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Magnetic scanning tunneling microscopy with a two-terminal nonmagnetic tip:
Quantitative results
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We report numerical simulation results of a recently propdg&edBruno, Phys. Rev. Let9, 4593(1997)]
approach to perform magnetic scanning tunneling microscopy with a two terminal nonmagnetic tip. It is based
upon the spin asymmetry effect of the tunneling current between a ferromagnetic surface and a two-terminal
nonmagnetic tip. The spin asymmetry effect is due to the spin-orbit scattering in the tip. The effect can be
viewed as a Mott scattering of tunneling electrons within the tip. To obtain quantitative results we perform
numerical simulations within the single-band tight-binding model, using the recursive Green’s-function method
and the Landauer-Btiker formula for conductance. A model has been developed to take into account the
spin-orbit scattering off the impurities within the single-band tight-binding model. We show that the spin-
asymmetry effect is most prominent when the device is in the quasiballistic regime and the typical value of
spin asymmetry is about 5%.
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[. INTRODUCTION orbit coupling, the tunnel conductance between the ferro-
magnetic surface and one of the tip terminals depends on the

Imaging the magnetic structures of surfaces down to th@rientation of magnetization. Because of the spin-orbit inter-
atomic level is a major goal of surface magnetism. Magnetidction, the intensity of the scattered beam depends on the

scanning tunneling microscopf¥STM) provides a way to orientation of the spin-polarization axis of the incidents elec-
image magnetic domains on the surface. In the conventionafOns, i.€., it is sensitive to the spin component perpendicular
approach, magnetic sensitivity of the tunneling current had0 the scattering plane. In other words, tunnel conductance is
been based upon the spin-valve effetlie tunneling current  SPIN asymmetric. However, to observe this spin asymmetry
between two ferromagnets separated by a tunnel barrier d&ff€Ct, caused by Mott scattering, a three terminal device is a
pend on the relative orientation of the magnetizations of th"€réquisite. Due to the Casimir-Onsager symmetry relation

ferromagnets. In this approach a magnetic tip has to be useme gonductance of a two—.termmal device has to be symmet-
ric with respect to magnetic fieldn our case, spin plays the

The experimental realization of magnetic scanning tunneIinq o : . .
. h . | . i ole of magnetic field since, as far as time reversal properties
microscopy based on the spin-valve effect was realized b¥1re concerned, “spin” and “magnetic” fields are equiva-

