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RPA-CPA theory for magnetism in disordered Heisenberg binary systems
with long-range exchange integrals
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We present a theory based on Green's-function formalism to study magnetism in disordered Heisenberg
systems with long-range exchange integrals. Disordered Green'’s functions are decoupled within the Tyablicov
scheme and solved with a coherent potential approximd@##a) method. The CPA method is the extension
of Blackmann-Esterling-Beck approach to systems with an environmental disorder term which uses cumulant
summation of the single-site noncrossing diagrams. The crucial point is that we are able to treat simultaneously
and self-consistently the random-phase approximdf&#A) and CPA loops. It is shown that the summation of
the s-scattering contribution can always be performed analytically, whileptlef - - - contributions are diffi-
cult to handle in the case of long-range coupling. To overcome this difficulty we propose and provide a test of
a simplified treatment of these terms. In the case of the three-dimensional disordered nearest-neighbor Heisen-
berg system, a good agreement between the simplified treatment and the full calculation is achieved. Our
theory allows us in particular to calculate the Curie temperature, the spectral functions, and the temperature
dependence of the magnetization of each constituent as a function of concentration of impurity. Additionally it
is shown that a virtual crystal treatment fails even at low impurity concentration.
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[. INTRODUCTION perature. It is our objective to provide in this paper a gener-
alization of the RPA method to the disordered systems. We
The coherent potential approximatiqCPA) is widely  show that by combining in a self-consistent manner the RPA
used to study the effect of disorder in crystéisr reviews method and the CPA treatment of the disorder we are able to
see Refs. 1 and)2The CPA was initially developed inde- calculate Curie temperature, magnetization of the different
pendently by Sovehand Taylof to study systems with only constituents, spectral weights, etc. The CPA treatment is
diagonal disorder. Using a 2 formulation, a generaliza- done in a similar way as done by Lage and Stinchcombe and
tion to the presence aiff-diagonaldisorder was provided by by Whitelaw. However, due to the Tyablicov decoupling
Blackman, Esterling, and BefBEB).>® In these approaches scheme for the disordered Green’s functions, the locators and
the main idea is to replace the system by an effective methe effective exchange integrals are temperature dependent
dium which is determined by the condition that the average@nd have to be determined self-consistently for a given tem-
T matrix of a single impurity immersed in the effective me- perature.
dium is zero. An alternative approach is based on cumulant The paper is organized as follows. In the first section we
expansior:® This latter method has the advantage that it carderive after the Tyablicov decoupling scheme the disordered
handle theenvironmentabisorder term which is characteris- binary alloy Green’s function which includeagonal off-
tic of the Goldstone’s system§honons, magnons The diagonal andenvironmentadisorder. In Sec. Il, we perform
proper treatment of the environmental disorder term, by usthe calculation of the averaged Green'’s functions for Ahe
ing the cumulant expansion method, was used by Lage an@espectivelyB) atom. In Sec. lll, by generalizing Callen’s
Stinchcombé, who studied the diluted Ising problenS( formula we derive the equations for the magnetizations
=1/2). Later, using the 2 matrix method of Blackman, mg, and for the Curie temperature. In Sec. IV, we propose an
Esterling, and Berk, the method was extended by Whit¥law alternative simplified treatment of thg,d, - - -. scattering
to the phonon problem. In their calculations the coupling anctontribution to the self-energy to the case of system with
locator are fixed quantities and restricted to nearest-neighbdong-range exchange coupling. Finally in Sec. V we present
exchange couplings. It is well known that magnetism insome numerical results and proceed to a test of our approxi-
clean ferromagnetic systems can be tackled with Green’smation of the self-energy contribution of the higher scatter-
function formalism using Tyablicov decoupling procedureing terms.
[random-phase approximati¢RPA)]. This method goes be-
yond a simple mean field since it includes quantum fluctua-
tions. Additionally, it f_ulfill; the Goldstone and Mermin.- Il DISORDERED GREEN'S EUNCTION AND RPA
Wagner theorems which is not the case of a mgan-fleld DECOUPLING SCHEME
treatment. In the case of clean systems, combining first-
principle calculations to evaluate the exchange integrals and We study the magnetism in a binary allgy _.B.; A and
RPA method, it was shown that one can provide a satisfacB can be either magnetic ions or nonmagnetic. We denote
tory Curie temperature for Co and Ee,while, a simple their spin, respectivelyS, and Sg. The total Hamiltonian
mean-field calculation largely overestimates the Curie temreads
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F|=; —Jussj—Z Di<SF>2—BZ gui(SH, (1)

