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AbstractÐFor cubic ZrO2 single crystals deformed in h112i direction, new experimental data are presented
on the ¯ow stress and its strain rate sensitivity as well as on the dislocation densities and the distances
between glide obstacles along the dislocations. A model is proposed to describe the strong variation of the
parameters of the plastic deformation below 1000 K. It assumes that the mechanisms controlling the dislo-
cation motion change from the pinning by localized obstacles above a transition temperature, e.g. small
precipitates or jogs, to the overcoming of the Peierls relief at lower temperatures. The model is in agree-
ment with most of the experimental observations. # 1998 Acta Metallurgica Inc.
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1. INTRODUCTION

As it was shown earlier [1±3] (for a review, see [4]),
cubic ZrO2 single crystals exhibit a di�erent plastic
behavior in di�erent temperature ranges. Above
about 1500 K, the ¯ow stress depends on the tem-

perature and particularly on the strain rate [1, 2]. In
an intermediate temperature range around about
1400 K, the deformation is of athermal character,

and it becomes temperature-dependent again below
about 1250 K [3, 4]. Accordingly, di�erent mechan-
isms controlling the dislocation motion seem to

cause this wide variation of the plastic properties of
ZrO2. At intermediate temperatures the plasticity is
governed by the overcoming of long-range internal

stresses between the dislocations, which undergo
recovery processes at higher temperatures. Below
1250 K, the thermally activated overcoming of loca-
lized pinning centers is suggested to be the mechan-

ism controlling the dislocation motion [3], and the
glide velocity of dislocations can be described by an
Arrhenius law

v � v0 exp

�
ÿ DG�t*�

kT

�

� v0 exp

�
ÿ DF�t*� ÿ Vt*

kT

�
: �1�

The parameters are: v0 a preexponential factor, T
the temperature, k the Boltzmann constant, DG(t*)
the Gibbs free energy and DF the Helmholtz free

energy of activation, V the activation volume, and

t* the e�ective shear stress, describing the tempera-

ture and strain rate sensitive part of the ¯ow stress.

The latter is the di�erence between the applied

shear stress t and the long-range internal stress ti

t* � tÿ ti: �2�
The macroscopic plastic deformation rate _e can be

described by the Orowan relation _e=rmbv, where

rm is the mobile dislocation density and b is the

absolute value of the Burgers vector. Thus,

_e � _e0 exp
�
ÿ DG�t*�

kT

�
: �3�

Details of the dislocation glide mechanisms can be

derived from the strain rate sensitivity, which is

de®ned as

I � Ds=Dln _e: �4�
s is the applied (compression) stress, which is

related to the shear stress t via the orientation fac-

tor mSF according to t= mSFs. The strong increase

of the strain rate sensitivity by about two orders of

magnitude in a relatively narrow temperature inter-

val of about 300 K, which is obvious from the

experiments quoted in [3] together with results

from deformation tests performed between 823 K

and 523 K under hydrostatic pressure to avoid

brittle fracture [5, 6], and the corresponding change

of the activation volume

V � kT=�mSFI � �5�
can hardly be explained solely within the frame-

work of the model of the interaction between dislo-

cations and local pinning centers. For thermally

activated dislocation glide at a constant mobile
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dislocation density rm, the activation volume is
directly connected with the activation energy

DG(t*) to overcome the obstacles by V=
ÿ dDG(t*)/dt*. Hence, the magnitude of the acti-
vation volume allows one to draw conclusions

about the dislocation±obstacle interaction. The
strongly increased strain rate sensitivity or the
corresponding small activation volume at low

temperatures therefore is evidence for a transition
to another mechanism determining the dislocation
mobility, which should be the lattice friction or

Peierls mechanism (for reviews, see [7, 8]). Although
the latter is suggested in [9] together with several
other possible mechanisms controlling the dislo-
cation mobility in ZrO2 between 1381 K and

1708 K, in general, the role of the Peierls mechan-
ism in the plasticity of ZrO2 is not yet clear.
The present paper complements the data

in [3, 5, 6] concerning deformation between 673 K
and 873 K, and presents data on the obstacle dis-
tances and the total dislocation densities obtained

by transmission electron microscopy. The dislo-
cation densities allow one to estimate the internal
stresses ti in equation (2). It is the aim of the paper

to explain the strong variation of the deformation
parameters of ZrO2 around 800 K, to identify the
mechanism of the low-temperature plasticity, and to
quantitatively estimate its parameters on the basis

of the theoretical considerations published in [10]
on the transition from localized pinning of dislo-
cations to the Peierls mechanism.

