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This work reviews recent achievements in the understanding of highly excited, inter-
acting few-particle systems with a well defined internal helicity. To contrast theory with
experiments we consider specifically the spectrum of two interacting continuum electrons
with a positive (or a negative) chirality that move in the field of a positive ion. This doubly
excited state is achieved upon the absorption of a circular photon with the appropriate
helicity by an isotropic target. The dependence of the two-electron spectrum on the sign
of the helicity of the exciting photon is utilized to study internal phase relations and
mirror-reflection symmetries of the two-electron wave function.

1 Introduction

The understanding of correlated electronic systems is of a fundamental interest
for a number of branches of physics [1]. In particular, the description of correlated
systems poses a challenging and a fascinating task for theoretical physics: While
the presence of electronic correlation induces a number of important phenomena
(such as the metal-insulator transition) it precludes on the other hand an exact
treatment, even for a system of three coupled particles. In view of this, symmetry
considerations on general ground attain a special importance for correlation studies.
In this report we consider a simple, non-relativistic quantum mechanical system
consisting of three interacting particles above the total fragmentation threshold.
From the structure of the Schrödinger equation we derive symmetry properties
that are generally valid and discuss the interrelation between the spin and the
spatial part of the wave function as introduced by the particle-exchange symmetry
requirement. In addition, we point out a connection, akin to many body system,
between the internal phase relations of the interacting three-body wave function and
the mirror reflection symmetry with respect to a given plane. The proposed ideas
and relations can be assessed experimentally by studying the spectrum of an excited
three-body system which is created upon the absorption of a one circular photon by
a completely isotropic many-electron atom. In this case the helicity of the photon is
transferred to the three-body system. The measurable continuum spectrum of this
excited helical system is strongly dependent on whether the helicity (of the absorbed
photon) is positive or negative. This theoretical prediction has been confirmed by
recent experiments [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The purpose
of the present report is to show how the helicity dependence of these spectra can
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be utilized to investigate the internal phase relations within the many-body wave
function and to study the mirror-reflection symmetry.

2 General considerations

Throughout this work we consider a non-relativistic quantum system and ne-
glect spin-dependent interactions in the Hamiltonian. As a consequence the spin
and the spatial degrees of freedom are decoupled. However, the Pauli principle in-
duces, via symmetry restriction of the spatial part, an influence of the spin state of
the system on its spatial evolution.

For the sake of clarity the consideration made in this paper are limited to
the case of three interacting particle, e. g. two electrons moving in the field of a
positively charged residual ion. In the center of mass system the motion of the two
electrons is described by the wave function ψk1,k2

(r1, r2). The structure of the
time-independent Schrödinger equation dictates that

ψk1,k2
(r1, r2) = ψk2,k1

(r2, r1), (1)

ψk1,k2
(r1, r2) = ψ−k1,−k2

(−r1,−r2). (2)

Furthermore, in absence of external fields the isotropy of space implies

ψk1,k2
(r1, r2) = ψk′

2,k′
1
(r′

2, r
′
1) (3)

where a′ = R(α, ω̂) a, a ∈ {k1/2, r1/2} and R(α, ω̂) is an arbitrary rotation
operation defined by the axis ω̂ and the rotation angle α. Eq.(2) states that the wave
function is invariant under a grand inversion at the origin. This feature combined
with the rotational invariance (Eq.(3)) yields that the wave function is as well
invariant under a mirror reflection of all the coordinates and the momenta with
respect to an arbitrary plane.

