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The structure and properties of a geometrically constrained magnetic wall in a constriction sepa
two wider regions are studied theoretically. They are shown to differ considerably from those o
unconstrained wall, so that the geometrically constrained magnetic wall truly constitutes a new ki
magnetic wall, besides the well known Bloch and Néel walls. In particular, the width of a constra
wall can become very small if the characteristic length of the constriction is small, as is actually the
in an atomic point contact. This provides a simple, natural explanation for the large magnetoresis
observed in ferromagnetic atomic point contacts.

PACS numbers: 75.60.Ch, 75.70.Kw, 75.70.Pa
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The investigation of magnetic nanostructures is one
the major current subjects in magnetism. This intere
is stimulated, on one hand, by the great progress
nanofabrication techniques and magnetic characterizat
methods and, on the other hand, by the perspect
of technological applications for magnetic storage
information of unprecedented density.

A major question to be addressed in this field o
research is: How does the micromagnetic structure (i.
domains, walls, etc.) respond to geometrical constrai
on the nanometer scale?

In an unconstrained system such as in a bulk ferr
magnet, as first pointed out by Bloch, the wall structu
is determined by a competition between exchange a
anisotropy energies [1]. The exact structure of the Blo
wall has been calculated by Landau and Lifshitz [2]. In
ferromagnetic thin film with in-plane easy magnetizatio
axis, as shown by Néel [3], the dipolar interaction lea
to a new kind of wall, known as a Néel wall, in which
the structure is determined by a competition between e
change, anisotropy, and dipolar energies.

In this Letter, I consider the problem of the structur
and energy of a magnetic wall in a constriction separati
two regions of wider cross section. This encompass
various situations of great physical interest such as
narrow constriction fabricated in a magnetic ultrathin film
by lithographic techniques, or a constriction in a wire.

I point out that when the cross section of the constri
tion is much smaller than that of the wide region, th
structure of the wall becomes almost independent of t
material parameters such as magnetization, exchange s
ness, and anisotropy constant and is determined mostly
the geometry of the constriction. The wall energy consis
mostly of exchange energy. Thus, geometrically co
strained magnetic walls appear as a new kind of magne
walls, with properties completely different from those o
Bloch and Néel walls. In particular, the width of the geo
metrically constrained magnetic walls is essentially give
by the length of the constriction, which can be consi
erably smaller than the width of a Bloch or Néel wal
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In the limit of a point contact of atomic dimensions
the width of the wall would also be of atomic dimen
sions. This fact has important physical consequences:
particular, the contribution of a geometrically constraine
magnetic wall to the electrical resistance of a point conta
will be considerably larger than that of a Bloch or Née
wall, so that very large magnetoresistance effects can
anticipated in ferromagnetic point contacts and have ac
ally been reported [4].

Let us consider a homogeneous magnetic system
which the cross sectionS�x� varies along thex axis and
exhibits a minimum atx � 0. The easy magnetization
axis is along thez axis and the magnetization for
x ! 6` is along the6z axis, respectively. Obviously,
the magnetic wall will tend to localize itself near the
constriction, in order to minimize its energy. In orde
to understand how the wall structure is modified by th
constriction, we can make the following reasoning: le
us start with an infinitely narrow wall located at the
center of the constriction. The exchange energy of such
configuration is too high and can be reduced by allowin
the wall to expand. This expansion is counterbalanc
by (i) the increase of anisotropy and (ii) by the increas
of wall area. If the cross sectionS�x� increases rapidly
with jxj, then the second term can be the leading one,
that the wall structure will be controlled essentially by th
geometry of the constriction and depend only weakly o
the material parameters.

For explicit calculations below, I consider the following
models of constrictions:

S�x� � S0 for jxj # d
� S1 . S0 for jxj $ d

)
�model I�

S�x� � S0�1 1
x2

d2 � �model II�

S�x� � S0 cosh�x�d� �model III�

For the sake of simplification, I make the following
assumptions: (i) the magnetization direction depends on
© 1999 The American Physical Society 2425
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on x, i.e., the wall is plane (in reality this assumption
is not strictly satisfied and the wall would tend to
bend), (ii) the dipolar interactions can be neglected (the
validity of this assumption will be discussed later), and
(iii) the magnetization remains in the yz plane as in a
Bloch wall (this assumption is best suited to the case
of a constriction in a film with perpendicular anisotropy;
in general, however, the wall structure would deviate
from the idealized Bloch-like configuration). One can
argue, however, that the above simplications would not
modify significantly the underlying physical mechanism,
and provide a good approximation of the wall structure
and energy. Thus, the wall is described by the angle u�x�
between the magnetization and the z axis. Let F�u� be the
anisotropy energy density and A the exchange stiffness.
In practice, we assume a uniaxial anisotropy below, i.e.,
F�u� � K cos2u; however, wherever we use the more
general form F�u�, the results are not restricted to this
particular case. The total energy of the wall is given by

E�u� �
Z `

2`
dx �A �u2 1 F�u��S�x� , (1)

where �u � du�dx. The structure of the wall is obtained
by solving the corresponding Euler equation

ü 1 �u
�S
S

2
F0�u�
2A

� 0 , (2)

where F0�u� � dF�du, subject to the boundary condi-
tions, u�6`� � 6p�2, respectively, and �u � 0 for u �
6p�2. The new term �u �S�S, which is absent in the case
of an unconstrained Bloch wall considered by Landau and
Lifshitz [2], expresses the influence of the geometry of the
constriction on the wall structure.