2. EXPERIMENTAL PROCEDURE AND RESULTS

This paper presents data on the ¯ow stress s and
the strain rate sensitivity I of fully stabilized cubic
ZrO2 single crystals, which ®ll the gap between the

results published in [3] and [5, 6], and originate
from [11]. Similar to the previous paper [3], cubic
ZrO2 single crystals stabilized with 11 mol% Y2O3

were prepared for compression along the [112]
direction. This orientation activates the primary
1/2[110](001) slip system with a Schmid factor of

mSF=0.47. The experiments were carried out in an
Instron 8562 single-screw testing machine in air at
temperatures between 673 K and 873 K. Figure 1
shows typical stress±strain curves for di�erent tem-

peratures together with previous curves below
1280 K from [3]. The strain rate sensitivity was
obtained from strain rate cycling and stress relax-

ation experiments. After stress relaxation exper-
iments and strain rate changes at higher
temperatures yield drop phenomena occur, which

vanish with decreasing temperature. The maximum
stress di�erence was taken to determine the stress
increments Ds in equation (4) for evaluating the

strain rate cycling experiments. At low temperatures
a prominent yield drop arises at the ®rst loading. In
Fig. 2, the ¯ow stress s0.2 at a plastic strain of
0.2% is plotted vs temperature T. Besides, also ¯ow

stress data are included which are measured under

con®ning hydrostatic pressure [5, 6] as well as theor-

etical curves, which will be discussed below. The

¯ow stress drastically increases with decreasing tem-

perature, particularly below 800 K.

In the stress relaxation experiments, the total

strain et is kept constant (_et=0). Hence the plastic

strain rate _e is proportional to the negative stress

rate (ÿ _s) so that equation (4) reads

Fig. 1. Stress±strain curves of cubic ZrO2±11 mol%Y2O3

at di�erent temperatures, _e=10ÿ6 sÿ1, data from [3, 4, 11].

Fig. 2. Temperature dependence of the ¯ow stress at a
plastic strain of 0.2%. Symbols are experimental data at
ambient atmosphere, _e=10ÿ6 sÿ1: q 11 mol%
Y2O3 [3, 4, 11]; and under con®ning hydrostatic pressure,
_e=2*10ÿ4 sÿ1: + 12.6 mol%Y2O3,� 9.4 mol%Y2O3 [5, 6],
The curves are the theoretical predictions for the Peierls
mechanism at low temperatures and for localized obstacles

at higher temperatures.
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I � Ds
Dln�ÿ _s� : �6�

Thus, the inverse slope of plots of ln(ÿ _s) vs s
equals the strain rate sensitivity. Figure 3 shows

some typical stress relaxation curves for di�erent

temperatures. With decreasing temperature the

slope of the curves drastically decreases. This corre-

sponds to a strong increase of the strain rate sensi-

tivity I as demonstrated in Fig. 4. Figure 4 also

shows the data measured under hydrostatic

pressure [5, 6] ®tting those of the present study. The

strain rate sensitivity seems to reach a constant

value at the lowest temperatures. The small value of

the activation volume V of less than 10b3 at low

temperatures corresponding to the high strain rate

sensitivity I is not easy to explain by the mechanism

of localized obstacles, which is suggested for higher

temperatures [3].

Experimental activation energies Qe were deter-

mined from temperature change experiments by

Qe � ÿkT 2�Ds=DT �_e=I : �7�

The Gibbs free energy of activation DG was calcu-

lated using the formalism described in [12]. In

Fig. 5, it is plotted as a function of temperature. If

Fig. 4. Strain rate sensitivity of cubic ZrO2±11 mol%Y2O3

in dependence on temperature [4±6, 11]. The curve is the
theoretical dependence for the kink mechanism. Symbols

as in Fig. 2.