Eqs.(1-3) are generally valid. On the other hand, it should be noticed that in
general

ψk1,k2
(r1, r2) �= ψk2,k1

(r1, r2), (4)

ψk1,k2
(r1, r2) �= ψ−k1,−k2

(r1, r2). (5)

This means that the (spatial) wave function, as derived from the Schrödinger equa-
tion is not invariant under an exchange or a mirror reflection of the quantum
numbers (the momenta). Therefore, one defines the following expressions:

Ψ±
k1,k2

(r1, r2) =
1√
2

[
ψk1,k2

(r1, r2)± ψk2,k1
(r1, r2)

]
, (6)

Ψ±,e

k1,k2
(r1, r2) =

1√
2

[
Ψ±

k1,k2
(r1, r2) + Ψ±

−k1,−k2
(r1, r2)

]
, (7)

Ψ±,o

k1,k2
(r1, r2) =

1√
2

[
Ψ±

k1,k2
(r1, r2) −Ψ±

−k1,−k2
(r1, r2)

]
. (8)
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In addition to the properties (1-3) the wave functions Ψ±,e/o

k1,k2
(r1, r2) possess fur-

ther symmetries that serve for a classification as symmetric ( Ψ+,e/o

k1,k2
(r1, r2) =

+Ψ+,e/o

k2,k1
(r1, r2) ) or antisymmetric functions ( Ψ+,e/o

k1,k2
(r1, r2) = −Ψ+,e/o

k2,k1
(r1, r2)

), as well as even ( Ψ±,e

k1,k2
(r1, r2) = +Ψ±,e

−k1,−k2
(r1, r2) ) or odd functions (

Ψ±,o

k1,k2
(r1, r2) = −Ψ±,o

−k1,−k2
(r1, r2) ).

3 Few-particle wave-function symmetries studied by helical photons

As stated above, till now we decoupled spins from spatial degrees of freedom
and discussed the symmetry properties of the spatial part only. The total wave
function is then a direct product of the spatial part (Ψ±,e/o) and a two-electron
spin part χ(1, 2). The total wave function has to be antisymmetric with respect to
exchange of the two electrons. Therefore, if χ(1, 2) is symmetric (triplet state with
a unity total spin) the spatial part has to be antisymmetric, whereas if χ(1, 2) is
symmetric (singlet state with a vanishing total spin), the spatial part is symmetric.
By performing spin-polarized scattering experiments in the singlet and the triplet
channel [18, 19, 20, 21, 22] one can deduce on the dynamical phase relations between
the functions ψk1,k2

(r1, r2) and ψk2,k1
(r1, r2) (cf. Eq.(4)). Due to space limitation

and hence this kind of studies is well documented by now [18, 19, 20, 21, 22, 23, 24,
25], we focus our attention on the analogous problem of finding out phase relations
between Ψk1,k2

(r1, r2) and Ψk′
1,k′

2
(r1, r2) where k′

1 and k′
2 are the mirror images

with respect to a given plane of k1 and k2, respectively. As remarked above, in
absence of external fields (i.e. if the space is isotropic), this operation combined
with an appropriate rotation in (momentum) space corresponds to a reflection at
the origin (cf. Eq.(5) and Fig.1).

To connect to existing experiments let us consider the photo double emission
(PDE) process. In this reaction an incoming photon with a wave vector k, a fre-
quency ω and a polarization vector ε̂ ionizes two electrons from an randomly ori-
ented atom. The two electrons escape into the double continuum with wave vectors
k1 and k2. For our purposes the initial bound state of the atom Φ should be
completely isotropic for reasons which will become clear below. In first order per-
turbation theory for the electromagnetic field the PDE cross section W (ε̂,k1,k2) is
obtained from the optical transition amplitude as W (ε̂,k1,k2) = C|T (ε̂,k1,k2)|2
where

T (ε̂,k1,k2) = ε̂ · 〈Ψk1,k2
(r1, r2)|D|Φ〉, (9)

and C is a constant pre-factor [17]. In Eq.(9) D is the dipole operator1). This
approximation for T is well justified in the VUV regime for the photons.