where the J;; and D; are random variablesJ;; =Ji’}w
=J}Y| with the probability P}P}" where P}=c, is the
probability that the site is occupied by a. atom (c, con-
centration of a\ atom).'? Similarly D;=D, with probability
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Gi-}—_:gigij+gi2 q)ntjr__Ggi(El \I’il)Gi-}—_ , (9

where ¢i| = — 1/2‘Ji| and ‘P” =— 1/2Ji|(m| /ml) and (o] de-
notes the locatorg;=g3 (respectivelygd) if i=A (respec-
tively i =B),

P}. The exchange integrals are assumed to be long range, m,

and our study is not restricted to the nearest-neighbor —
Heisenberg model. The second term which describes anisot-

ropy is only relevant in the case of two-dimensioigaD)
systems to get a nonzero Curie temperatlige(Mermin-

Wagner theorem However, in the case of 3D systems the

m

9\(E)= — (10
E—gu\B/2m— DA’)’AF

contribution of this term can be neglected. We also includeyhere\ = A or B. For convenience, we have also introduced

the effect of an external magnetic field.

Let us consider the following retarded Green’s function:

G () =—i16(([S"(1),S (0)]), 2)

where(- - -) denotes the statistical average at temperafure

()= %Tr(e‘ﬁ“é), )
wherez=Tr(e #H).
Gﬁ’(t)’s Fourier transform in Energy space is
(S":S )=Gj (w)= ff:emt)eiwtdt. (4)
Its equation of motion reads
oG (w)=2m;5;+{[S" HL;S ) 5

where m;=(S/), or m;=mj, (respectivelymg) if i=A (re-
spectivelyi = B).

After expanding the second term on the right side of the

equality we obtain
(0=gpiB)G| (w)=2m;d;— 2 J(S'S' ~S ;8 )

+Di(S'S" + S S (6)

the reduced variable = w/2m; m denotes the averaged mag-
netization:m= X, c,m, . The term which is proportional te
comes from the environmental disorder term. This term is
crucial to recover the Goldstone mode and requires to be
treated very carefully. We have introduced the coefficient
which is in principle equal to 1, in order to follow the influ-
ence of the environmental disorder term during the calcula-
tions. Note also that this term appears because of RPA de-
coupling. If e=0 Eqg. 9 is analogous to the propagator of an
electron in a disordered medium witn-site potential and
random long-range hopping terrjs= ®;, (off-diagonaldis-
ordep. In this case the problem can be solved just within the
BEB formalism. However, one should stress that the BEB
formalism does not apply when the environmental term is
present. Note also that in our model the Iocgg)r V¥, , and

v; are all temperature dependent, thus CPA and RPA loops
have to be treated simultaneously in a self-consistent manner.

IIl. CUMULANT EXPANSION METHOD FOR THE
AVERAGED GREEN’'S FUNCTIONS

As it was done in Ref. 10, the basic idea is to write .
as a locator expansion in BEB mannaie define the ran-
dom variablep;: p;=1 if A is at sitei or p;=0 if i is

occupied by & ion. Therefore the locator reads

gi=piga+(1-p)gs=gi+g? (11)

The next step consists fo decoupling the higher-ordegngd
Green’s function. For the second term we use the standard

Tyablicov decoupling’® (equivalent to RPA The last term
due to anisotropy is somehow more complicated since on-
site correlations are involved. Following the approach dis-

& =P e+ pidnB(L—pp) +(1—pi) I} ®p
+(1-p)J%(1-p)). (12)

cussed in Ref. 14 we adopt for this term the Anderson-Callen

decoupling schem&
Di(S" S{+S/S™ )=2D;vim;, (7
where
'_1—i (S+1)—((SH)?) 8
Yi— ZSZ[Si S < )]

After simplification we find

Similarly,
Wi =piJi i+ P B L= py) + (1-p) 34 52py
+(1=-p) 3G (1-py), (13
whereJ) 8= (mg/m,)J4® and 752= (m,/mg) JB.

