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Anomalous Hall effect and weak localization corrections
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Abstract

In this paper, we report our results on the anomalous Hall effect. First, we summarize analytical calculations based

on the Kubo formalism: explicit expressions for both skew-scattering and side-jump are derived and weak-localization

corrections are discussed. Next, we present numerical calculations of the anomalous Hall resistivity based on the Dirac

equation. Qualitative agreement with experiments is obtained. r 2002 Elsevier Science B.V. All rights reserved.
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The anomalous Hall resistivity corresponds to the

spontaneous value that takes in magnetic materials the

Hall resistivity in the absence of applied magnetic field,

and results from a combination of spin–orbit coupling

and spin polarization. Two different mechanisms

responsible for this effect are distinguished: the skew-

scattering [1] and the side-jump [2], both corresponding

to an asymmetric spin-dependent scattering by a

potential in the presence of the spin–orbit coupling.

The simplest way to calculate such an effect is to start

from the Pauli equation including the spin–orbit

coupling:

H ¼
p2

2m
þ V � mBðr � Beff Þ þ

_

4m2c2
ðr � =V Þ � p; ð1Þ

and to use the Kubo formula for the conductivity

*sij ¼
e2_

2pO
Tr viG

þðeFÞvjG
�ðeFÞ

� �
c
; ð2Þ

where O is the volume of the sample, /ySc denotes the

configurational average, Gþ and G� are retarded and

advanced Green’s functions G7ðeÞ ¼ ðe7i0� HÞ�1; eF

is the Fermi level and vi is the i-component of the

velocity which contains an additional part due to spin–

orbit coupling (the so-called anomalous velocity vSO)

v ¼
p

m
þ vSO ¼

p

m
þ

_

4m2c2
ðr � =V Þ: ð3Þ

The anomalous velocity inserted in Eq. (2) gives the side-

jump term whereas the spin–orbit coupling contribution

to Green’s function (i.e., G0HSOG0 where HSO is the

spin–orbit coupling and G0 the Green’s function

associated to the Hamiltonian in the absence of the

spin–orbit coupling) inserted in Eq. (2) gives the skew-

scattering term provided one goes beyond the Born

approximation [1].

We present a simple application of such a method of

calculation in the case of a system with a cubic symmetry

and an effective magnetic field along the z-axis: thus the

anomalous Hall conductivity is equal to the off-diagonal

element *sxy: We model the compound in the following
way: the total volume of the sample O is divided into N

cells of volume O0: In each cell, the potential takes a
constant value V with a probability distribution PðV Þ
which is characterized by its moments /VnSc ¼R

PðV ÞVn dV : A suitable choice of the energy origin

yields /VSc ¼ 0: We assume that there are no correla-
tions in the value of the potential in different cells. In

order to achieve analytical calculations, we restrict

the study to the lowest order with the scattering

potential and express Green’s function G in terms of

average Green’s function
%
G in the relaxation time
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approximation. Neglecting weak-localization correc-

tions, the diagonal conductivity is then given by the

Einstein relation and for the off-diagonal conductivity,

we get

*sSSxy ¼ �
pm2l2

6_2
/V3Sc

/V2Sc

NmO0 *smxxðv
m
FÞ
2 �NkO0 *skxxðv

k
FÞ
2

� �

ð4Þ

for the skew-scattering, and

*sSJxy ¼ �e2Nm
2dmv

m
F

3
þ e2Nk

2dkv
k
F

3
ð5Þ

for the side-jump, respectively (detailed calculations are

presented in Ref. [3]). We have introduced the lengths

l ¼ _=mc and dmðkÞ ¼ _v
mðkÞ
F =4mc2: NmðkÞ; v

mðkÞ
F and

*smðkÞxx are respectively, the density of states per unit

volume O0; the velocity at Fermi energy and the

diagonal conductivity, each for up and down spins. In

contrast to *sxx and *sSSxy ; *s
SJ
xy does not depend on disorder.

The Feynmam diagrams associated with these mechan-

isms are depicted in Fig. 1. A simple illustration of these

results can be given in the case of a binary alloy AxB1�x

for which we have /V2Sc ¼ xð1� xÞðeA � eBÞ2 and

/V3Sc ¼ xð1� xÞð1� 2xÞðeA � eBÞ
3 where eAðBÞ is the

value that takes the potential on side A(B). As a

consequence, the anomalous Hall resistivity for skew-

scattering is equal to *rSSH C *sSSxy= *s
2
xxpðx � 3x2Þ and for

side-jump to *rSJHC *sSJxy= *s
2
xxpx2 which is in agreement

with the empirical relation *rH ¼ a *rxx þ b *r2xx but in

disagreement with the common belief that the quadratic

term arises only from the side-jump.