Let us consider the geometry depicted in Fig.1: The photon is left-hand, circu-
larly polarized with a wave vector k. The two electrons recede from the residual ion

1) For brevity we omitted the superscripts ±, (e/o) of Ψ. The appropriate symmetry of Ψ is
determined by the nature of Φ, e.g. if Φ is an even, symmetric state Ψ must have an odd parity
and should be symmetric with respect to an exchange of the two electrons
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with momenta k1 and k2 that lay in the x− y plane. Without loss of generality we
can choose k̂ as the z direction and the x direction to be defined by k̂1 (cf. Fig.1).

k1

k’2

k’1

k2

x

y

A

B
z

k

θθθθ2

Fig. 1. A schematic representation of the experimental arrangement for a one-photon two-
electron continuum transition. The photon is circularly polarized and propagates along
the z direction. The two electrons absorb the photon and move in the x − y plane with
momenta k1 and k2 that span the triangle A. The triangle B that quantifies the state

with wave vectors k′
1 and k′

2 is the mirror image at the x − z plane of A.

The quantum mechanical state of the two electrons is quantified by a triangle
spanned by the wave vectors k1 and k2 (cf. Fig.1). The question which we would
like to address is whether we can sense any difference between the states described
by the triangle A and its (x − z plane) mirror reflection B. For this purpose we
define the normalized difference2)

∆ =
WA(ε̂,k1,k2) − WB(ε̂,k′

1,k
′
2)

WA(ε̂,k1,k2) + WB(ε̂,k′
1,k

′
2)

. (10)

Since the triangle B can not be retrieved from A by any rotation operation in the
y − x plane, a finite ∆ is not excluded by symmetry. This is in contrast to the case
of a single photoelectron emission where ∆ ≡ 0 since in this case the triangle A
reduces to a line and a reflection becomes equivalent to a rotation. Such a situation

2) If the photon is linearly polarized with a polarization vector aligned along the x or the y
direction, a PDE experiment yields identical results for the electrons’ configurations indicated in
Fig. 1 by the triangle A or its mirror image B.
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is also encountered in the PDE case where the mirror reflection A ↔ B reduces
to a simple rotation if k1 = k2 or if k̂1 is parallel or antiparallel to k̂2. In these
situations ∆ vanishes.

At this stage it is decisive to note that the whole experiment as depicted in
Fig.1 is invariant under spatial rotation and is parity conserving. As noted above
a mirror reflection at a plane is nothing else but an inversion with respect to the
origin followed by an appropriate rotation. Therefore the relation holds

WB(ε̂,k′
1,k

′
2) = WA(ε̂′,k1,k2), (11)

where ε̂′ is the mirror image of ε̂ with respect to the x − z plane. Since we have
chosen in Fig.1 ε̂ to be ε̂ = 1√

2
(1,+i, 0) we deduce that ε̂′ = 1√

2
(1,−i, 0) = ε̂∗.

Therefore we arrive at the relation

∆ =
WA(ε̂,k1,k2) − WA(ε̂∗,k1,k2)
WA(ε̂,k1,k2) + WA(ε̂∗,k1,k2)

. (12)

This means to measure ∆ (Eq.(10)) one has to choose a configuration for k1,k2 such
as the triangle A shown in Fig. 1. Then, one measures the PDE signal for left (ε̂)
and for right (ε̂∗) hand circular polarized light and evaluates the circular dichroism
according to Eq.(12). Such experiments has been done in Refs.[6, 7, 9, 10, 14].
Before discussing the experimental results for ∆ let us point out the significance of
this quantity for the symmetry of the many-body wave function.

From Eq.(9) and since ε̂ = 1√
2
(1,+i, 0) = 1√

2
[(1, 0, 0) + i(0, 1, 0)] =: 1√

2
[ε̂x + iε̂y]

we can write

WA(ε̂,k1,k2) =
C

2

∣∣∣ tx + ity

∣∣∣2 (13)

WB(ε̂,k′
1,k

′
2) =

C

2

∣∣∣ t′x + it′y
∣∣∣2 . (14)

