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RPA-CPA theory for magnetism in disordered Heisenberg binary systems
with long-range exchange integrals

G. Bouzerar and P. Bruno
Max-Planck-Institute fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

~Received 7 February 2002; published 28 June 2002!

We present a theory based on Green’s-function formalism to study magnetism in disordered Heisenberg
systems with long-range exchange integrals. Disordered Green’s functions are decoupled within the Tyablicov
scheme and solved with a coherent potential approximation~CPA! method. The CPA method is the extension
of Blackmann-Esterling-Beck approach to systems with an environmental disorder term which uses cumulant
summation of the single-site noncrossing diagrams. The crucial point is that we are able to treat simultaneously
and self-consistently the random-phase approximation~RPA! and CPA loops. It is shown that the summation of
the s-scattering contribution can always be performed analytically, while thep,d, f ••• contributions are diffi-
cult to handle in the case of long-range coupling. To overcome this difficulty we propose and provide a test of
a simplified treatment of these terms. In the case of the three-dimensional disordered nearest-neighbor Heisen-
berg system, a good agreement between the simplified treatment and the full calculation is achieved. Our
theory allows us in particular to calculate the Curie temperature, the spectral functions, and the temperature
dependence of the magnetization of each constituent as a function of concentration of impurity. Additionally it
is shown that a virtual crystal treatment fails even at low impurity concentration.

DOI: 10.1103/PhysRevB.66.014410 PACS number~s!: 75.10.2b, 75.25.1z, 75.50.Cc, 71.10.2w
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I. INTRODUCTION

The coherent potential approximation~CPA! is widely
used to study the effect of disorder in crystals~for reviews
see Refs. 1 and 2!. The CPA was initially developed inde
pendently by Soven3 and Taylor4 to study systems with only
diagonal disorder. Using a 232 formulation, a generaliza
tion to the presence ofoff-diagonaldisorder was provided by
Blackman, Esterling, and Berk~BEB!.5,6 In these approache
the main idea is to replace the system by an effective
dium which is determined by the condition that the averag
T matrix of a single impurity immersed in the effective m
dium is zero. An alternative approach is based on cumu
expansion.7,8 This latter method has the advantage that it c
handle theenvironmentaldisorder term which is characteris
tic of the Goldstone’s systems~phonons, magnons!. The
proper treatment of the environmental disorder term, by
ing the cumulant expansion method, was used by Lage
Stinchcombe,9 who studied the diluted Ising problem (S
51/2). Later, using the 232 matrix method of Blackman
Esterling, and Berk, the method was extended by Whitela10

to the phonon problem. In their calculations the coupling a
locator are fixed quantities and restricted to nearest-neigh
exchange couplings. It is well known that magnetism
clean ferromagnetic systems can be tackled with Gree
function formalism using Tyablicov decoupling procedu
@random-phase approximation~RPA!#. This method goes be
yond a simple mean field since it includes quantum fluct
tions. Additionally, it fulfills the Goldstone and Mermin
Wagner theorems which is not the case of a mean-fi
treatment. In the case of clean systems, combining fi
principle calculations to evaluate the exchange integrals
RPA method, it was shown that one can provide a satis
tory Curie temperature for Co and Fe,11. while, a simple
mean-field calculation largely overestimates the Curie te
0163-1829/2002/66~1!/014410~9!/$20.00 66 0144
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perature. It is our objective to provide in this paper a gen
alization of the RPA method to the disordered systems.
show that by combining in a self-consistent manner the R
method and the CPA treatment of the disorder we are abl
calculate Curie temperature, magnetization of the differ
constituents, spectral weights, etc. The CPA treatmen
done in a similar way as done by Lage and Stinchcombe
by Whitelaw. However, due to the Tyablicov decouplin
scheme for the disordered Green’s functions, the locators
the effective exchange integrals are temperature depen
and have to be determined self-consistently for a given te
perature.

The paper is organized as follows. In the first section
derive after the Tyablicov decoupling scheme the disorde
binary alloy Green’s function which includesdiagonal, off-
diagonal, andenvironmentaldisorder. In Sec. II, we perform
the calculation of the averaged Green’s functions for theA
~respectivelyB) atom. In Sec. III, by generalizing Callen’
formula we derive the equations for the magnetizationsmA ,
mB , and for the Curie temperature. In Sec. IV, we propose
alternative simplified treatment of thep,d,•••. scattering
contribution to the self-energy to the case of system w
long-range exchange coupling. Finally in Sec. V we pres
some numerical results and proceed to a test of our appr
mation of the self-energy contribution of the higher scatt
ing terms.