Fig. 3. Stress relaxation curves of ZrO2 at di�erent temperatures at a plastic strain of about
0.5% [4, 11].
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the preexponential factor _e0 of the Arrhenius
equation, equation (3), is constant this plot should
be a straight line crossing the origin. This condition,

including a reasonable slope, is only ful®lled up to
873 K. At higher temperatures, the activation ener-

gies take very high values owing to the low strain
rate sensitivity I in equation (7). These very high

values are not consistent with the model of ther-
mally activated dislocation motion but hint at

athermal processes in the range around 1250 K.

From the deformed specimens, samples were

prepared for transmission electron microscopy.

Two micrographs are shown in Fig. 6. At low

temperatures, slip mainly occurs in narrow

slip bands. Typically, the dislocations are of

screw character [3, 11], partly appearing in dipole

con®gurations, which indicates their mutual elastic

interaction. Dislocation densities r were counted

within the slip bands. As shown in Fig. 7, the

dislocation density rises only very gradually

with the temperature decreasing down to about

1000 K, but below this value it increases drastically.

Internal stresses ti were calculated from the

dislocation densities by means of a formula for

Taylor hardening considering elastic anisotropy

[4, 11]

ti � aKbFmr1=2=�2p�: �8�

Here, a is a numerical constant of about 8, K is

the energy factor of screw dislocations (80.03 GPa

at 873 K), which are typical of low temperature

deformation, and Fm=0.3 is a normalized maxi-

mum interaction force between parallel screw dis-

locations on {100} planes [4, 11]. Equation (8)

and the dislocation densities in Fig. 7 are used to

Fig. 5. Dependence of the Gibbs free energy of activation
on the temperature.

Fig. 6. Dislocation structures of specimens deformed in compression along [112]. (a) 5008C. The speci-
men was cut parallel to a (111) plane. (b) 7008C. The specimen was cut parallel to the (001) slip plane.

Some jogs are denoted by J. Please note the di�erent scales in Figs 6(a) and (b).
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calculate the internal stresses, the result of which
can be approximated by

ti � 42 MPa� 58:2 MPa*expf�787ÿ T �K��=135:6g:
�9�

Below, this formula was used to calculate values
of the e�ective stress t* from the applied stress t
by equation (2).

Characteristic of the dislocations at low tem-
peratures is their curly shape as Fig. 6 demon-
strates. It arises from the dislocations bowing out

between obstacles, the nature of which is not yet
fully understood. Some of them are clearly jogs
but most of them seem to be localized obstacles

as, e.g. small precipitates. In Fig. 8, the distance
between the obstacles along the dislocations l is
plotted vs t*ÿ1/3. The plot will be discussed in
more detail below. Respective temperatures are

indicated. The obstacle distance decreases with
decreasing temperature.
In the following, a model will be described

which explains the strong increase of the ¯ow
stress and, particularly, of its strain rate sensi-
tivity with decreasing temperature. The results will

be discussed in terms of the microstructural ob-
servations.

3. MODEL OF THE CHANGE OF THE
MECHANISMS CONTROLLING THE

DISLOCATION MOTION

At ®rst, based on [10] the change of the rate-

controlling mechanism of deformation is quali-
tatively discussed. It is suggested that the
dislocations move under the simultaneous action of

local pinning centers and the Peierls mechanism.
Both the shape of the dislocations and the value of
the activation volume indicate that above 973 K the

dislocation motion is governed by the overcoming
of local pinning centers with a characteristic waiting
time tl at the obstacles. In accordance with
equation (1), one obtains

1=tl � �0 exp
�
ÿ DG1�t*�

kT

�

� �0 exp
�
ÿ DF1�t*� ÿ Vt*

kT

�

� �0 exp
�
ÿ DF1�t*� ÿ df

kT

�
: �10�

n0 is an attempt frequency, d is the so-called acti-

vation distance, and f is the force acting on the
obstacles. The other symbols are the same as in

equation (1). The ¯ight time tp of the dislocation

segments between the pinning centers is considered

negligible: tp<<tl. Although this motion may require
thermal activation to overcome the Peierls barriers,

at su�ciently high temperatures this process pro-

ceeds at a high rate and does not retard the dislo-

cation motion remarkably. The dislocation
segments bow out, assuming their equilibrium

shapes in a time rather short compared to that of

overcoming the pinning centers. At lower tempera-
tures, however, the relation between tl and tp may

be reversed. This is illustrated in Fig. 9, where the

dependencies of the respective activation energies of

Fig. 7. Dependence of the dislocation density r inside slip
bands on the temperature.