The Green’s functions are expressed in terms ofxa22
matrix and one gets for the equation of motion
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o 0\ (gt o) (I A ek o
Gjj= g8 5+ g8 E

0 g 0 ¢/ \Jw Iw/\Gnl Gm

0 JABLLY (‘]ﬁA_JﬁB'l)pl 0 AA  ~AB
— € .

0 0 GBA BB

o] 0 JBB+2I (J{-I\B,Z_Jil?B)pl ij ij

|
We hBagve defined the variable3*®!=3,34® and JBB JPA_ g(JAA— JABY e
=i . o M= Jpe IBB— (358 JAB) |
The aim is to expand this expression into a product of the k K 21)

p factors, which can then be averaged over disorder by ex-
panding into cumulants. For that purpose we separate out tiequation(17) can be expanded into two subseries,
factors and introduce a new variahlgby p;= p;+c (where

. . ] G, = G(l) + G(Z) (22)
ca=C). The idea is to separate out the virtual crystal part, Kk’ = Skir T SFkkr s

0 0 where the subseries are, respectively,
gn O ) (CQA 0

0 —g 0 (1—c)g%)‘ (15

gi:Pi( . 1
G(kk)’: ﬁcpk—kﬂLN Eq: Gk VG Pk—qPq—k - - -

There is still the environmental term which is more diffi- (23
cult to handle. As it was done by Lage and Stinchcombe  and
converting intok space the calculations become easier to

perform. @ —| gres GOV G
We define the Fourier transform by kk? 7| Pk Tk—k! k Vkk' Sk Pk-k’
! H S 1 ve ve vCr
Gkk:; expik-ri)exp(—ik’-r;)G;; . (16) N % Gk VigGq Vak' Gk pr—-gPg—k + - -
. . C 0
After some manipulation one gets % (24)
0 c—1/°
0 , L . .
G =GYpy_yr + GL° ) The averaged Green’s function is obtained by averaging
0 c-1 over products op by expanding into cumulants;(c). For
1 instance,
X 5k—k'+GﬁCN % Pk-qVkqGak' » (17) P,(c)
(Pk,PK,) = N Okatka), (25)
where the X2 matrixV,q is defined by
P3(c)
AA AA AB,L AB 3
[ Jq" Ui ) I (P,PIyPRy) = —— Bkt Kotka), (26)
qu_ JAB JBB_ G(JBB __1AB2 N
q q k—g~ Yk—q
(18 and
and the virtual-crystal Green’s functid;°, P,(c)
(PK,PK,PKyPK,) = N O(kytkatkatky)
[Gk°] *=Mqo—cMy, (19
. Pa(c)\?
where the matriceM, andM, are + N [ 8(kq+ky) d(kat+ky)+ S(ky
. 0 . eJABL 0 +k3) 8(Kat+Kg) + O(Ky+kg) S(kptkg)].
BRI (- R B R A Al (27)
(20) . :
The cumulants are systematically obtained by the gener-
and ating function
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* X Gy G’ Gy G’ Gy° Gy’ Gy°
g(x,c)=In(1—c+ce) =2 . (28 Y- +—l | Erds

. . Vig 2 Vak . Vat
From this equation one get8;(c)=c, P,(c)=c(l—c), A = Lone ¥ Anas, Fee
Ps(c)=c(1—c)(1-2c)---. A & & &

In order to get a closed form for the series we have to
make the usual CPA approximation which consists in keep- Via ™ Vo s A
ing only the diagrams with no crossings of external lines. As Bl = Ay * A ¥ aridlnminin ™00
it is was shown by Yonezawaand by Leatt, the self- Z Gq
consistency requires a modification of the semi-invariants to - -
be attributed to each vertex. In other words it means that the — — E‘{_,W][ o ¥+ “Gﬁf‘A
Gy Gy Kk

cumulantsP;(c) have to be replaced by a new set of coeffi-

cientsQ;(c) which satisfies the relation FIG. 1. Diagrammatic representation of the averaged Green's