II. DISORDERED GREEN’S FUNCTION AND RPA
DECOUPLING SCHEME

We study the magnetism in a binary alloyA12cBc ; A and
B can be either magnetic ions or nonmagnetic. We den
their spin, respectively,SA and SB . The total Hamiltonian
reads
©2002 The American Physical Society10-1
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Ĥ5(
i j

2Ji j Si•Sj2(
i

Di~Si
z!22B(

i
gm i~Si

z!, ~1!

where the Ji j and Di are random variables:Ji j 5Ji j
ll8

5Ju i 2 j u
ll8 with the probability Pi

lPj
l8 where Pi

l5cl is the
probability that the sitei is occupied by al atom (cl con-
centration of al atom!.12 Similarly Di5Dl with probability
Pi

l . The exchange integrals are assumed to be long ra
and our study is not restricted to the nearest-neigh
Heisenberg model. The second term which describes an
ropy is only relevant in the case of two-dimensional~2D!
systems to get a nonzero Curie temperatureTc ~Mermin-
Wagner theorem!. However, in the case of 3D systems t
contribution of this term can be neglected. We also inclu
the effect of an external magnetic field.

Let us consider the following retarded Green’s functio

Gi j
12~ t !52 iu~ t !^@Si

1~ t !,Sj
2~0!#&, ~2!

where^•••& denotes the statistical average at temperaturT,

^Ô&5
1

Z
Tr~e2bĤÔ!, ~3!

whereZ5Tr(e2bĤ).
Gi j

12(t)’s Fourier transform in Energy space is

^̂ Si
1 ;Sj

2&&5Gi j
12~v!5E

2`

1`

Gi j
12~ t !eivtdt. ~4!

Its equation of motion reads

vGi j
12~v!52mid i j 1 ^̂ @Si

1 ,H#;Sj
2&&, ~5!

wheremi5^Si
z&, or mi5mA ~respectivelymB) if i 5A ~re-

spectivelyi 5B).
After expanding the second term on the right side of

equality we obtain

~v2gm iB!Gi j
12~v!52mid i j 2(

l
Jil ^̂ Si

zSl
12Si

1Sl
z ;Sj

2&&

1Di ^̂ Si
zSi

11Si
1Si

z&&. ~6!

The next step consists fo decoupling the higher-or
Green’s function. For the second term we use the stand
Tyablicov decoupling13 ~equivalent to RPA!. The last term
due to anisotropy is somehow more complicated since
site correlations are involved. Following the approach d
cussed in Ref. 14 we adopt for this term the Anderson-Ca
decoupling scheme:15

Di ^̂ Si
1Si

z1Si
zSi

1&&52Dig imi , ~7!

where

g i512
1

2S2
@Si~Si11!2^~Si

z!2&#. ~8!

After simplification we find
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Gi j
125gid i j 1gi(

l
F i l Gl j

122egi S (
l

C i l DGi j
12 , ~9!

where f i l 521/2Jil and C i l 521/2Jil (ml /mi) and gi de-
notes the locator:gi5gA

0 ~respectivelygB
0) if i 5A ~respec-

tively i 5B),

gl
0~E!5

ml

m

E2gmlB/2m2Dlgl

ml

m

, ~10!

wherel5A or B. For convenience, we have also introduc
the reduced variableE5v/2m; m denotes the averaged ma
netization:m5(lclml . The term which is proportional toe
comes from the environmental disorder term. This term
crucial to recover the Goldstone mode and requires to
treated very carefully. We have introduced the coefficiene
which is in principle equal to 1, in order to follow the influ
ence of the environmental disorder term during the calcu
tions. Note also that this term appears because of RPA
coupling. If e50 Eq. 9 is analogous to the propagator of
electron in a disordered medium withon-sitepotential and
random long-range hopping termst i l 5F i l ~off-diagonaldis-
order!. In this case the problem can be solved just within t
BEB formalism. However, one should stress that the B
formalism does not apply when the environmental term
present. Note also that in our model the locatorgl

0 , C i l , and
g i are all temperature dependent, thus CPA and RPA lo
have to be treated simultaneously in a self-consistent man

III. CUMULANT EXPANSION METHOD FOR THE
AVERAGED GREEN’S FUNCTIONS

As it was done in Ref. 10, the basic idea is to write Eq.~9!
as a locator expansion in BEB manner.5 We define the ran-
dom variablepi : pi51 if A is at site i or pi50 if i is
occupied by aB ion. Therefore the locator reads

gi5pigA
01~12pi !gB

05gi
A1gi

B ~11!

and

f i l 5piJil
AApl1piJil

AB~12pl !1~12pi !Jil
ABpl

1~12pi !Jil
BB~12pl !. ~12!