Wlesendangelet aI.,_2 who !nvestl_gated a @01) surface lent), this is a requirement imposed by the underlying micro-
with a ferromagnetlc_Crg)tlp_, their obseryanon confirmed scopic time reversal symmetry. However, in case of three
the model of topological antiferromagnetism between fermoye ming| device, there is no such restriction on the conduc-
magnetic terraces separated by monoatomic steps. Theynce: rather, a more generalized symmetry relation exists
measured a spin asymmetry of the order of 20%. Recently,yolving all terminals, as shown by “Biker? Hence, to
this method has been used to image magnetic domaifis.  perform magnetization sensitive scanning tunneling micros-
was shown that, by periodically changing the magnetizatiortopy with a nonmagnetic tip, it is necessary to use a two
of tip, it is possible to separate the spin-dependent tunnekrminal tip”
current from the topographic dependent current and hence In this work we report numerical simulation results of the
the magnetic structure of surface can be recorded. Using thibiree terminal STM device within the single-band tight-
method, Wulfhekekt al2 studied magnetic domain structure binding model, using the recursive Green-function method
on single crystalline C@®001) surface and polycrystalline Ni and the Landauer-Btiker formula for conductanc¥. We
surface. In Refs. 4—6, a two-dimensional antiferromagnetih©ave developed a model to take into account spin-scattering
structure of Mn atoms on tungsidri0 surface was investi- within the single-band tight-binding model.
gated. It was shown that the spin-polarized tunneling current This paper is organized as follows. In Sec. Il we introduce
is sensitive to the magnetic superstructure, and not to ththe single-band tight-binding model including the spin-orbit
chemical unit celf interaction and the three terminal STM device. Section llI
However, the MSTM with a magnetic tip has the draw- briefly describes the method of calculation. In Sec. IV we
back that the magnetostatic interaction between the tip andresent some numerical results and discussion.
magnetic sample cannot be avoided, which is likely to influ-
ence the domain structure. In view of this, an aIternativg Il. MODEL AND METHOD
approach was recently proposed to perform the magnetic
scanning tunneling microscopy with a two terminal nonmag- A cross section of the system in they plane, for the
netic tip.” It is based upon Mott's spin-asymmetry effect in calculation of spin sensitivity of the proposed two terminal
scattering caused by disordit.was shown that due to spin- nonmagnetic tip, is shown in Fig. 1. The system consists of
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7 and spin-orbit interaction, respectivelyi* is the effective
y mass of an electron\ is the exchange splittingi is a unit
vector in the direction of magnetization of FMs and is given
FM 1 X by (cosg sin 6,sin¢ sin 6,cosé); o is the Pauli operator; and
0O0ROODOORRROOOOO®O P is the momentum operator. The discretized form of the
00000000000 RBOOOO Hamiltonian reads
00000000000000000000
000000000\ \N000000000 A
000000 00N\\\\00/000000) He S e+ 2o e+t S o e
0/0/0/0/0/0 ON\PN\\0/00/06/0'0) o \ErOer T g e Toa [Crobra TR £ Enoti
QOO0 ONNNNNOOOOOO " '
OO0 OONNNY I NN 00000, +Hego, 2
OO 00 88801 NS00
SONNFNY 1 TTTTITI NN ee) whereHs, is expressed as
ONNNN JJ1 1111 1T 1 NNNN@,
%ﬁ@rooooooooooo *@ﬁ Hop= — e
3
T i
FIG. 1. Cross section of tip geometry shown in the plane. Xr’,,,{,%j'kyw VYAE a1 CroCr vay v g €ik
Gray circles denote the ferromagnetic sample; the empty circles 3)

depict vacuum; black circles correspond to insulating sites; and the
rest correspond to metallic sitésatched circlesand the impurities
(starg in the tip. This figure shows one typical realization of the
disorder.

Herec,f » IS the creation operator of an electron with sptn
at siter, g, is the on-site energy, an(zkswﬁk,r”aj

=€riyg " Eriva & is the lattice basis vector along ais

i . . . .
(ii) the central region, andii) the two nonmagnetic termi- Toor Qenotes thg Paqll matrix elements, amg), is the _d"
nals (labeled as 2 and 3 in Fig.).1The central region is mensionless spin-orbit parameter. T,he dummy indice
composed of an insulating tip, such as those routinely used tkes the values:. The summatiodr,r’) runs over nearest
perform atomic force microscopy, coated on two opposite’€ighbor sites. The symbai; is the Levi-Civita's totally
faces by a thin metallic film. The metallic coating has thick- @ntisymmetric tensor, whengk label the three coordinate
nessd. This is shown in the central region where the empty@XIS- o ]

circles depict vacuum, black circles correspond to insulatingf The tight-binding parameters in Eq&) and (3) are re-
sites, and the rest correspond to metallic sitbatched lated with the parameters in E€L) in the following way:
circles and the impuritiegstarg. Between the ferromagnetic

surface(gray circles in Fig. 1and the tip there is a vacuum K2

layer of one lattice spacingempty circles in Fig. L The tip t=———, (4)

is placed symmetrical with respect to tke plane. Current
flows along the two faces of the tip, which makes an angle of
+45 degrees with th& axis. The structure shown in Fig. 1 N

consists of three semi-infinite leads ¢ <i<1 andN,+ 1 Uso=— - )
<i=<w) separated by the tip regionli=<N, .. The thickness
of the metallic coating on the tip ida wherea is the lattice

constant and the cross section of the systenNiga N,a), The above tight-binding model includes two factors: spin-
where Ny and NZ are the number of sites a|0ng thindZ dependent band structure and Spin-independent disorder. The