Within this approach, the weak-localization correc-

tions to the anomalous Hall effect can also be

calculated. We have considered both Cooperons and

Diffusons (see Fig. 1). The results are the following [4]:

(i) the Cooperons diagrams for the side-jump cancel

exactly each other whereas the Diffusons diagrams give

a negligible contribution (of order _=eFt
� �4

where t is
the relaxation time), (ii) the Cooperons diagrams for the

skew-scattering give a non-zero contribution which

includes both spin up and spin down channels. As a

consequence, the weak-localization corrections to the

anomalous Hall resistivity D *rH= *r
0
HCD *sxy= *s0xy �

2D *sxx= *s0xx exhibit a strikingly different behavior as

compared to the normal Hall resistivity for which weak-

localization corrections vanish by an exact cancellation

of the diagonal and off-diagonal parts [5]. Due to the

presence of two spin channels, such a cancellation can

never take place in the case of the anomalous Hall

resistivity.

The analytical expressions (4) and (5) have been

obtained in the weak-scattering limit and using the free

electron approximation. In order to get a more realistic

description of the anomalous Hall effect, we have

performed numerical calculations starting from a tight-

binding description and using the coherent potential

approximation in order to treat disorder. Green’s

function is then expressed in term of the t-matrix and

average Green’s function: G ¼
%
G þ

%
GT

%
G: As a conse-

quence, the conductivity (2) can be split, in the case of a

configuration-independent velocity, into two different

parts:

*sij ¼
e2_

2pO
Tr vþi ðeFÞvj

%
G�ðeFÞ

� 	

þ
e2_

2pO
Tr vi

%
GþðeFÞGjðeFÞ

%
G�ðeFÞ

� 	
; ð6Þ

where Gj is the vertex function equal to

/Tþ

%
Gþvj

%
G�T�Sc: This formulation is very useful since

it allows the exact determination of the vertex correc-

tions in the ladder approximation. However, because of

the presence of the spin–orbit coupling, the velocity is no

longer configuration-independent (see Eq. (3)) and it is

then not possible to take it out of the configuration

average /ySc like it is done in Eq. (6). A means to

avoid this problem is to start, rather than from the Pauli

equation, from the Dirac equation:

H ¼ cða � pÞ þ bmc2 þ V � mBbðr � Beff Þ; ð7Þ

where a and b correspond to the standard Dirac

matrices. Indeed, in this description, the velocity

operator is simply equal to ca and then is configura-

tion-independent.

The system we consider is a ferromagnetic binary

alloy AxB1�x with an effective magnetic field along the

z-axis. First, we have expressed Eq. (7) in the tight-

binding approximation for a cubic symmetry, next the

Fig. 1. Feynman diagrams for the anomalous Hall effect: (a)

corresponds to the skew-scattering; (a’) to the side-jump; (b), (c)

and (d) are the Cooperons corrections to the skew-scattering;

(b’) and (c’) to the side-jump; (d’) is the Diffusons correction to

the side-jump. The curve lines represent average Green’s

functions, the dashed lines correspond to the potential

(including the spin–orbit coupling) and the double straight

lines correspond to the ladder part. Symmetrical diagrams have

also to be considered.
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self-energy has been numerical calculated by the means

of an iteration procedure and used to calculate average

Green’s function and the vertex corrections that we

insert in Eq. (6) in order to get the conductivity tensor.

Variations of the anomalous Hall resistivity

*rHC *sxy= *s2xx as a function of concentration of disorder

and spin–orbit coupling are depicted in Fig. 2. We

obtain a change of sign of the anomalous Hall

resisitivity for a particular value of the concentration

which corresponds to an exact cancellation of the skew-

scattering and the side-jump contributions. Such a

change of sign has been observed experimentally in

PdCo and PdNi alloys [6]. The variation of the

anomalous Hall resistivity with spin–orbit coupling is

consistent with the Onsager relation since the numerical

curve can be very well fitted when one consider only odd

powers with respect to the spin–orbit coupling. A very

good agreement with analytical expressions which apply

in the weak-scattering limit (close to x ¼ 0 and 1) and in

the weak-relativistic limit (lSOC0) is obtained.
To summarize, we have performed both analytical

and numerical calculations concerning the anomalous

Hall effect. Explicit expressions of the skew-scattering

and side-jump conductivities have been derived, which

allows the clarification of the influence of the potential

on each mechanism: whereas the skew-scattering con-

ductivity varies on the third order of the potential, the

side-jump conductivity does not depend on it. Contrary

to what happens for the normal Hall resistivity, the

weak-localization corrections to the anomalous Hall

resistivity do not vanish because of the presence of two

different spin channels. Numerical results obtained in

the case of a ferromagnetic binary alloy are in

qualitative agreement with measurements in the sense

that they show a change of sign of the anomalous Hall

resistivity.
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Fig. 2. Variation of the anomalous Hall resistivity as a function

(a) of the concentration for a spin–orbit coupling lSO ¼ 0:5 and
as a function (b) of the spin–orbit coupling for a concentration

x ¼ 0:2: The other parameters are eF=t ¼ 0:2; eA=t ¼ 0:1 and
eB=t ¼ 0 where t ¼ _2=2ma20 (a0 is the unit cell parameter) and

DeA=t ¼ DeB=t ¼ 0:05 where 7DeAðBÞ=2 is the value that takes
the exchange coupling �mBszBeff on site A(B). The full lines

with full circle symbols correspond to the numerical calcula-

tions and the dashed lines correspond to the analytical results

given by Eqs. (4) and (5).
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