Similarly,

C i l 5piJil
AApl1piJil

AB,1~12pl !1~12pi !Jil
AB,2pl

1~12pi !Jil
BB~12pl !, ~13!

whereJil
AB,15(mB /mA)Jil

AB andJil
AB,25(mA /mB)Jil

AB .
The Green’s functions are expressed in terms of a 232

matrix and one gets for the equation of motion
0-2
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Gi j 5S gi
A 0

0 gi
BD d i j 1S gi

A 0

0 gi
BD(

m
S Jim

AA Jim
AB

Jim
AB Jim

BBD S Gm j
AA Gm j

AB

Gm j
BA Gm j

BBD
2eS gA

0 0

0 gB
0 D S JAB,11(

l
~Jil

AA2Jil
AB,1!pl 0

0 JBB1(
l

~Jil
AB,22Jil

BB!pl

D S Gi j
AA Gi j

AB

Gi j
BA Gi j

BBD . ~14!
th
e
t t

t,

fi-

t

ing

er-
We have defined the variablesJAB,15( lJil
AB,1 and JBB

5( lJil
BB .

The aim is to expand this expression into a product of
p factors, which can then be averaged over disorder by
panding into cumulants. For that purpose we separate ou
factors and introduce a new variabler i by pi5r i1c ~where
cA5c). The idea is to separate out the virtual crystal par

gi5r iS gA
0 0

0 2gB
0 D 1S cgA

0 0

0 ~12c!gB
0 D . ~15!

There is still the environmental term which is more dif
cult to handle. As it was done by Lage and Stinchcombe9, by
converting intok space the calculations become easier
perform.

We define the Fourier transform by

Gkk8 5(
i j

exp~ ik•r i !exp~2 ik8•r j !Gi j . ~16!

After some manipulation one gets

Gkk85Gk
vcrk2k81Gk

vcS c 0

0 c21D
3dk2k81Gk

vc 1

N (
q

rk2qVkqGqk8 , ~17!

where the 232 matrix Vkq is defined by

Vkq5S Jq
AA2e~Jk2q

AA 2Jk2q
AB,1! Jq

AB

Jq
AB Jq

BB2e~Jk2q
BB 2Jk2q

AB,2!
D
~18!

and the virtual-crystal Green’s functionGk
vc ,

@Gk
vc#215M02cM1 , ~19!

where the matricesM0 andM1 are

M05S ~gA
0 !21 0

0 2~gB
0 !21D 1S eJAB,1 0

Jk
AB Jk

BB2eJBBD
~20!

and
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M15S Jk
AA2e~JAA2JAB,1! Jk

AB

Jk
AB Jk

BB2e~JBB2JAB,2!
D .

~21!

Equation~17! can be expanded into two subseries,

Gkk85Gkk8
(1)

1Gkk8
(2) , ~22!

where the subseries are, respectively,

Gkk8
(1)

5Gk
vcrk2k81

1

N (
q

Gk
vcVkqGq

vcrk2qrq2k81•••

~23!

and

Gkk8
(2)

5S Gk
vcdk2k81Gk

vcVkk8Gk
vc8rk2k8

1
1

N (
q

Gk
vcVkqGq

vcVqk8Gk
vc8rk2qrq2k81••• D

3S c 0

0 c21D . ~24!

The averaged Green’s function is obtained by averag
over products ofr by expanding into cumulantsPi(c). For
instance,

^rk1
rk2

&5
P2~c!

N
d~k11k2!, ~25!

^rk1
rk2

rk3
&5

P3~c!

N2
d~k11k21k3!, ~26!

and

^rk1
rk2

rk3
rk4

&5
P4~c!

N3
d~k11k21k31k4!

1S P2~c!

N D 2

@d~k11k2!d~k31k4!1d~k1

1k3!d~k21k4!1d~k11k4!d~k21k3!#.

~27!

The cumulants are systematically obtained by the gen
ating function
0-3
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g~x,c!5 ln~12c1cex!5(
i 51

`

Pi~c!
xi

i !
. ~28!