Here we have introduced the definitions tx/y = ε̂x/y · 〈Ψk1,k2
(r1, r2)|D|Φ〉 and

t′x/y = ε̂x/y ·〈Ψk′
1,k′

2
(r1, r2)|D|Φ〉. The matrix elements tx and ty can be interpreted

as the PDE dipole transition amplitudes for the electrons’ configuration as shown in
Fig.1 with the photon being linear polarized and its electric field is oscillating along
the x or the y direction, respectively. It is readily clear from symmetry arguments
that |t′x| = |tx| and |t′y| = |ty|. However the phases of t′x/y are generally different
from those for tx/y (cf. also [26]). Therefore, it follows from Eqs.(10,13,14) that ∆
has to be related to some phase relations that need to be uncovered. To do that we
write tx/y = |tx/y|eiϕx/y and t′x/y = |t′x/y|eiϕ′

x/y and deduce from simple algebraic
manipulations that

WA(ε̂,k1,k2) − WB(ε̂,k′
1,k

′
2) = C|tx| |ty| (sinφ′ − sinφ) . (15)

Here we introduced the phase differences φ′ = ϕ′
y − ϕ′

x, φ = ϕy − ϕx. Equivalently
one can show that [29]

WA(ε̂,k1,k2) + WA(ε̂∗,k1,k2) = C|tx|2 + |ty|2 (16)
WA(ε̂,k1,k2)− WA(ε̂∗,k1,k2) = −2C|tx| |ty| sinφ (17)
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Recalling Eq.(11) we deduce from Eqs.(15,17) the relation

φ′ = −φ + 2πn, (18)

where n is an integer number. The question is now whether one can measure φ (and
hence φ′). The answer is provided by Eqs.(12, 16,17) which imply that

sinφ = −∆
W(ε̂x,k1,k2) + W(ε̂y,k1,k2)√

W(ε̂x,k1,k2)W(ε̂y,k1,k2)
, (19)

where W(ε̂x,k1,k2) = C|tx|2 and W(ε̂y,k1,k2) = C|ty|2 are the PDE cross sections
that are measurable by utilizing linear polarized light (note that WA(ε̂x/y,k1,k2) ≡
WB(ε̂x/y,k′

1,k
′
2)). In addition, it is readily deduced that WA(ε̂y,k1,k2) = WA(ε̂x, k̃1, k̃2)

where k̃1 and k̃2 are obtained from k1 and k2 via a π/2 rotation with respect to
the z axis (i.e. instead of a π/2 rotation of the polarization vector from ε̂x to ε̂y

one can leave ε̂x fixed and perform a π/2 rotation of the momenta k1, k2).

3.1 Numerical results and comparison with experiments

To sense by means of PDE the difference between the two-electron states described
by the triangles A and B (as depicted Fig.1) one needs to perform PDE measure-
ments with circular polarized light, as evident from Eqs.(10,12). For a measurement
of the phase differences φ, φ′ one needs in addition a PDE experiment with linear
polarized light, as required by Eq.(19). These kind of experimental studies have
been conducted using a ground-state He atom. Fig. 2 shows a typical result of
these experiments for the configuration of Fig.1. As obvious from Fig.2(b), the dif-
ference between the states quantified by A and B shows up in a finite ∆ in Fig.2(b)
with remarkable angular variations. ∆ vanishes at θ2 = 0◦, 180◦, 360◦ as in this
case A and B reduce to a line and become equivalent (θ2 is the angular position of
k2 with respect to the x axis). The actual magnitude and the shape of ∆ depend
on the details of the many-body wave function and can not be explained by geo-
metrical arguments. For example, if one employs plane waves for the two escaping
electrons ∆ vanishes identically, as shown below.

As explained in the previous section, ∆ can also be employed to deduce the
phase difference φ according to Eq.(19). This is done in Fig.2(c). We notice from
this figure a significant angular variation of the phase difference φ. The sign of φ
is solely determined by ∆ (cf. Eq.(19), i.e. it is determined by the influence of the
mirror reflection (cf. Eqs.(10,12)). The value of φ(θ2) is small when ∆(θ2) is small
(cf. Eq.(19)) and hence the resemblance between the minima and the maxima in
the angular distributions of φ(θ2) and ∆(θ2), as observed in Figs.2(c,b).