Fig. 8. Dependence of the obstacle distance l on the e�ec-
tive stress t* in a plot according to equation (21).

Fig. 9. Schematic stress dependencies of energy pro®les for
local pinning DGl(t*) and the Peierls mechanism DGP(t*).
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both processes, DGl(t*) and Gp(t*), on stress are

schematically shown.

At high temperatures corresponding to low

stresses, DG is large with the localized obstacles

attributing the main resistance to dislocation

motion. Here, the force f which the dislocations

exert on the obstacles under the action of the e�ec-

tive stress t* is proportional to the average distance

l between the pinning centers, i.e. f = t*bl, corre-

sponding to a relatively large activation volume

V= dbl. Accordingly, DGl(t*) strongly decreases

with increasing stress or decreasing temperature. At

a transition stress ttr*, it becomes equal to DGp(t*),
which is the activation energy of the kink pair

generation, i.e. of the Peierls mechanism. At low

temperatures and high stresses, when t*>ttr*, most

of the dislocation retardation is due to this slow

motion of the dislocation segments between the pin-

ning points. Then, the forces acting on the obstacles

that adjoin the slowly moving dislocation segment

are gradually increasing. Near the transition tem-

perature, corresponding to t*tr, the deformation

behavior may drastically change. Particularly the

activation volume may drop from large values

typical of overcoming local pinning centers to

small values of a few b3 typical of the Peierls

mechanism. The strain rate sensitivity will change

correspondingly.

After the above qualitative picture, a more

detailed description will follow, taking into account

the mutual in¯uence of the two mechanisms on

each other. If the Peierls mechanism is neglected

there will be only a single equilibrium con®guration

of a dislocation segment bowing out under stress.

In the more general case, owing to the periodic

Peierls relief, many locally stable (or metastable)

con®gurations of the dislocation segment appear,

which may be characterized by their bowing height

h at the center of the segments as shown in Fig. 10.

The bowing height is given by h3na + yn with

n = 1, 2, 3, . . . , ne. a is the period of the Peierls

relief UP( y) and yn is the shift of the dislocation

from the bottom of the Peierls potential to reach

the force equilibrium according to dUP( yn)/dy =

t*b. he=nea3 l2t*b/8k describes the ®nal equili-

brium bowing, which corresponds to the energeti-

cally most favorable con®guration of the dislocation

segment, i.e. to the equilibrium con®guration

without the Peierls relief. k is the line tension. In

the line tension approximation, the curved segment

of the dislocation near the local obstacle can

be described by the equilibrium equation for a

relatively small bowing:

ky0�x� ÿ dUP� y�
dy

� t*b � 0: �11�

Here, y(x) is the dislocation displacement at the

point x, and y0(x) = d2y/dx2. The ®rst integral of

equation (11) is

k
2
y 02 ÿUP� y� � t*by � const: �12�

The integration constant is determined from the

bowing height h of the dislocation segment between

the pinning points, which corresponds to the

condition y'(h) = 0. Thus, const =ÿUP(h) + t*bh.
Equation (12) yields the slope y' = dy/dx of the dis-

location segments near the pinning points, which

determines the contact force of equation (10)

f � 2k
dy

dx

�����������������������������������������������������������������
8k�UP� y� ÿUP�h� � t*b�hÿ y��

p
�13�

which the dislocation exerts on the pinning centers.

This formula shows the in¯uence of the lattice relief

on the force acting on the obstacles: both mechan-

isms are not simply additive. For UP(y) = 0, h will

immediately assume its equilibrium value he, yield-

ing the well-known result f= t*bl for the absence

of the Peierls relief. In general, however, the magni-

tude of f depends on the position of the dislocation

in the Peierls relief. When the dislocation ®rst con-

tacts the obstacles, this force f is small. Afterwards,

it increases step by step as the dislocation proceeds

from one Peierls valley to the next one.

The integration of equation (12) determines the

stable positions possible of the dislocation segment

between the pinning centers

x �2
�y
h

dy1���������������������������������������������������������������������������2=k��UP� y1� ÿUP�h� � t*b�hÿ y1��
p :

�14�
Examples of such con®gurations with a straightened

top are shown in Fig. 10 for several values of h.