We are interested, in particular, in the width and energy
of the wall. Various definitions of the wall width have
been proposed in the literature [5]. Here, since we have
in mind the electrical transport properties of the wall, we
need an appropriate definition of the wall width. As the
electrical resistance of a magnetic wall is determined by
�u�x� [6], this naturally leads one to use for the wall width
the following new definition:

w � 4

∑Z `

2`

�u2�x� dx

∏
21

� 4

∑Z p�2

2p�2

�u du

∏
21

, (3)

where the prefactor has been chosen so that this definition
yields w0 � 2

p
A�K for the unconstrained Bloch wall.

Let us neglect the term 2F0�u��A in Eq. (2) and call
u��x� the corresponding solution, of width w� and energy
E�. This provides a good approximation of the true
solution if � �S�S�2 is large as compared to jF0�u�j�A, and
in any case yields an upper limit for the wall width. The
2426
solution then takes the general form

u��x� � p

∑Rx
2` S21�x0� dx0R`

2` S21�x0� dx0
2

1
2

∏
. (4)

The width is given by

w� �
4

p2

�
R

`
2` S21�x� dx�2R`

2` S22�x� dx
(5)

and the wall energy is

E� �
p2AR`

2` S21�x� dx
. (6)

In fact, we can argue that the above approximation is
justified whenever w� is small as compared to the width
w0 � 2

p
A�K of the unconstrained Bloch wall, which is

the only relevant parameter characterizing the material.
Obviously, the usefulness of this approximation depends
on whether the integral

R1`

2` S21�x� dx converges or not
(for brevity, we shall term the constriction, respectively,
“ integrable” and “nonintegrable” ). If S�x� diverges more
rapidly than jxj for jxj ! 6`, the constriction is inte-
grable; this is the case for model I with S1 � `, as well
as for models II and III. In the opposite case of a noninte-
grable constriction (e.g., model I with S1 finite), w� � `,
so that the term 2F0�u��A can never be neglected.

Let us first discuss the case of an integrable constriction
with w� ø w0. In this case, the above discussion shows
that the wall structure is independent of the material
parameter w0 and is determined only by the geometry of
constriction; furthermore, the wall profile u��x� and the
wall width w� are independent of the constriction cross
section S0. The area of the constriction is irrelevant; the
only relevant parameter is the length d on which S�x�
varies significantly. Thus, we expect that the width will
be of the order of w� � d and the wall energy of the
order of AS0�d. Performing explicitly the calculation, this
yields, for model I with S1 � `,

u��x� �
px
2d

, (7a)

w� �
8d
p2 , (7b)

E� �
p2AS0

2d
, (7c)

whereas for model II one gets

u��x� � arctan�x�d� , (8a)

w� �
8d
p

, (8b)

E� �
pAS0

d
, (8c)
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and for model III

u��x� � arcsin�tanh�x�d�� , (9a)

w� � 2d , (9b)

E� �
pAS0

d
, (9c)

which confirms the above qualitative discussion. Interest-
ingly, we remark that, for model III, the wall profile has
the same form as for the unconstrained Bloch wall, with
d replacing L �

p
A�K .

On the other hand, if the constriction is nonintegrable,
or if w� is not small as compared to w0, the term
2F0�u��A cannot be neglected a priori; thus, this case
deserves a more careful study. We now specify to the
case of uniaxial anisotropy. The Euler equation becomes

ü 1 �u
�S
S

1
sinu cosu

L2 � 0 . (10)

In order to make this equation easily soluble, we perform
the following approximation:

cos2u � a�p 2 2juj� , (11a)

sinu cosu � a sgn�u� , (11b)

for juj # p�2, and where the parameter a is determined
variationally by minimizing the energy with respect to
a for the unconstrained Bloch wall, which yields a �
0.298 901 . . . . In spite of its simplicity and its apparent
crudeness, this approximation is an excellent one and
yields a wall profile which is almost identical to the exact
one, as can be seen in Fig. 1, while the errors on the wall
width and energy are smaller than 1.5%.