From this equation one getsP1(c)5c, P2(c)5c(12c),
P3(c)5c(12c)(122c)•••.

In order to get a closed form for the series we have
make the usual CPA approximation which consists in ke
ing only the diagrams with no crossings of external lines.
it is was shown by Yonezawa7 and by Leath,8 the self-
consistency requires a modification of the semi-invariants
be attributed to each vertex. In other words it means that
cumulantsPi(c) have to be replaced by a new set of coe
cientsQi(c) which satisfies the relation

Q1~c!1Q2~c!x1Q3~c!x2
•••

5sc~x!5
c

12x@12sc~x!#
, ~29!

where the modified cumulants are

Qi~c!5 (
m51

i S ~21!m21
~ i 1m22!!

m! ~ i 2m!! ~m21!! D cm. ~30!

In the single-site approximation, after averaging, one g
for the averaged 232 Green’s-function matrix

Ḡkk85Ḡkdk2k85G̃kF S c 0

0 c21D 1DkG , ~31!

where

G̃k5@~Gk
vc!212Sk#21. ~32!

Sk denotes the self-energy; it is given by

Sk5Q2

1

N (
q

VkqG̃qVqk

1Q3

1

N2 (
q,t

VkqG̃qVqtG̃tVtk1••• ~33!

and

Dk5Q2

1

N (
q

VkqG̃q1Q3

1

N2 (
q,t

VkqG̃qVqtG̃t1•••.

~34!

The termDk which is very similar to the self-energy i
called end correction.9 Note that, inside the CPA loop, Eqs
~32! and ~33! are the only two equations which have to
solved self-consistently. To summarize, in Fig. 1 we show
diagrammatic representation of the previous set of equati

A. Evaluation of Dk

It is convenient for the calculations to start by defining

g i~q!5
1

zi
(
r l
i

exp~ iqr l
i !. ~35!
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The sumr l
i runs over thei th type of neighbors of thei th

shell Ei from a given site 0 andzi is the total number of
neighbors in the shell. Note that from now on( i will corre-
spond to a summation over the different shells. With t
definition it follows immediately that,

JAA~q!5(
i

Joi
AAzig i~q!. ~36!

We get a similar expression forJBB(q) andJAB(q)•••.
It is convenient to decompose the matrixVkq into two

terms,

Vkq5Vkq
(1)1Vkq

(2) , ~37!

where

Vkq
(1)5(

i
Vkq

(1),i5(
i

@A i2eDig i~k!#g i~q! ~38!

and

Vkq
(2)5(

i
Vkq

(2),i5eDi@g i~k!g i~q!2g i~kÀq!#. ~39!

A i andDi are the following 2x2 matrices:

A i5S Joi
AA Joi

AB

Joi
AB Joi

BBD zi , ~40!

Di5S Joi
AA2Joi

AB,1 0

0 Joi
BB2Joi

AB,2D zi . ~41!

By using the following very useful property,16 if f (r ) is a
function which is equivaluated at each siter i of the i th shell
Ei , then

1

N (
q

g i~kÀq! f ~q!5g i~k!
1

N (
q

g i~q! f ~q!. ~42!

By using Eq.~42!, we find significant simplifications in
the calculations. Indeed, all the terms of the sum involving

FIG. 1. Diagrammatic representation of the averaged Gre

function calculated within the CPA loop.Ḡ is the total averaged
Green’s function,Sk is the self-energy, andDk the end-correction.
0-4
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least one factorV(2) reduces to zero. Thus the end correcti
term does not explicitly depend on the environmental dis
der term.

After calculation we finally get

Dk5(
i j

Vk,0
(1),i@Q2I1Q3M1Q4M21•••# i j F

j . ~43!

Like V(1),i , Fj is a 232 matrix, andM a Ns3Ns matrix,
where each matrix elementM i j is a 232 matrix.Ns denotes
the number of considered shells.V(1),i is given in Eq.~38!
andFj andM i j are defined by

Fi5
1

N (
q

g i~q!G̃q ~44!

and

M i j 5
1

N (
q

g i~q!G̃qVq,0
(1),j . ~45!

The sum in Eq.~43! is obtained after diagonalization o
the 2Ns32Ns matrix M5P21MdiagP,

Q2I1Q3M1Q4M21•••5P21$@sc~Mdiag!

2Q1I #Mdiag
21 %P. ~46!