A harmonic Peierls potential

UP� y� � tPab
2p

�
1ÿ cos

�
2p

y

a

��
�15�

was used with the parameters t* = 0.1tP and l= 7

(ka/tPb)
1/2. tP is the Peierls stress.

The dislocation segment has a ®nite lifetime tp
in each locally stable position corresponding to a

certain value of h. While staying in such a position,

a competition takes place between the two ther-

mally activated processes of shifting the dislocation

segment to the next Peierls valley by the nucleation

Fig. 10. Stable or metastable dislocation con®gurations at
the combined action of localized obstacles and the Peierls

mechanism.
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of a kink pair, or of overcoming one of the adjacent
obstacles, which is connected with the waiting time

tl. According to equations (10) and (13), tl becomes
shorter and shorter as the dislocation proceeds and
h increases. As soon as tl becomes approximately

equal to tp, one of the neighboring obstacles is
overcome before the equilibrium value he of the
bowing-out is reached. Then, the dislocation mobi-

lity is determined by the kinetics of the bowing,
which depends on the rate of overcoming the
Peierls barriers due to the formation of kink pairs

with a formation energy DGp(t*) (see, e.g.
Refs [8, 9]). The reciprocal value of the waiting time
tp of a dislocation segment to overcome a position
of a certain value of h is proportional to the

Arrhenius factor exp(ÿDGp(t*)/kT) and to its length
l owing to the so-called ``length e�ect'' [8]. This
e�ect follows from the possibility that a kink pair

may form at any site along the dislocation segment.
As l enters only the preexponential factor of the
equation of the dislocation mobility and does not

change the activation energy, this e�ect is of minor
importance. Therefore, if the di�erence between the
preexponential factors in the Arrhenius equations

of 1/tl and 1/tp is neglected, the transition between
both mechanisms takes place at DGl3DGp, or at
t* = t*tr as discussed before in connection with
Fig. 9. At t* > t*tr, the activation volume takes the

usual values of the Peierls mechanism, which are
much smaller than those for overcoming the loca-
lized obstacles. According to equation (6), this drop

of the activation volume at t* = t*tr is ac-
companied by a strong increase of the strain rate
sensitivity I.

At t*>t*tr, the plastic strain rate _e is determined
by an Arrhenius law similar to equation (3), with
the kink pair nucleation energy DGp(t*):

_e � _e0 exp�ÿDGp�t*�=kT �: �16�
The preexponential factor _e0 is considered constant,
and, as mentioned before, its possible change at the

transition is not taken into account. The stress
dependence of the kink pair formation energy can
be calculated for any type of the Peierls relief UP(y)
using a formula suggested in [13]

DGp�t*� �
� ������������������������������������

2k�UP� y� ÿ t*by�
p

dy: �17�

4. APPLICATION OF THE MODEL TO THE
PLASTICITY OF CUBIC ZrO2

In the following, an attempt will be made to in-

terpret semiquantitatively the experimental results
presently available on the low-temperature plasticity
of cubic ZrO2, using the model outlined in Section

3. In Section 2, these experimental results were
described comprising the macroscopic data on the
¯ow stress and its strain rate sensitivity in Figs 2
and 4, and the information on the internal stress of

equation (9) based on the dislocation densities pre-
sented in Fig. 7. To this end, equation (17) will be

approximated by

DGP�t*� � 2DGk�1ÿ �t*=tP�4=5�5=4, �18�
where DGk is the kink energy. Equation (18) is a
good approximation of the general equation (17)

for the harmonic Peierls potential of equation (15),
providing a convenient analytical expression of the
stress dependence of the activation energy.

The transition temperature between the domi-
nance of localized obstacles and the Peierls mechan-
ism was estimated to be Ttr=773 K. Considering
equation (2) for adding the e�ective stress t*
and the internal stress ti and equation (9) for
the dependence of ti on temperature, the low-
temperature ¯ow stress data are best ®tted by

equations (16) and (18) using the parameters
tp=4500 MPa, 2DGk=DGp(t* = 0) = 1.8 eV, and
T* = 2DGk/(k ln(_e0=_e)) = 875 K. Like in [3], the

high-temperature data are ®tted by equation (3)
and an empirical potential proposed in [14]

DG�t*� � DG0

�
1ÿ

�
t*
t0

�1=2�3=2

, �19�

with parameters close to those estimated
previously [3]: DG0=4.2 eV and t0=1760 MPa. In
Fig. 2, both expressions are plotted in full lines.