To uncover the significance of the phase difference φ for the wave function Ψ we
recall that φ has been introduced as a difference of the phases ϕx/yof the transition
amplitudes tx/y. The relation to the phase of the wave function Ψ becomes clear
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Fig. 2. (a): The cross sections for double ionization of He(1Se) with a linear polarized
photon in the geometry shown in Fig. 1. Two experiments are shown: In the first one
(solid line, labeled W (εx)) the photon’s polarization vector ε̂ is fixed along the x direction
whereas in the second case (dotted line, labeled W (εx)) the polarization vector ε̂ is along
the y direction. The excess energy is 20 eV. As shown in Fig.1, both electrons are detected
in the x − y plane. One fast electron (electron 1 with 17.5 eV) is detected along the x-
direction whereas the angular distribution of the slower one (electron 2) is scanned as
function of θ2 where θ2 determines the angular position of k̂2 with respect to x axis
(cf. Fig. 1). Experimental data are due to Ref.[27]. The initial state has been modeled
by a three-parameter Hylleraas wave function [8, 28] whereas the same correlated final
state has been employed as in Ref.[7]. The velocity form has been employed. (b): The
same experimental arrangement of the electrons’ as in Fig.1 (and in (a)), however, the
experiment is performed with circularly polarized photons with the photon wave vector
k pointing along the z direction (cf. Fig.1). From the measurements with left and right
circular polarized photons one determines the circular dichroism ∆ according to Eq.(12).
The solid curve is the theoretical prediction using the same model as in (a). The absolute
experimental data are due to Refs.[7, 14]. (c): The difference φ′ = −φ as derived according

to Eq.(19) and using the calculations shown in (a) and (b).
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when we write tx/y in a momentum space representation and in the velocity form:

tx/y ∝ 〈Ψk1,k2
|ε̂x/y ·(∇1+∇2)|Φ〉 = iε̂x/y ·

∫
(p + q) Ψ̃∗

k1,k2
(p, q)Φ̃(p, q)d3p d3q,

(20)
where Φ̃(p, q) is the (six-dimensional) Fourier transform of the initial state. Since
we assumed the initial state to be randomly oriented the Fourier transform is
real. Therefore, the only phase contribution to the integral (20) stems from the
phase φΨ = φΨ(k1,k2;p, q) of the momentum-space wave function Ψ̃∗

k1,k2
(p, q) =

|Ψ̃∗
k1,k2

(p, q)| eiφΨ . The direct link between the transition-amplitude phases φx/y

and wave-function phase φΨ becomes transparent if we employ the peaking approx-
imation Ψ̃∗

k1,k2
(p, q) ≈ ξ̃∗k1,k2

(p, q)δ(3)(p−k1)δ(3)(q −k2). In this case we obtain
for the experimental arrangement of Fig.1 φ = φξ(θ1 − π/2, θ2 − π/2) − φξ(θ1, θ2)
and φ′ = −φ. Here φξ is the phase of the function ξ̃∗k1,k2

. If the continuum states of
the two electrons are modeled by plane waves the peaking approximation becomes
exact and ξ̃∗k1,k2

is a mere constant. This leads to φξ ≡ 0, which in turn means
φ ≡ 0.

4 Conclusions

In this paper we gave a brief account on how symmetry properties and internal
phase relations of an interacting three-body wave function can be investigated by
means of photons. In particular we pointed out that mirror-reflection symmetries
can be tested by utilizing circular photons. In this case the helicity of the photon is
transferred to the few-body system. The physical properties of this excited helical
system is strongly dependent on whether the helicity is positive of negative. It has
been shown that this statement can be tested experimentally by determining the
continuum spectra of an interacting electron pair with a positive (or a negative)
chirality created upon the double excitation of a random atom by a circular photon
with the appropriate helicity. The dependence of these spectra on the helicity of
the exciting photon provides an experimental tool to investigate the internal phase
relations within the three-body wave function.
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