Ql(C)+Q2(C)X+Q3(C)X2- . functlo’n calcglated _W|th|n the CPA looft is the total avergged
Green’s function, is the self-energy, and, the end-correction.

c
=0c(X)= 1—X[1—0x)]’ (29 The sumr| runs over theth type of neighbors of theth
. shell E; from a given site 0 and; is the total number of
where the modified cumulants are neighbors in the shell. Note that from now &n will corre-
i (i+m—2)! spond to a summation over the different shells. With this

m_ (30) definition it follows immediately that,

. = _1\ym-1
Qie)=2, <( D G —mim=11/°
In the single-site approximation, after averaging, one gets ()= Z I5izivi(9). (36)
for the averaged 2 2 Green’s-function matrix
We get a similar expression fdf8(q) andJ*B(q)- - -

o o c 0 . . . .
_ = It is convenient to decompose the math, into two
where Vig= V(1)+ Vfé) , (37)
G =[(GY)*-3,]7% (32 where
3 denotes the self-energy; it is given by _
. Vid=2 V@'=2 [A-eDim(ln@ (39
Ek:QZN 2 quéqvqk
q and
Qs s 2 VigGaValiVut - (33) Vid=2 V@' =eDilv(k v - vik=a)]. (39
and A; andD; are the following 2x2 matrices:
1 ~ 1 ~ ~ JAA  gAB
= —_ —_— N ol ol
Ac=Qa }q‘, quGq+Q3N2 % VigGqVaGit - - - A=| e JB_B) z. (40
(34)
The termA, which is very similar to the self-energy is _ JQiA_JQiB'l 0
called end correctio”.Note that, inside the CPA loop, Egs. Di= 0 JBB_gAB2 Zi (4D)

(32) and (33) are the only two equations which have to be
solved self-consistently. To summarize, in Fig. 1 we show &y using the following very useful propert§,if f(r) is a
diagrammatic representation of the previous set of equationfunction which is equivaluated at each siteof theith shell

E;, then
A. Evaluation of A
It is convenient for the calculations to start by defining % > yi(k—q)f(q)= )% > yvi(f(q). (42
q q
1 o
yi(@)== 2. exp(iqry). (39 By using Eq.(42), we find significant simplifications in

y4 i . ,
b the calculations. Indeed, all the terms of the sum involving at
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least one facto¥(? reduces to zero. Thus the end correction

PHYSICAL REVIEW B6, 014410(2002

In general, the evaluation of the second te¥f?)(k) is

term does not explicitly depend on the environmental disormuch more complicated. One can get an analytical form only

der term.
After calculation we finally get

Ak=2 V(k%c))'i[Qzl +QsM+ QM2+ - ];F. (43
0]

Like V(DI Fl is a 2x2 matrix, andM a N¢x N matrix,

where each matrix elemeM;; is a 2X2 matrix. N denotes
the number of considered shelé)! is given in Eq.(38)

andF' andM;; are defined by

1 ~
F=y 2 %(0)Gq (44)

q
and

1 - :
Mij=§ 2 n(@CVGY (45

The sum in Eq(43) is obtained after diagonalization of

the 2Ngx 2Ng matrix M =P~ *M 5P,
Q21 +QsM +Q4M2+ o :Pil{[UC(Mdiag)

= Qi MgigghP.  (46)
The function o, was previously defined in Eq29), and

[0c(Mgiag) lij=0c(Ni) 6;j where\; are the eigenvalues of

M. Hence we get for the end correction

Ak: ; V(k:,l(%’i(Pil{[UC(Mdiag) - Q]_l ]M JI;Q}P)IJ FJ .
(47)

Let us now proceed further and evaluate the self-en&igy

B. Evaluation of 3

for simple cases. For example, if the exchange integrals are
restricted to only nearest neighbors, the complete summation
of the sum can be performed by using the space-group sym-
metry of the lattice’!’ In the case of nearest-neighbor
Heisenberg system one gets

S(NE)=Cy[1— y(2k)]+Cy[ 1+ y<2k>—27<k>2],( )
51

where
€
Cpa=~ 5(Qul+QzMpatQsMy g+ +)Dy. (52
4 are evaluated in the same way that it was done for

C
EEi)(E) and Ay(E). The matricesD,, M, and My are,
respectively,

JAA_ JAB,l 0
D,= 0 JBB_ JAB2 Z, (53
€ ~
Mp=—gD1Gp, (54)
€ ~
Md:_ZDlGda (55)

where G,=(1IN)2[1—-(20)]1G(q) and Gy=(1/N)=[1
+7(20) —2(9)*1G(q).