The function sc was previously defined in Eq.~29!, and
@sc(Mdiag)# i j 5sc(l i)d i j where l i are the eigenvalues o
M . Hence we get for the end correction

Dk5(
i j

Vk,0
(1),i~P21$@sc~Mdiag!2Q1I #Mdiag

21 %P! i j F
j .

~47!

Let us now proceed further and evaluate the self-energySk .

B. Evaluation of Sk

Using the remarks made in the previous section, we fi
that the self-energy can be written

Sk5Sk
(1)1Sk

(2) , ~48!

whereSk
(1) ~respectivelySk

(2)) is obtained by replacingVk,q

by Vk,q
(1) ~respectivelyVk,q

(2)). Indeed we find that each term o
the sum containing bothV(1) andV(2) reduces to zero. After
simplifications we obtain forSk

(1) ,

S(1)~k!5(
i , j

V i
k,0@Q1I1Q2M1Q3M21•••# i j G

j~k!,

~49!

whereGj (k)5g j (k)(0
1

1
0).

As previously done for the end correction, using the fun
tion sc(z) defined in Eq.~29! we obtain immediately

Q1I1Q2M1Q3M21•••5P21@s~Mdiag!#P. ~50!

Note that we have included in the sum the first-order te
depending onc (Q1) which comes from the virtual crysta
Green’s functionGq

vc .
01441
r-

d

-

In general, the evaluation of the second termS(2)(k) is
much more complicated. One can get an analytical form o
for simple cases. For example, if the exchange integrals
restricted to only nearest neighbors, the complete summa
of the sum can be performed by using the space-group s
metry of the lattice.9,17 In the case of nearest-neighbo
Heisenberg system one gets

Sk
(2)~E!5Cp@12g~2k!#1Cd@11g~2k!22g~k!2#,

~51!

where

Cp,d52
e

2
~Q1I1Q2M p,d1Q3M p,d

2 1••• !D1 . ~52!

Cp,d are evaluated in the same way that it was done
Sk

(1)(E) and Dk(E). The matricesD1 , M p , and Md are,
respectively,

D15S JAA2JAB,1 0

0 JBB2JAB,2D z, ~53!

M p52
e

6
D1G̃p , ~54!

Md52
e

4
D1G̃d , ~55!

where G̃p5(1/N)(q@12g(2q)#G̃(q) and G̃d5(1/N)(q@1
1g(2q)22g(q)2#G̃(q).

Note that the virtual crystal approximation forSk
(2)(E)

consists of taking in Eq.~52! the first term only. Then it
follows immediately that,

Cp
VCA5Cd

VCA52
ec

2
D1 ~56!

which substituted in Eq.~51! leads to

Sk
(2),VCA~E!52ecD1@12g~k!2#. ~57!

Note thatSk
(2),VCA is energy independent. It is also importa

to stress that at the lowest order the self-consistency forS(2)

is not required.
Most of the ferromagnetic materials are of itinerant typ

which means that the exchange integrals between diffe
localized magnetic ions are long range and driven by
polarization of the conduction electrons gas as it is for
Ruderman-Kittel-Kasuya-Yosida ~RKKY ! mechanism.18

Analytically, the generalization of the previous calculatio
to the more interesting case whereJi j are long ranged is no
an easy task. However, by truncating the sum, the summa
can be performed numerically. It is important to note th
S(2)(k) is ~i! proportional toe which means that it originate
only from the environmental disorder term, and~ii ! each
term of the sum vanishes in the long-wavelength lim
S(2)(kÄ0)50. This implies that even after truncation of th
sum at any order, the Goldstone theorem remains fulfill
Thus the long-wavelength magnons are always treated p
0-5



r
e
at

o
o
to

ld
re
on

i-
g
on
.

tl

o

g-
-

on

b

e
la

nc-

.

nc-
i-
te

of
-

y is

s

f a
ing

ds

-
ous

G. BOUZERAR AND P. BRUNO PHYSICAL REVIEW B66, 014410 ~2002!
erly. Furthermore, sinceS(2)(k) corresponds to higher-orde
scattering terms (p,d, f ,•••) it is natural to expect that thes
terms should not affect the Curie temperature in a dram
way. In other words, we expect that a truncation ofS(2)(k)
sum to the first few terms should already provide a go
approximation of Curie temperature compared to the one
tained with the complete series. However, it is crucial
consider at least the lowest-order term~the virtual crystal
contribution!, otherwise even in the clean limit one wou
not recover the correct result and the Goldstone’s theo
would be violated. If we consider the lower approximati
S(2'SVCA