The same parameters are used to calculate the
strain rate sensitivity I. Figure 4 shows the curves
together with the experimental data available

including the transition temperature indicated by
a dashed line. According to the theory of the
Peierls mechanism, the calculated curve ends at

T* = 875 K. In spite of their scattering, the
experimental data in Fig. 4 clearly show that I
strongly increases with the temperature decreasing
below 875 K. The temperature of the maximum

gradient coincides with the transition temperature
Ttr=773 K. The curve of the Peierls mechanism
also well describes constant, or even decreasing,

values of I at the lowest temperatures. Above the
transition temperature, at increasing temperature
the experimental values of I decrease more strongly

than the theoretical curve.

5. DISCUSSION

The model proposed of dislocations moving

under the simultaneous action of local pinning
centers and an extended Peierls relief explains the
drastic changes of the ¯ow stress and, particularly,

of the strain rate sensitivity of cubic ZrO2 in a
narrow temperature range. The drastic drop of the
activation volume to values in the order of a few b3

and the strong temperature dependence of the ¯ow
stress suggest that at low temperatures dislocation
glide is controlled by lattice friction. The Peierls
mechanism is not directly proven by microscopic
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results, i.e. there are no straight dislocation seg-

ments arranged in preferred crystallographic orien-

tations. Some preference of the h100i orientations
can already be explained by the anisotropic line

tension on the {001} slip planes [4, 11]. However,

the fact that bowed-out dislocation con®gurations

do not signi®cantly relax after unloading the

samples indirectly hints at a strong friction, which

most probably is the Peierls mechanism. The oper-

ation of the Peierls mechanism at low temperatures

was already concluded in [15]. In this work, the

Peierls stress for the {001} plane was estimated to

amount to about 4 GPa (5� 10ÿ2 m) from an extra-

polation of the ¯ow stress data then available in a

plot of ln s vs T or to 7.2 GPa from a simpli®ed

Peierls model.

The parameters estimated of the Peierls

mechanism, i.e. the Peierls stress tP and the kink

energy DGk, appear as independent parameters in

equation (18). According to the line tension theory

of the Peierls mechanism (e.g. [7]), however, they

are linked by

DGk � �Ca=p��2UP,maxk�1=2, �20�
with C= 2 and UP,max=tPab/p (see equation (15)).

Taking k = (Kb2/4p)ln(l/5b) for the line tension of

bowed-out segments of length l (30.1 mm), the

numerical values of DGk and tP are not consistent.

The present value of tP then implies that DGk

would be twice as high as it was estimated above.

In a more recent work [16], the line tension model

of the Peierls mechanism is compared with a model

of discrete double-kinks of trapezoidal shape using

di�erent forms of the Peierls potential. Figure 2 of

this paper con®rms the above functional relation

between DGk and tP. However, the constant C may

vary by a factor of about two, depending on a cut-

o� parameter. Using the expression of isotropic

elasticity for the line tension, this wide variation of

C is necessary to explain the low temperature ¯ow

stress data of di�erent b.c.c. metals. Thus, the

inconsistency of the evaluated data in terms of the

simple line tension model of the Peierls mechanism

is certainly a limitation of the theory but does not

contradict the conclusion that the Peierls mechan-

ism controls the ¯ow stress of cubic zirconia at low

temperatures.

The accuracy of both parameters, tP and DGk,

however, is quite di�erent. Determining the Peierls

stress requires a long extrapolation to zero tempera-

ture, the result of which may be in¯uenced, e.g. by

the particular choice of the Peierls potential. Thus,

the obtained Peierls stress of tP=4500 MPa should

be considered a rough estimate. It is about 6% of

K, which is a high but not unreasonably high value.

Similarly, the Peierls potential amounts to about

3% of the line tension. On the other hand, the

kink energy is derived from the transition tempera-

ture Ttr, which follows from a short interpolation

of the experimental data in the transition range.