Note that the virtual crystal approximation fd‘r,(f)(E)
consists of taking in Eq(52) the first term only. Then it
follows immediately that,

eC

VCA_ ~VCA_
Cyeh=Cy®h=—~

D, (56)

Using the remarks made in the previous section, we findvhich substituted in Eq(51) leads to

that the self-energy can be written
2k=2(k1)+2f<2),

whereE(kl) (respectiverE(kz)) is obtained by replaciny q

by V(1 (respectivelyv(?)

(48)

simplifications we obtain foE(",

SW(k)= 2 Vi dQul + QoM+ QM2+ - - 1T (k),
1)
(49)
whereI' (k) = ;(k) (5.

As previously done for the end correction, using the func

tion o.(z) defined in Eq.(29) we obtain immediately

Qi +Q,M+QgM?+ .- =P [ (Mgjag)IP.  (50)

). Indeed we find that each term of
the sum containing botl*) andV(?) reduces to zero. After

SVCAE) = — ecDy[1— y(k)2]. (57)

Note that>{?)"V“*is energy independent. It is also important
to stress that at the lowest order the self-consistency for
is not required.

Most of the ferromagnetic materials are of itinerant type,
which means that the exchange integrals between different
localized magnetic ions are long range and driven by the
polarization of the conduction electrons gas as it is for the
Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanisnt®
Analytically, the generalization of the previous calculations
to the more interesting case whelg are long ranged is not
an easy task. However, by truncating the sum, the summation

“can be performed numerically. It is important to note that

3()(Kk) is (i) proportional toe which means that it originates
only from the environmental disorder term, afid) each
term of the sum vanishes in the long-wavelength limit

Note that we have included in the sum the first-order tern(?)(k=0)=0. This implies that even after truncation of the
depending orc (Q,) which comes from the virtual crystal sum at any order, the Goldstone theorem remains fulfilled.

Green’s functiorGgC )

Thus the long-wavelength magnons are always treated prop-
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erly. Furthermore, sincE&(?)(k) corresponds to higher-order ((SHPH=S(S+1)—my(1+2d,) (61
scattering termsy(,d,f,- - -) it is natural to expect that these ) ]

terms should not affect the Curie temperature in a dramati@hich is needed to determine the anisotropy parametgrs
way. In other words, we expect that a truncationséf)(k) ~ given in Eq.(8). _

sum to the first few terms should already provide a good N the case of plean systems, the normalized spectral func-
approximation of Curie temperature compared to the one obion Ay(a,E) is given by

tained with the complete series. However, it is crucial to

consider at least the lowest-order tefthe virtual crystal AN(G,E)=dE-E(q)]. (62)
contribution), otherwise even in the clean limit one would
not recover the correct result and the Goldstone’s theore
would be violated. If we consider the lower approximatio
30~3)  we get the expected results in the lingit0

E(q)=w(q)/2m and w(q) denotes the magnon dispersion.
M In the case of a binaryor multicomponent alloy this
Mformula can be generalized in the following way:

andc=1. It is nota priori clear whether such an approxi- —11mG ~(q,E)
mation of 3(2)(k) to the lowest order provides satisfying A(Q,E)= — —————, 63)
results for the Curie temperature at moderate impurity con- ™ CAXx

centration. Such an approximation will be tested later on.
To conclude this section, the complete average22

Green's function is obtained after solving self-consistently _ m, /m

the set of Eqs(32) and (33) within the CPA loop and then Note that in the presence of impurities the spectral func-

using Eqs(31) and(34) to getA, andG,. However, as was  tion is no longer a function, but because of the finite imagi-
already mentioned in the introduction, the problem is nothary part of the self-energy it will consist of peaks of finite
solved until we are able to calculate the locatgfsand the  width with a more or less Lorentzian shape. In the case of

exchanged integral¥;; which depend on the averaged mag- binary alloys we expect for a givemtwo peaks, more gen-
netizationm, . The determination ofn, has to be done self- erally n peaks for am-component alloy.