(2) , we get the expected results in the limitc50
and c51. It is not a priori clear whether such an approx
mation of S(2)(k) to the lowest order provides satisfyin
results for the Curie temperature at moderate impurity c
centration. Such an approximation will be tested later on

To conclude this section, the complete averaged 232
Green’s function is obtained after solving self-consisten
the set of Eqs.~32! and ~33! within the CPA loop and then
using Eqs.~31! and~34! to getDk andḠk. However, as was
already mentioned in the introduction, the problem is n
solved until we are able to calculate the locatorsgl

0 and the
exchanged integralsC i l which depend on the averaged ma
netizationml . The determination ofml has to be done self
consistently in an additional external loop~RPA!.

IV. MAGNETIZATION AND CURIE TEMPERATURE

We assume that the averaged 232 Green’s function ma-
trix Ḡ(k,E) is calculated according to the previous secti
within the CPA loop. We show how fromḠl(k,E), l5A or
B we can get the missing self-consistent equations~RPA
loop! to get the temperature-dependent locatorgl

0 and the
exchange integralsC i l . This will allow us to calculate the
element-resolved magnetizationsml5^Sl

z& as a function of
temperature and the Curie temperature. It was shown
Callen, in the case of a clean system~pureA or B), that the
magnetization can be expressed in the following way:16

ml5
~Sl2Fl!~11Fl!2Sl111~Sl111Fl!Fl

2Sl11

~11Fl!2Sl112Fl
2Sl11 ,

~58!

whereFl5(1/N)(qFl(q) andFl(q) is defined as

Fl~q!5E
2`

1`

dE
Al~q,E!

e2mE/kT21
, ~59!

where

Al~q,E!5
21

p
ImGl

12~q,E! ~60!

is the spectral function.
Note also that the Callen’s approach to get the magn

zation allows us to derive a lot of local spin-spin corre
tions; they are only expressed as a function ofFl . For in-
stance,
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^~Sl
z !2&5S~S11!2ml~112Fl! ~61!

which is needed to determine the anisotropy parametersgl

given in Eq.~8!.
In the case of clean systems, the normalized spectral fu

tion Al(q,E) is given by

Al~q,E!5d@E2E~q!#. ~62!

E(q)5v(q)/2m andv(q) denotes the magnon dispersion
In the case of a binary~or multicomponent! alloy this

formula can be generalized in the following way:

Al~q,E!5
21

p

ImḠl
12~q,E!

clxl
, ~63!

wherecl is the concentration of thel ion and we have for
convenience introduced aT-dependent reduced variablexl

5ml /m.
Note that in the presence of impurities the spectral fu

tion is no longer ad function, but because of the finite imag
nary part of the self-energy it will consist of peaks of fini
width with a more or less Lorentzian shape. In the case
binary alloys we expect for a givenq two peaks, more gen
erally n peaks for ann-component alloy.

For a given temperature the complete self-consistenc
obtained by~i! providing good starting values forml , then
~ii ! performing the CPA loop which provideḠ(k,E), and
finally ~ii ! going into the RPA loop by using Eqs.~58!, ~61!,
and ~63! one gets the new values ofml and ^(Sl

z)2& which
are re-injected in the locatorsgl

0 , the exchange integral
C i l , andgl .

Let us now show how to get the Curie temperature o
disordered Heisenberg binary alloy. We start by expand
Eq. ~59! in the limit T→TC ~i.e., ml→0). We immediately
get

Fl'
kTC

2m
Fl , ~64!

where

Fl5
1

N (
q
E

2`

1`

dE
Al~q,E!

E
. ~65!

After expanding Eq.~58! as a function of 1/Fl one obtains

ml5
Sl~Sl11!

3

2m

kTC

1

Fl
. ~66!

Since the averaged magnetizationm is defined bym
5(lclml , combining the two previous equations one fin
for the Curie temperature

kBTC5
2

3 (
l

cl

Sl~Sl11!

Fl
. ~67!

Equation~67! is the RPA generalization of the Curie tem
perature to a multicomponent disordered alloy. The previ
0-6



A
f

gy
b
ct
ow
ste

rn
fo

a
e

t

-
in
is

or

e

sly,
l
is

al
-
it

ll
ore

g
nly
e-

for

A
the
s

ill
en-

the
the

am-

r
tio

ted
bor
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equation provides a direct measure of the weightwl

5(1/kBTC)$cl@Sl(Sl11)/Fl#% of each l element to the
Curie temperature.

