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Abstract

Localization corrections to electrical and spin conductivities of bulk and thin-film ferromagnetic systems are analyzed

theoretically in the case of electron spin–orbit scattering from impurities. The effect of internal magnetic field on the

corrections is studied in detail. It is shown, that the magnetoresistance of ferromagnetic systems, related to the

localization corrections, is always negative. r 2002 Elsevier Science B.V. All rights reserved.
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Recent interest in spin polarized transport in magnetic

metallic and semiconductor structures follows from

expected applications in magnetoelectronics [1–3].

Although the room temperature regime is more attrac-

tive for applications, the low-temperature regime seems

to be more interesting from the basic research point of

view. This is due to various quantum phenomena which

lead to pronounced and measurable effects in transport

characteristics. One of such phenomena is the weak

localization (or quantum interference of electron waves

scattered by defects), which gives rise to anomalous

temperature and magnetic field dependences of electrical

conductivity at sufficiently low temperatures.

The quantum corrections to conductivity in non-

magnetic metals and semiconductors were extensively

studied in the past two decades [4–6]. As we show in this

paper, these effects can be observed in ferromagnets too,

but in this case they have some peculiarities following

from strong internal exchange field. Some of the

peculiarities have been discussed in Ref. [7], particularly

those due to electron–electron interaction. The issue of

weak localization in ferromagnets is a subtle problem,

because it is known that the localization corrections in

non-magnetic systems are suppressed by a sufficiently

large magnetic induction B: One might then expect a

similar suppression of weak localization by an internal

magnetic induction Bint in ferromagnets. However, the

localization corrections have been observed in Ni [8]. It

is then reasonable to assume that the internal magnetic

induction existing inside the ferromagnets can reduce the

localization corrections instead of destroying them

totally. Very likely, one can expect only a weak effect

of Bint in the case of novel magnetic semiconductors like

GaMnAs alloys [3].

Spin–orbit (SO) scattering in non-magnetic metals is

known to have a strong effect on the quantum

corrections. It can even reverse the sign of the

localization correction (antilocalization), which results

in a positive magnetoresistance at weak magnetic fields

[9,10]. However, the situation in ferromagnetic systems

is quite different. The processes leading to antilocaliza-

tion in non-magnetic systems are totally suppressed in

ferromagnets, which results in a negative magnetoresis-

tance. On the other hand, the SO interaction controls

the magnitude of the localization correction, and the

interplay between an effective SO relaxation time, phase

relaxation time, and a characteristic time related to
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the magnetic induction, determines the dependence of

electrical conductivity on the external magnetic field and

also the dependence on temperature.

We consider the following Hamiltonian of a ferro-

magnet with SO scattering:

H ¼
Z

d3r cwðrÞ �
r2

2m
� Msz þ V ðrÞ

� �
cðrÞ; ð1Þ

where the axis z is assumed to be along the magnetiza-

tion M; c is a spinor field, and we put _ ¼ 1: In the

presence of a magnetic induction B ¼ rotA; the gradient
operator r is replaced by r� i eA=c:
The random potential V ðrÞ of impurities consists of

two components: a spin-independent potential V0ðrÞ;
and the SO component VsoðrÞ: Matrix elements of the

latter component have the form ðVsoÞka;k0b ¼ iV1ðk�
k0Þ 	 sab for the transitions ðk; aÞ-ðk0; bÞ; where V1 is a

constant, k and k0 are the initial and final electron

wavevectors, a and b describe the corresponding spin

states, and s ¼ ðsx; sy; szÞ are the Pauli matrices.
The key element of the weak localization theory is the

Cooperon [4–6] which can be presented by a ladder in

the particle–particle channel with two propagators

describing electrons with small total momentum and

close energy parameters. In the case of ferromagnets and

as long as Mtsc1; where ts is the momentum

relaxation time of electrons with spin s (s ¼ m;k), this
channel does not include ladder elements with the Green

functions corresponding to the opposite spin orienta-

tions. Using the standard method of calculating the

Cooperon [4,5], we solved the ladder equations for spin-

up and spin-down channels, taking into account spin–

flip processes due to SO interaction. We also calculated

the self-energy for spin-up and spin-down electrons,

taking into account both potential and SO scattering

terms. The results of these calculations can be summar-

ized as follows.

