unknown, quantities ({K,}
and M), hence, one may proceed with the estimation of
the set of anisotropy constants. Even more importantly,
the understanding of the expected shifts in the critical
thicknesses upon variation of field is crucial to the cor-
rect interpretation of experiments. Under field, the re-
orientation thickness always deviates from the zero-field
situation (Fig. 3). For systems exhibiting coexistence
in zero field [6], the critical thicknesses separating the
competing phases diverge upon increasing |Hj in either
configuration. For systems exhibiting the true canted
phase in zero field [6], the crossover thicknesses move
closer upon increasing |H|, get equal at d = Hrps =
2(A - K, + K2 - K1,)/M(K,, + Ka,), and diverge for
H > H.poss. Thus, the zero-field behavior, which is de-
termined by :he intrinsic anisotropy parameters, leaves its
singerprint and predetermines the tendency of the shift
in the critical thicknesses upon variation of field (Fig.
3). Moreover, a single measurement leading to, e.g.,
dp(in — plane) > dp(coazial) at a given value of field
is definitelv inconclusive as it cannot tell on the intrin-
sic behaviuz of the system and should be interpreted with
care, if at all.

coaxial : 1/dy =
in—plane: 1/d;, =

IV. SUMMARY

We have analyzed the consequences of the thickness de-
pendence of anisotropy in ultrathin films for the SRT be-
havior in applied field for the two major field configura-
tions. A linear-trajectory representation for the thickness-

L- in-plane

o~

~ coaxial
1

0 How H

Fig. 3. Tendency of shift of critical thickness with field (cf (4-5)).
Coaxial (dashed): Independence of higher-order co»ntribution§. In-
plane (thick lines): Effect of K2, is appreciable. The intrin§1c be-
havior (H = 0) is as characteristic as a fingerprint. Dependlpg on
the zero-field behavior, the 1/dy (H) lines taken alternately in the

two configurations may or may not have a crosspoint. (Kis >0is
assumed, since this sign is consistent with the existence of a SRT.)

driven evolution in field has been introduced and exploited
for the determination of the relevant crossover thicknesses
dr. The tendency of the shifts in d with change of field
has been traced back to the intrinsic behavior of the sys-
tem. The developed method makes possible to extract
information on the anisotropy parameters from the de-
pendences di(H) and dn(H) or, additionally, from the
shape of the magnetic profiles My(H) in wedge-shape
geometry. This latter method will be discussed at length
separately.
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