axes. For numerical calculation we have takip=N, band structure takes into account the difference in the density
=20, N,= 10, and the metallic coating on the tip has a thick-Of states gnd the Fermi velocity betwgen the two spin com-
ness of four lattice spacings, i.el=4, as shown in Fig. 1. Ponents in the ferromagnet. The disorder represents the
We model the system shown in Fig. 1 as a single-ban@tructural defects in the real STM tip and is the source of
tight-binding Hamiltonian with nearest neighbor hopping pa-SPin-orbit scattering; it also takes the form of spin indepen-
rametert. To obtain the appropriate form of Sing'e_band dent random variation in the atomic on-site energ|es. In preS-
tight-binding Hamiltonian including spin-orbit interaction, €nce of disorder, the spin-orbit coupling term causes hopping
we discretize the following single-band Hamiltonian in con-&long the diagonal and is the source of spin-flip scattering. In

three regions(i) the ferromagnetic leadabeled 1 in Fig. 1,

tinuum, on a simple-cubic lattice: this sense, this model is equivalent to the next-nearest-
neighbor(nnb) tight-binding model, except that in the usual

p2 AL - .. nnb tight-binding model, hopping amplitude to the next-

H= EJFV(V)JFEM(V)'UJF AMVV(r)xe)-P, (1)  nearest neighbor is fixed while in our model it depends on

disorder strength and the spin of the electron. Hence within
where the first two terms are the usual kinetic and potentiathis model spin-relaxation length is determined by disorder
energies while the third and fourth terms represent exchanggrength.
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IIl. THEORY 0.90 T T T T T
As shown in Fig. 1, the ferromagnet and the left and right —G,
faces of the tip, are connected to three reservoirs at chemical
potentialsV,, V,, andV, respectively. Let,, |, andl; be — 0.85
the corresponding incoming currents in the three =
terminals?° =
The currents are related to potentials by 0]
« 080 F_ =
o
o= Gpo(Vp—Vy)- (6)
q#p e
The above expression is gauge invariant and the currents 0.75 . il .
conservation lawZ;l;=0 requires thaG,,= G, be satis- 0 90 180 270 360
fied. 0 (degrees)

The calculation of the conductance of the structure is

based upon the nonequilibrium  Green's-function FIG. 2. ConductanceG;, and G5 versusé plot for the two
formalism*12 When applied to the multiterminal ballistic terminals for a fixed value o$=90. The other parameters chosen

mesoscopic conductor, we obtain the following result for thelor this figure aree;=3.0t|, A=2.4t], a;,=0.02, andW=1Jt|

0
conductancé: parameters are the mean free path, spin-relaxation length
e? Fermi energy, and spin polarization of the ferromagnet at the
quzﬁTr[FqGRFpGA]. (7)  Fermi level while the model parameters are on-site energy,

hopping energy, exchange splitting, and spin-orbit coupling

Herep andq enumerates the three terminals, and the up_parameters. Physical parame'Fers are related to the model pa-
ﬁlmeters in the following way:

per indices R and A refer to the retarded and advanced Gred
function of the whole structure, taking leads into account.

HereT', is the self-energy function for the isolated ideal m:|L| hil ! —__a, (8)
leads which are given by 4, =t?A,(q) , WhereA,q is the T V[t Nap(e0)((V—V)2),

spectral density in the respective lead when it is decoupled

from the structure. The trace is over space and spin degrees Teo  3lmlt]

of freedom, and all the matrices in E@f) are of size (2, lso=Im\ = Tacde’ 9
XNz,2NyxN,), where N, and N, are a number of sites m sol™

along they and z directions and the factor of 2 takes into N I

account the spin degree of freedom. All the quantities in the _ N (e —N"(er) _ VertA—ve—A (10
above equations are evaluated at the Fermi energy. To cal- N'(e)+NH(er) Vet A+ \Je—A'

culate the required Green function we use the well-known ) )
recursive Green's-function methdd. wherel,,, |s,, andP are the elastic mean free path, spin