In the 3D case (bulk ferromagnet), the total electron

relaxation time tm is determined by

1

tm
¼

1

t0m
þ

1

tz
som

þ
2nk
nm

1

tx
som

; ð2Þ

and a similar formula also holds for tk: Here, t0s; tz
so;s;

and tx
so;s are the relaxation times related to the potential

scattering, non-spin–flip SO scattering, and spin–flip SO

scattering, respectively, whereas nm and nk are the

densities of states for spin-up and spin-down electrons.

The effective relaxation time of the Cooperon, which

determines the localization correction to conductivity, is

given by

1

*tsom
¼ 2

1

tz
som

þ
nk
nm

1

tx
som

 !
: ð3Þ

On the other hand, the localization correction Ds to the

static conductivity is determined by the loop diagrams

including the Cooperon [5,4]. In a 3D case we obtain

Ds3D ¼ C þ
e2

4p2
X
s¼m;k

1

D
1=2
s

1

*tso;s
þ

1

tj;s

� �1=2

; ð4Þ

which is a simple generalization of the known formula

for the quantum correction in non-magnetic systems. In

the above formula tj;s is the phase relaxation time

related to inelastic scattering processes [5,4], Ds is the

spin dependent diffusion constant, and the constant C

can be roughly estimated as

CC�
e2

4p2
ðDmtmÞ

�1=2 þ ðDktkÞ
�1=2

h i
: ð5Þ

According to Eqs. (4) and (5), the localization correction

is negative. By decreasing *tso and/or tj; we suppress the
correction, increasing this way the conductivity.

As is known, the magnetic induction suppresses the

localization correction to conductivity. If the total

magnetic induction is B; then for dsðBÞ 
 DsðBÞ �
Dsð0Þ we find in a 3D case the following formula [11]:

ds3DðBÞ ¼ �
e2

16p2lB

XN
n¼0

X
s¼m;k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ 1

2
þ ds

q
2
64

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ 1þ ds

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n þ ds

p #
; ð6Þ

where lB ¼ ðc=eBÞ1=2 is the magnetic length, c is the light

velocity, and ds ¼ 1
4
ðl2B=DsÞ ð1=*tso;s þ 1=tj;sÞ: As follows

from Eq. (6), ds3DðBÞ is positive and its magnitude

increases with increasing magnetic field. This means that

one finds a negative magnetoresistance, in spite of the

presence of SO interaction.

In the case of magnetic films, the weak localization

corrections are effectively 2D when the film thickness d

is smaller than the characteristic length L0 ¼ ½ðD*tsoÞ
�1 þ

ðDtjÞ
�1��1=2; and the effect of perpendicular magnetic

induction has the following form [4,5]

Ds2DðBÞ ¼ �
e2

4p2
X
s¼m;k

c
1

2
þ

tBs

ts

� ��

�c
1

2
þ

tBs

*tso;s
þ

tBs

tj;s

� ��
; ð7Þ

where 1=tBs ¼ 4eBDs=c and cðxÞ is the digamma

function.

One can also find the localization corrections to the

spin conductivity, defined as a spin current in response

to an electric field. In this case, the spin current is

the difference of currents in the spin-up and spin-down

channels, and for the quantum correction we obtain

Ds3D
spin ¼

e

4p2
1

D
1=2
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

*tsom
þ

1

tjm

s
�

1

D
1=2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

*tsok
þ

1

tjk

s2
4

3
5 ð8Þ
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in a 3D case, and

Ds2D
spin ¼ �

e

4p2
ln

Dm *t�1sok þ t�1jk

� �
Dk *t�1som þ t�1jm

� �
2
4

3
5 ð9Þ

in an effectively 2D case. The main contributions to the

correction, originated from the shortest time ts; are
exactly canceled. Thus, the correction to the spin

conductivity is determined by the SO scattering and

the phase relaxation.

In our description, we have taken into account the

effect of magnetic induction B; which enters the kinetic

energy of electrons through the vector potential A and

leads to the suppression of localization corrections,

Eqs. (6) and (7). The total magnetic induction B inside a

ferromagnet includes the external part Bext and the

internal magnetic induction Bint: In strong ferromagnets

the magnitude of Bint can be rather high. For example,

in bulk Fe one finds BintC2T. Our estimations show

that for not very pure Fe with electron mean free path

lC10�6 cm, the critical induction, which totally sup-

presses the localization corrections, is BcritC7T. There-

fore, the localization corrections can be observed. In the

case of thin magnetic films, the demagnetizing factor is

of crucial importance. For example, when the magne-

tization M0 is perpendicular to the film, the demagnetiz-

ing factor is equal to 1, and we have Bint ¼ 0: In this

case, our results can be applied with the magnetic

induction B equal to the external magnetic field Bext:
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