wherec, is the concentration of the ion and we have for
convenience introduced &dependent reduced variabtg

consistently in an additional external lo6RPA). For a given temperature the complete self-consistency is
obtained by(i) providing good starting values fan, , then
IV. MAGNETIZATION AND CURIE TEMPERATURE (i) performing the CPA loop which provid&(k,E), and

We assume that the averagest 2 Green’s function ma- finally (ii) going into the RPA loop by using E‘EGES)’ (6.1)’
o GIKE) i lculated i h ) . and(63) one gets the new values of, and{((S;)) which
trix G(k,E) is calculated according 1o the previous sectlonare re-injected in the Iocatorgg, the exchange integrals

within the CPA loop. We show how fro@)\(k,E), N=Aor V., andy, .
B we can get the missing self-consistent equatigRBA Let us now show how to get the Curie temperature of a
loop) to get the temperature-dependent locagfrand the  gisordered Heisenberg binary alloy. We start by expanding

exchange integral®;, . This will allow us to calculate the Eq. (59) in the limit T—T¢ (i.e., m,—0). We immediately
element-resolved magnetizationg =(S}) as a function of  get

temperature and the Curie temperature. It was shown by

Callen, in the case of a clean systépure A or B), that the kTc
magnetization can be expressed in the following Way: by~ 5 F (64)
- (S D)1+ (S, + 1+®,) 't where
)\_ 1
(1+q))\)25)\+1_q)is)\+1 1 e A)\(q,E)
(58) FFN% fﬁ dE—/——. (65)

where®, =(1/N)2,® and® is defined as
A= (WN) 2P (@) M@ After expanding Eq(58) as a function of kb, one obtains

te A)\(Q!E)
@A(Q):f omEKT 4 (59 _S)\(S)\'Fl) 2_mi
— o0 e m —1 m)\— 3 kTC F)\ . (66)
where . o )
Since the averaged magnetizatiom is defined bym
-1 L =>,c,m, , combining the two previous equations one finds
A\(9,B)=—ImGy (a,E) (60)  for the Curie temperature
is the spectral function. " _2 E S\(S,+1)
Note also that the Callen’s approach to get the magneti- BTC_§ N Cx Fy ' (67)

zation allows us to derive a lot of local spin-spin correla-
tions; they are only expressed as a functiondqf. For in-  Equation(67) is the RPA generalization of the Curie tem-
stance, perature to a multicomponent disordered alloy. The previous
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6-5 T T T T 3 T T T T T T T T T
rrrrrrrrrrrr J,s=-0.18 25 Je8=-0.05 1
55 F ——— J,g=-0.30 ] Jas=-0.15
s o f
5¢- ~ S 4
< ~ N
LN ] [3) L
- 4.5 \k\\ e N it 1.5
4r g T AN ] Iy — full CPA
e AN |72 ——VCA
35t S N /~— approximation
3 F -y - s J
25 ke 4 0 1 1 1 1 L 1 1 1 1
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A c A
2 1 1 1 1 pure B pure A
0 0.2 0.4 0.6 0.8 1
C

FIG. 3. Comparison between the Curie temperature calculated
FIG. 2. Curie temperatur@. for disordered nearest-neighbor 25 function of the impurity concentration for a nearest-neighbor

Heisenberg ferromagnet as a function of the impurity concentratiOMEis‘enberg fzerron?ggndia) The full CPA calculation(b) approxi-
c(A). The parameters ar&,=2, Sz=3, Jaa=—0.2, and Jgg mation for3( ):EVCA, and(c) the virtual crystal calculation. The

=—0.15. We have chosen three different valuesJgs. chosen set of parameters is written in the figure.

equation provides a direct measure of the weight temperature calculated witf) a full CPA treatment(ii) the

— (1KkgTe)C\[S\(S,+1)/F,]} of eachA element to the ©N€ performed with the approximation discussed previously,
Curie temperature. 3@=3,, and(iii) the one obtained with virtual crystal

approximation. In casgii ), the averaged Green'’s function is
V. NUMERICAL RESULTS