relaxation length, and spin polarization of the ferromagnet,
respectively. Hera is lattice spacing and- - - ). represents
the configuration averaging. Other symbols have the same
In this section, we present numerical results for a systenineaning as defined in Sec. Il. Below we present some nu-
of cross section (2020) in theyz plane and a length of 10 merical results for one typical realization of the disorder. We
lattice spacing along thedirection. The number of metallic have not performed disorder averaging.
layers on the tip, i.e.d in Fig. 1 is taken to be four latice  In Fig. 2 we have plotted the conductar@e, andG,3 as
spacings. The hopping parametgris the same for all pairs @ function of magnetization angleé with respect to thez
and set to— 1 for numerical calculation. The on-site energiesaxis. We rotate the magnetization in the plane such that
in the leads and on the metal coating on the tip is set to béhe magnetization is always perpendicular toxfaxis, or in
zero, while in the vacuum layer it is,,=4.0t|, and in the  other words, the anglé¥ does not change and has a fixed
insulating region in the tip it ig;,s=10.4t|. The Fermilevel value of 90°. To be specific, whefi=0 and ¢=90°, mag-
throughout the calculation is kept fixed gt=3|t| above the netization is parallel to the axis, while for §=90° and¢
bottom of the band. For disorder, we consider the Andersor=90° the magnetization is parallel to tlyeaxis. We have
model in which a random on-site energy, characterized byakene;=3|t|, as,=0.02, andA =2.4t|, and the Anderson
square distribution of widthV, is added to the on-site energy disorder strength i8V=1]t|. This set of parameters corre-
of a perfect case. In our case, disorder is added only in theponds to a mean free pathlgf=80a, spin relaxation length
metallic coating on the tip; everywhere else the system iof 1,=25,, and polarization i#=50%. We notice that
perfect. the conductance shows approximately és6 a function of
Before we go over to the discussion of our results, weangle, which is expected since, in our geometry, the tip is
briefly mention the correspondence between the physical paglaced symmetrically to thgz plane. However, because of
rameters and the model parameters. The relevant physicéisorder, the effective axis in the system does not coincide

IV. RESULTS AND DISCUSSION
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FIG. 5. Spin asymmetr@, as a function of /I, for different
éjisorder strengths. The other parameters are 3.0t| and A
= 2.4t|. The corresponding value of polarization is 50%.

FIG. 3. Plot of the average two-terminal conductan€g;,(
+G13)/2 vs 6. The other parameters are the same as those in Fig.

with the chosen spin quantization axis, i.eaxis; and also
since the structure considered is three dimensional so the = —
scattering plane is not fixed, hence the conductance variation G +G1,"
with magnetization angle does not show an exact cosine be- max min

. . - . . where to findGy;  andGj," we generate a curve, as shown
havior. Also we notice that the variation &5 is opposite . . .
A ) . . in Fig. 3, for each set of parameters, and from those points
that of G4,. This is in agreement with the underlying micro-

S . . ) we get the corresponding maximum and minimum values.
scopic time-reversible symmetry which requires that the tWOThis is necessary since the variation of conductance with

terminal conductance should be symmetric under time rever. - unetization anale does not follow exact cosine behavior
sal. To verify this point, we have plotted in Fig. 3 the sum of g 9 '

(G1otG19)/2, where we see that the two terminal conduc-and the maxima a'."d minima need' not to oceur exactly at
) o o zero andar, respectively. We have fixed Fermi energyeat
tance is symmetric with respect to magnetization angle

Also, the magnitude of oscillation is much smaller than ei-:3|t| andas,=0.02. Different curves in Fig. 4 corresponds

' 9 o o to disorder strength®vV=1|t| (solid line), W=2|t| (dotted
ther G4, or G43. This is due to the fact that the variation of i _ dot-dashed i d W= dashed
Gy, or G5 with 6 is of first order with respect to the spin- I!ne), ¥x—2-5|tl ( ot;j.as © m? an V¥_4|t| (dashec |
orbit coupling, whereas the variation &f;,+ G43 is of sec- ine). The corresponding mean free paths are, respectively,

ond order with respect to spin-orbit coupling. Actually, the 80a, 10a, 6, and &. Although all these curves correspond

latter can be viewed as related to the anisotropic magnetoré9 different mean free paths, the ratig/I, is the same for