V. NUMERICAL RESULTS

In this section we provide an illustration of the RPA-CP
theory and a test for the approximation suggested above
the higher-order scattering contribution of the self-ener
For simplicity, we consider the case of a 3D disordered
nary alloy on a simple cubic lattice. Additionally we restri
the exchange integrals to nearest neighbor only which all
us to test the validity of the approximation scheme sugge
in Sec. III before estimatingS2. For further simplifications
of the calculations we consider the case of a zero exte
field and neglect the anisotropy term which is reasonable
a 3D system.

In Fig. 2, we have plotted the Curie temperature
a function of c obtained with the full CPA treatment; th
S (2) part of the self-energy is calculated exactly~full sum-
mation of the sum!. Note that pureA ~respextivelyB) corre-
sponds to c51 ~respectively c50). Depending on the
chosen set of parametersTC shows ~i! a minimum
@JABSASB<min(JAASA

2 ,JBBSB
2)#, ~ii ! a maximum @JABSASB

>max(JAASA
2 ,JBBSB

2)#, or ~iii ! is monotonic @min(JAASA
2 ,

JBBSB
2)<JABSASB<max(JAASA

2 ,JBBSB
2)#. These three differen

cases are shown in the figure.
As already mentioned in Sec. III, it is difficult to perform

the full summation ofS (2) for the case of long-range ex
change integrals which is the case of many realistic and
teresting systems, for example permalloy. As it was d
cussed previously, the simplest approximation consists
keeping only the lowest-order term of the sum~virtual crys-
tal approximation!. In the case of the nearest-neighb
Heisenberg system,S (2) andS (2),VCA are respectively given
in Eqs. ~51! and ~57!. In Fig. 3 we have plotted the Curi

FIG. 2. Curie temperatureTC for disordered nearest-neighbo
Heisenberg ferromagnet as a function of the impurity concentra
c(A). The parameters areSA52, SB53, JAA520.2, and JBB

520.15. We have chosen three different values forJAB .
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temperature calculated with~i! a full CPA treatment,~ii ! the
one performed with the approximation discussed previou
S(2)5SVCA

(2) , and ~iii ! the one obtained with virtual crysta
approximation. In case~iii !, the averaged Green’s function

Ḡk5Gk
vcS c 0

0 c21D ~68!

since in VCADk50.
The comparison between the full CPA and the virtu

crystal approximation~VCA! shows that the Curie tempera
ture differs significantly. Even very close to the clean lim
the VCA appears to be inappropriate, for instance forc
50.1 we observe thatTC

VCA is about 35% larger than the fu
CPA calculated one. Note that the disagreement is even m
pronounced in the vicinity ofc50 thanc51. This can be
understood in the following way: sinceJAB53JBB51.5JAA
andSA5SB a substitution of aB site by anA site ~close to
c50) introduces a change of energy~with respect to the
pure case! two times larger than a substitution of aB site by
anA site nearc51. As discussed previously, it is interestin
to compare the Curie temperature where the VCA is o
done onS(2) (Tc

2,VCA). We observe a good agreement b
tween the full CPA calculatedTC and Tc

2,VCA , in the whole
range of concentration; the agreement is even excellent
c>0.6. A comparison betweenTc

VCA andTc
2,VCA in the vicin-

ity of c50 andc51 shows that the reason why the VC
approximation breaks down is essentially because of
crude approximation of thes part of the scattering. Thus thi
figure validates a simple treatment ofS(2). It is also expected
that including only a few additional terms of the sum w
lead to an excellent agreement in the whole range of conc
tration.

In Fig. 4 we show the temperature dependence of
element-resolved magnetizations. In order to demonstrate
versatility of our approach, we have chosen a set of par

n

FIG. 3. Comparison between the Curie temperature calcula
as function of the impurity concentration for a nearest-neigh
Heisenberg ferromagnet.~a! The full CPA calculation,~b! approxi-
mation forS(2)5SVCA

(2) , and~c! the virtual crystal calculation. The
chosen set of parameters is written in the figure.
0-7
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eters which mimics a ferrimagnetic behavior with compe
sation point. Additionally, the parameters are such thatTC

A

@TC
B . While the temperature dependence ofmA follows a

standard behavior,mB(T) starts to strongly decrease even
low temperature. For example, atT'2.5, mA is reduced by
less that 20% whilemB50.5mB(0). As a result of our
choice of parameters we see that the averaged magnetiz
mav5ucAmA1cBmBu is nonmonotonic and vanishes for a
intermediate temperature value~compensation point!. It is
found that the function (mB /mA)(T) decreases monoton

FIG. 5. Magnetic spectral densityrl(E)5ImGl(E)/xlcl as a
function of E. The continuous line corresponds tol5A and the
dashed line tol5B for three different concentration ofA: c
50.05, 0.5, and 0.95. The parameters areSA52, Sb53, JAA

520.2, JBB520.05,JAB520.15, andT'TC .