_ 0

In this section we provide an illustration of the RPA-CPA Gk:GﬁC< 0 c—l) (68)
theory and a test for the approximation suggested above for
the higher-order scattering contribution of the self-energysince in VCAA,=0.
For simplicity, we consider the case of a 3D disordered bi- The comparison between the full CPA and the virtual
nary alloy on a simple cubic lattice. Additionally we restrict crystal approximatiorfVCA) shows that the Curie tempera-
the exchange integrals to nearest neighbor only which allowture differs significantly. Even very close to the clean limit
us to test the validity of the approximation scheme suggestethe VCA appears to be inappropriate, for instance dor
in Sec. Il before estimating.?. For further simplifications =0.1 we observe that’.“* is about 35% larger than the full
of the calculations we consider the case of a zero externdlPA calculated one. Note that the disagreement is even more
field and neglect the anisotropy term which is reasonable fopronounced in the vicinity o€=0 thanc=1. This can be
a 3D system. understood in the following way: sincEg=3Jgg=1.5Jan

In Fig. 2, we have plotted the Curie temperature asandS,= Sg a substitution of & site by anA site (close to
a function ofc obtained with the full CPA treatment; the c=0) introduces a change of energwith respect to the
32 part of the self-energy is calculated exaotlyll sum-  pure casptwo times larger than a substitution oBasite by
mation of the sum Note that pureA (respextivelyB) corre-  anA site nearc=1. As discussed previously, it is interesting
sponds toc=1 (respectivelyc=0). Depending on the to compare the Curie temperature where the VCA is only
chosen set of parameter§: shows (i) a minimum done onY(? (Tg'VCA). We observe a good agreement be-
[IneSASe=<Min[UanSt JgeSH)], (i) @ maximum[JagSaSs  tween the full CPA calculatedc and T2VCA, in the whole
= max@anS: ,JBB%)], or (iii) is monotonic [min(JAASf\, range of concentration; the agreement is even excellent for
JeeR)<IneShS=max(a3 JssS)]. These three different ¢=0.6. A comparison betweeR “* andT2V*in the vicin-
cases are shown in the figure. ity of c=0 andc=1 shows that the reason why the VCA

As already mentioned in Sec. Ill, it is difficult to perform approximation breaks down is essentially because of the
the full summation of3(? for the case of long-range ex- crude approximation of thepart of the scattering. Thus this
change integrals which is the case of many realistic and infigure validates a simple treatment®®). It is also expected
teresting systems, for example permalloy. As it was disthat including only a few additional terms of the sum will
cussed previously, the simplest approximation consists dead to an excellent agreement in the whole range of concen-
keeping only the lowest-order term of the swirtual crys-  tration.
tal approximation In the case of the nearest-neighbor In Fig. 4 we show the temperature dependence of the
Heisenberg systent,(?) and.(?VCA gre respectively given element-resolved magnetizations. In order to demonstrate the
in Egs. (51 and (57). In Fig. 3 we have plotted the Curie versatility of our approach, we have chosen a set of param-
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FIG. 4. Magnetizationsm,,—mg, and averaged one,, j.' 7]
=|cama+cy,mg| as a function of temperature. The spins & 7 N g
=1 and S,=3, the exchange couplings ar@&,=—1.2, Jgg 4F I i == {=t=t ]
=—0.10, and an antiferromagnetic coupling betwee@and B is 3= =0 ]
takenJ,g=0.15. The concentration & atoms isc,=0.70. 2= -]
] i S __
eters which mimics a ferrimagnetic behavior with compen- oL ' e
. . e 0 0.5 1 E 15 2 25
sation point. Additionally, the parameters are such tfét
>TE. While the temperature dependencenof follows a FIG. 6. Spectral functiorS,(q,E) = — (1/w)ImG*(q,E) as a

standard behaviomg(T) starts to strongly decrease even atfunction of E for different momentung whereq=q(1,1,1). The
low temperature. For example, &t=2.5, m, is reduced by continuous line corresponds 1o=A and the dashed line to=B.
less that 20% whilemg=0.5mg(0). As aresult of our The spins are5,=2 andS,=3, the exchange couplings aig,
choice of parameters we see that the averaged magnetizatien—0.2, Jgg=—0.10, Jog= —0.15, andc,=0.50. We have taken
Mg, =|CaMa+ CgMg| iS nonmonotonic and vanishes for an T~Tc. For clarity of the picture a small imaginary papt=0.1
intermediate temperature valieompensation poiit It is ~ have been added.