That makes the estimation of the kink energy
DGk=0.9 eV quite reliable. Using this value, one
may conclude that the kink density along the dislo-

cations is su�ciently high above about 900 K so
that the kink generation does not control the dislo-
cation mobility at higher temperatures. This clearly

shows that the Peierls mechanism with its par-
ameters determined at low temperatures cannot

control the dislocation mobility in the temperature
range between 1381 K and 1708 K, as it was
proposed in [9].

The present approach does not consider the com-
bination of two mechanisms of impeding the dislo-
cation motion a simple addition of the two stress

contributions corresponding to both mechanisms
separately. Such an oversimpli®ed approach does

not take into account the plastic behavior near the
transition from one mechanism controlling the dis-
location mobility to the other one. In Section 4, the

numerical data of the model are estimated by ®tting
the experimental data outside the transition tem-
perature range. A more exact evaluation of the

transition range itself has still to be done on the
basis of equation (13). Nevertheless, the strong vari-

ation of the strain rate sensitivity in the transition
range should correspond to the discussed change of
the mechanisms controlling the dislocation motion.

Most probably, this change is the reason for the
low-temperature brittleness of ZrO2 owing to the
strong increase of the ¯ow stress at T < Ttr.

While the interpretation of the macroscopic
deformation data at temperatures below Ttr by the

Peierls mechanism is quite straightforward, pro-
blems arise for the range between Ttr and about
1100 K. There is strong microscopic evidence that

localized obstacles determine the bowed-out dislo-
cation con®gurations above Ttr (e.g. Figure 6).
However, the nature of these obstacles is not clear

yet. Most of them are supposed to be small precipi-
tates, possibly containing nitrogen [17]. Although
they certainly control also the dislocation mobility,

a single set of parameters of equation (19) was
not found to equally well ®t the ¯ow stress data of

Fig. 2 and the strain rate sensitivity data of Fig. 4.
Besides, if the pre-exponential factor of the
Arrhenius equation (3) is considered constant, as

presently done, the plot of the Gibbs free energy of
activation DG vs temperature T should be a straight
line through the origin. The slope of the line

characterizes the pre-exponential factor. The line
drawn in Fig. 5 corresponds already to a very high

pre-exponential factor. The values of DG above
about 870 K, however, are unreasonably high in
terms of the models of thermally activated dislo-

cation motion. They do not result from a high tem-
perature sensitivity of the ¯ow stress but from a
very low strain rate sensitivity I. This is character-

istic of athermal processes that dominate in the
temperature range around 1250 K [4, 11]. Another
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problem is the dependence of the obstacle distance l
on the e�ective stress t* as shown in Fig. 8. For an

array of a single type of localized obstacles, i.e. of
obstacles of unique strength, this dependence
should be represented by the so-called Friedel

relation [18, 19] (for a review, see [14])

l � al2=3sq f2k=�t*b�g1=3: �21�
Here, a is a numerical factor near unity and lsq
is the so-called square lattice distance. lsq

2 is the
average area of the slip plane per obstacle. Figure 8
is a plot of l vs t*ÿ1/3. The experimental data do

not form a straight line through the origin as it
was expected from equation (21). This discrepancy
certainly has several reasons. Some of the pinning

agents in Fig. 6 can clearly be identi®ed as
jogs. They are labelled by J. It is possible that the
density of jogs along the dislocations increases with
decreasing temperature. Besides, the localized ob-

stacles are not necessarily of unique strength so that
the spectrum of active obstacles may change with
temperature.

In spite of these discrepancies regarding the
details of the mechanism of localized obstacles, the
main result of this work, i.e. the transition from an

extrinsic mechanism controlling the dislocation
motion at temperatures above about 800 K to the
intrinsic lattice friction below that temperature, is
quite obvious.

6. CONCLUSIONS

Ð The ¯ow stress of cubic zirconia for glide on

{001} planes strongly increases below about 800 K.
Ð The strain rate sensitivity of the ¯ow stress

increases by more than one order of magnitude in

a small temperature interval around 800 K and is
constant, or even slightly decreases, below about
600 K.

Ð A model is presented to explain these drastic
changes by the transition from localized obstacles
above 800 K to the Peierls mechanism at lower
temperatures, controlling the dislocation mobility.

Ð The numerical evaluation considers also long-
range internal stresses derived from the dislocation
densities.

Ð Though transmission electron microscopy
proves that localized obstacles determine the shape

of dislocations, details of this mechanism are at
variance.
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