: . all the curves and is equal to 25 since this ratio is determined
sistance of ferromagnets, whereas the former is related to trbe . : . . .
. y Fermi energy and spin-orbit coupling strength, which are
extraordinary Hall effect. X } :
) X . kept fixed here. We see that for a fixed disorder strength the
In Fig. 4 we plot spin asymmetry as a function of the . . . o .
2 ; spin asymmetry increases linearly with the polarization, or in
polarization of the ferromagnet for terminal 2. We have de- . S ;
. . other words, spin asymmetry is directly proportional to the
fined the spin asymmetry as o )
polarization of the ferromagnet. However, for a fixed polar-
ization value, spin asymmetry shows a nhonmonotonic behav-
ior. As we increase disorder strength, spin asymmetry first
increases and then starts decreasing. This shows that the spin
asymmetry is maximum when the system is in the quasibal-
listic regime, since the multiple scattering destroys the spin
asymmetry effect. This is clearly visible in Fig. 4 where spin
asymmetry is maximum for a fixed value of polarization at a
disorder strengthV=2|t| corresponding to a mean free path
of 10a, while it is minimum forW=4|t| corresponding to a
mean free path of 8 lattice spacings. The order of magni-
tude of spin asymmetry is 5%, which is in good agreement
with the prediction in Ref. 7.
In Fig. 5 we have studied the behavior of spin asymmetry
P (%) as a function of spin-orbit coupling parametey,. The other
parameters are the same as in Fig. 4. We notice that the
FIG. 4. Spin asymmetnA, as a function of polarization for Spin-asymmetry shows a Iineqr behavior fQT S'mall values of
different disorder strengths. The other parametergar8.0t| and  @s,<0.03. For largeras,, the linear behavior is no longer
@g=0.02. seen because for a fixed disordee., fixedl,,), as we in-

_epep w

Asymmetry in (%)
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creaseag,, correspondingly]s, (i.e., spin-relaxation pajh than the one obtained in the spin-valve tu_nneling structures.
decreases. Hence the higher-order effect in spin-orbit coufowever, it has some advantages. In particular, since the tip
p||ng starts dominating, SO we no |0nger observe a |ineal's rjonmagnetlc, it IS Insensitive to an external magnetlc fleld
behavior. Also, we see that for a fixed,, spin asymmetry 1his allows one to study the domain structure as a function
shows a maximum at a disorder strength of aroud of the_ applled fl_eld. Furthermore,.the problem of the_ magne-
= 2]t|. This is in harmony with the results presented in I:ig_tostatlc interaction between the tip and the magnetic sample

. . ! oz Is avoided, which, in the case of a magnetic tip, would give
4. The typical value of spin asymmetry is of the order of 5 /o'rise to undesirable magnetic forces between the tip and the

dsgnfégr?h;??hle#it;eorfc?%?.tr?eapnr?)pSO;veziﬁ:\e:%rmitr?af%qp ample, WhICh are likely to mﬂuencg the do.mam_structure.
device would be maximum when the device operates in th nother_ important advantage of this technique is th_at by
U . P ?neasurlng separately the curremisand |5 of the two tip

quasiballistic regime. _terminals, and by combining them appropriately, one can

In summary, we have developed a model to take inta;eparate the weak magnetic contrast from the dominant to-
account Spln-OI’bIt. scattering within the single-band tlght- ographic contrast. The sum+ 15 depends only on the to-
binding model. Using this model, we have done nUme”‘?’igography, whereas the magnetic information is contained in
calculations of magnetic scanning tunneling microscopy withthe difference ,+ 1 5. Besides all these advantages, it has an
a nonmagnetic tip. The order of magnitude of the spin asymintrinsic limitation that the only in-plane components can be
metry is about 5%, which is in good agreement with thestudied. Also, since multiple scattering diminishes the spin-
qualitative estimate given in Ref. 7 and the effect is maxi-asymmetry effect, it is necessary that the device operates in a
mum when the device operates in the quasiballistic regimeguasiballistic regime. However, to construct such a tip would
The spin asymmetry of the present effect is smalletbe experimentally challenging.
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