found that the function rig/m,)(T) decreases monotoni- ] )
cally with temperature. As a result, and since Tat 0,

MB/my=Sg /Sy, thus if Sg/Sy=<ca/cg thenm,, will not

S 1 T T T 1 T 1 ]
- JE T @ £=0{05 ] have a compensation point. However, the condition that
8 2r ! . B Sg/Sa=cal/cg is not sufficient to get one, it is also required
= & 7 N\ 3 thatmg/mp(To)<ca/Cg.
[ Y E ] In Fig. 5 we now show the magnon spectral density
g . 1 (MSD) pr(E)=ImG*(E)/x,c, as a function of. We con-
’ ’ sider three different cases: almost cledarand B [(a) and
: L 'b' ¢=0.50 ] (0], and the intermediate situatioo,=cg=0.5. In both
1F VAN (k) 3 Figs. 5a) and(c) we observe that the MSD is very similar to
é s // \\ ] the clean case. This is clearer in casethan(a); it is easy to
Y \ - understand that when dopifgwith B the difference in en-
-~ | R e 1 ergy with the undoped case is only of order 10%
% 05 1 15 2 [Jaa(Sa)?=0.8 andJ,sSASg=0.9] while when dopingB
1 | | —— | ; with A the change is more drasti@bout 100%). To get a
- (© ¢=0.95 ] similar MSD to Fig. %c) for a weakly doped sample, one
a osk ] should takec~0.005.
g 4F ] In Fig. 6 we show the spectral functio,(q,E) as a
02 _' function of energy for different values of the momentgm
Py e L bl T [ N | 2 This quantity is more interesting that the integrated MSD

5 since it provides direct information about the elementary ex-

FIG. 5. Magnetic spectral densify, (E) =ImGM(E)/x,c, as a  citation dispersions and their spectral weight. Additionally it
function of E. The continuous line corresponds Xe=A and the IS directly related to inelastic neutron-scattering measure-
dashed line tox=B for three different concentration of: ¢~ ments. Let us now briefly discuss Fig. 6. At precisgly 0
=0.05, 0.5, and 0.95. The parameters &e=2, $,=3, J,»  Momentum, in botts, _, g, we observe two peak structures:
=—-0.2,Jgg=—0.05,J,5=—0.15, andT~T. (i) a well defined pedk at E=0, as expected since our
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theory fulfills the Goldstone theorem, afid) a very broad disordered Heisenberg systems with long-range exchange in-
one at intermediate enerds~ 1. For intermediate values of tegrals. The disordered Green's function are decoupled
the momentum, it is difficult to separate the peak and one gewithin the Tyablicov procedure and the disorddragonal,

a single broad peak. We see clearly that the peaks are crog¥ff-diagonal and environmentdl is treated with a X2

ing each other af~(=/2)(1,1,1). Note that due td) the modified cumulant CPA approach. The crucial point is that
different spectral weight of the peaks and to the closeness ¢¥€ are able to treat simultaneously and self-consistently the
their location, the single peak-structure which is observed aRPA and CPA loops. Our theory allows us in particular to
q= /2 is located at different energies frandB. From this calculate Curie temperature, spgctrgl functions, and tempera-
figure we see also that the dispersion of the second peak igre dependence of the magnetization for each element as a
almost flatE,,(q) ~ 1, while the Goldstone mode;(q) (Ref. unction of concentration of impurity. Additionally, we have

_ - L proposed a simplified treatment of tiped,f- - -. contribu-
iior)e?::i)ceni fromE =0 t0 Epqx~2 when moving in the (1,1,1) tion of the self-energy which is difficult to handle in the case

of long-range exchange integrals. The approximation was

tested successfully on 3D disordered nearest-neighbor

VI. CONCLUSION Heisenbgrg systems. Combined with f'irst—principle' calcula-

tions which can provide the exchange integrals, this method

In conclusion, we have presented in this paper a theorgppears to be very promising to study magnetism in disor-
based on Green’s-function formalism to study magnetism irdered systems.
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