With the help of this approximation, it is straight-
forward (although tedious) to solve the Euler equation
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FIG. 1. Magnetization profile of the unconstrained Bloch wall
(long-dashed line), as compared with the one calculated using
an approximation [(11a) and (11b)] (solid line); the difference
between the approximate and exact solutions (magnified by a
factor of 10) is also shown (short-dashed line).
almost completely analytically. Since the resulting ex-
pressions are rather cumbersome [7], I shall give below
only approximate expressions valid in a restricted range
of parameters, from which the physical meaning appears
more clearly; the figures, however, display results ob-
tained from the full expressions.

The wall profile calculated for model I is shown in
Fig. 2. The wall consists of a core region of width 2d in
which most of the magnetization rotation takes place and
tails of width of the order of w0 in which the magnetization
rotates only weakly. Thus, if d ø w0, the constrained
wall is much narrower than an unconstrained Bloch wall.

The wall width (normalized to d) and energy (nor-
malized to the energy in the absence of constriction,
E0 � g0S1, where g0 � 4

p
AK is the energy per unit

area of the unconstrained Bloch wall) as a function of
w0�d are displayed in Figs. 3 and 4, respectively, for
various values of the ratio S1�S0.

We can distinguish here three different regimes, clearly
visible in Figs. 3 and 4, depending on the values of the
parameters w0�d and S1�S0. In the first regime, i.e., for
w0�d # 1, one has

w � w0 , (12a)

E � g0S0 . (12b)

This is easily understood: since the unconstrained wall
width w0 is smaller than the characteristic length of
the constriction, the wall is entirely confined in the
constriction and is therefore not significantly influenced
by it.

The situation is completely different in the regime
characterized by 1 # w0�d # S1�S0, for which one gets

w �
8d
p2 , (13a)

E �
p2AS0

2d
, (13b)
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FIG. 2. Magnetization profile of a geometrically constrained
magnetic wall calculated for model I with d�w0 � 0.1 and
S1�S0 � 10 (solid line), as compared with to the unconstrained
Bloch wall (dashed line).
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FIG. 3. Wall width (normalized to d) of a geometrically
constrained magnetic wall calculated for model I, as a function
of w0�d; solid line: S1�S0 � 10; long-dashed line: S1�S0 �
102; short-dashed line: S1�S0 � 103.

i.e., the wall width and energy are the same as the
ones obtained for S1 � `, [(7b) and (7c)], on the basis
of approximations (5) and (6). Here the wall structure
and wall width depend only on the geometry of the
constriction and not at all on the material parameters,
while the wall energy is of pure exchange character. If
the ratio S1�S0 is large, this regime is achieved in a wide
range of values of w0�d, as appears clearly from Figs. 3
and 4.

Finally, for w0�d $ S1�S0, one gets

w � w0

Ω
1 1

18
p2

d
w0

∑µ
S1

S0

∂2

2
S1

S0

∏æ21

, (14a)

E � g0S1

∑
1 2

9
p2

d
w0

S1

S0
1

54
p4

d2

w2
0

µ
S1

S0

∂2∏
. (14b)

This is the case in which the wall structure is again deter-
mined primarily by the competition between the exchange
and anisotropy energy terms, i.e., the first and third terms
in the Euler equation (2), the additional term �u �S�S due to
the constriction being of secondary importance; therefore,
w and E tend, respectively, towards w0 and E0 as w0�d
increases.

Let us now discuss the role of dipolar interactions,
which we have neglected so far. A rough estimate of the
dipolar contribution to the wall energy is given by 2pM2

s
multiplied by the wall volume, i.e., Ed � 2pM2

s S0w. If
this energy is small as compared to the wall energy E
calculated by neglecting the dipolar contribution, then we
can expect that dipolar interactions will have only a small
influence on the wall structure and on its width. For
the most interesting case where 1 # w0�d # S1�S0, one
finds that dipolar interactions can be neglected if d ø
�p2�4�l, where l � A��2pM2

s � is the exchange length.
For the typical value l � 3 nm, this means d ø 7.5 nm.
Thus, for an atomic point contact, our approximation is
well justified.
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FIG. 4. Wall energy (normalized to E0) of a geometrically
constrained magnetic wall calculated for model I, as a function
of w0�d; solid line: S1�S0 � 10; long-dashed line: S1�S0 �
102; short-dashed line: S1�S0 � 103.

In conclusion, I have investigated the properties of a
geometrically constrained magnetic wall. I have shown
that the structure and the properties of such a wall differ
considerably from those of an unconstrained wall, so
that the geometrically constrained magnetic wall truly
constitutes a new kind of magnetic wall, besides the
well known Bloch and Néel walls. In particular, the
wall width of a geometrically constrained magnetic wall
can become very small if the characteristic length of the
constriction is small, as is actually the case in an atomic
point contact. This provides a simple, natural explanation
for the large magnetoresistance which has been recently
observed in atomic point contacts [4]. In addition, I
have introduced a new definition of the wall thickness,
which is the appropriate one for discussing the electrical
resistance of magnetic wall. I have also proposed a simple
approximation for solving the Euler equation, which allows
one to obtain simplified, yet accurate, analytical results.
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