FIG. 4. MagnetizationsmA ,2mB , and averaged onecav
5ucAmA1cbmBu as a function of temperature. The spins areSA

51 and Sb53, the exchange couplings areJAA521.2, JBB

520.10, and an antiferromagnetic coupling betweenA and B is
takenJAB50.15. The concentration ofA atoms iscA50.70.
01441
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cally with temperature. As a result, and since atT50,
mB/mA5SB /SA , thus if SB /SA<cA /cB then mav will not
have a compensation point. However, the condition t
SB /SA>cA /cB is not sufficient to get one, it is also require
that mB /mA(TC)<cA /cB .

In Fig. 5 we now show the magnon spectral dens
~MSD! rl(E)5ImGl(E)/xlcl as a function ofE. We con-
sider three different cases: almost cleanA and B @~a! and
~c!#, and the intermediate situationcA5cB50.5. In both
Figs. 5~a! and~c! we observe that the MSD is very similar t
the clean case. This is clearer in case~c! than~a!; it is easy to
understand that when dopingA with B the difference in en-
ergy with the undoped case is only of order 10
@JAA(SA)250.8 andJABSASB50.9# while when dopingB
with A the change is more drastic~about 100%). To get a
similar MSD to Fig. 5~c! for a weakly dopedB sample, one
should takec'0.005.

In Fig. 6 we show the spectral functionSl(q,E) as a
function of energy for different values of the momentumq.
This quantity is more interesting that the integrated MS
since it provides direct information about the elementary
citation dispersions and their spectral weight. Additionally
is directly related to inelastic neutron-scattering measu
ments. Let us now briefly discuss Fig. 6. At preciselyq50
momentum, in bothSl5A,B , we observe two peak structure
~i! a well defined peak19 at E50, as expected since ou

FIG. 6. Spectral functionSl(q,E)52(1/p)ImGl(q,E) as a
function of E for different momentumq whereq5q(1,1,1). The
continuous line corresponds tol5A and the dashed line tol5B.
The spins areSA52 andSb53, the exchange couplings areJAA

520.2, JBB520.10, JAB520.15, andcA50.50. We have taken
T'TC . For clarity of the picture a small imaginary parth50.1
have been added.
0-8
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theory fulfills the Goldstone theorem, and~ii ! a very broad
one at intermediate energyE'1. For intermediate values o
the momentum, it is difficult to separate the peak and one
a single broad peak. We see clearly that the peaks are c
ing each other atq'(p/2)(1,1,1). Note that due to~i! the
different spectral weight of the peaks and to the closenes
their location, the single peak-structure which is observe
q5p/2 is located at different energies forA andB. From this
figure we see also that the dispersion of the second pea
almost flatE2(q)'1, while the Goldstone modeE1(q) ~Ref.
20! goes fromE50 to Emax'2 when moving in the (1,1,1)
direction.

VI. CONCLUSION

In conclusion, we have presented in this paper a the
based on Green’s-function formalism to study magnetism
.
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disordered Heisenberg systems with long-range exchang
tegrals. The disordered Green’s function are decoup
within the Tyablicov procedure and the disorder~diagonal,
off-diagonal, and environmental! is treated with a 232
modified cumulant CPA approach. The crucial point is th
we are able to treat simultaneously and self-consistently
RPA and CPA loops. Our theory allows us in particular
calculate Curie temperature, spectral functions, and temp
ture dependence of the magnetization for each element
function of concentration of impurity. Additionally, we hav
proposed a simplified treatment of thep,d, f •••. contribu-
tion of the self-energy which is difficult to handle in the ca
of long-range exchange integrals. The approximation w
tested successfully on 3D disordered nearest-neigh
Heisenberg systems. Combined with first-principle calcu
tions which can provide the exchange integrals, this met
appears to be very promising to study magnetism in dis
dered systems.
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