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Magnetic scanning tunneling microscopy with a two-terminal nonmagnetic tip:
Quantitative results

T. P. Pareek and Patrick Bruno
Max-Planck-Institute fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

~Received 31 July 2000; published 5 April 2001!

We report numerical simulation results of a recently proposed@P. Bruno, Phys. Rev. Lett79, 4593~1997!#
approach to perform magnetic scanning tunneling microscopy with a two terminal nonmagnetic tip. It is based
upon the spin asymmetry effect of the tunneling current between a ferromagnetic surface and a two-terminal
nonmagnetic tip. The spin asymmetry effect is due to the spin-orbit scattering in the tip. The effect can be
viewed as a Mott scattering of tunneling electrons within the tip. To obtain quantitative results we perform
numerical simulations within the single-band tight-binding model, using the recursive Green’s-function method
and the Landauer-Bu¨ttiker formula for conductance. A model has been developed to take into account the
spin-orbit scattering off the impurities within the single-band tight-binding model. We show that the spin-
asymmetry effect is most prominent when the device is in the quasiballistic regime and the typical value of
spin asymmetry is about 5%.

DOI: 10.1103/PhysRevB.63.165424 PACS number~s!: 68.37.Ef, 73.40.Gk, 75.70.Rf, 75.60.Ch
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I. INTRODUCTION

Imaging the magnetic structures of surfaces down to
atomic level is a major goal of surface magnetism. Magne
scanning tunneling microscopy~MSTM! provides a way to
image magnetic domains on the surface. In the conventio
approach, magnetic sensitivity of the tunneling current
been based upon the spin-valve effect,1 the tunneling current
between two ferromagnets separated by a tunnel barrier
pend on the relative orientation of the magnetizations of
ferromagnets. In this approach a magnetic tip has to be u
The experimental realization of magnetic scanning tunne
microscopy based on the spin-valve effect was realized
Wiesendangeret al.,2 who investigated a Cr~001! surface
with a ferromagnetic CrO2 tip, their observation confirmed
the model of topological antiferromagnetism between fer
magnetic terraces separated by monoatomic steps. T
measured a spin asymmetry of the order of 20%. Rece
this method has been used to image magnetic domains.3–6 It
was shown that, by periodically changing the magnetizat
of tip, it is possible to separate the spin-dependent tun
current from the topographic dependent current and he
the magnetic structure of surface can be recorded. Using
method, Wulfhekelet al.3 studied magnetic domain structu
on single crystalline Co~0001! surface and polycrystalline N
surface. In Refs. 4–6, a two-dimensional antiferromagn
structure of Mn atoms on tungsten~110! surface was investi-
gated. It was shown that the spin-polarized tunneling curr
is sensitive to the magnetic superstructure, and not to
chemical unit cell.4

However, the MSTM with a magnetic tip has the dra
back that the magnetostatic interaction between the tip
magnetic sample cannot be avoided, which is likely to infl
ence the domain structure. In view of this, an alternat
approach was recently proposed to perform the magn
scanning tunneling microscopy with a two terminal nonma
netic tip.7 It is based upon Mott’s spin-asymmetry effect
scattering caused by disorder.8 It was shown that due to spin
0163-1829/2001/63~16!/165424~5!/$20.00 63 1654
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orbit coupling, the tunnel conductance between the fer
magnetic surface and one of the tip terminals depends on
orientation of magnetization. Because of the spin-orbit int
action, the intensity of the scattered beam depends on
orientation of the spin-polarization axis of the incidents ele
trons, i.e., it is sensitive to the spin component perpendic
to the scattering plane. In other words, tunnel conductanc
spin asymmetric. However, to observe this spin asymme
effect, caused by Mott scattering, a three terminal device
prerequisite. Due to the Casimir-Onsager symmetry rela
the conductance of a two-terminal device has to be symm
ric with respect to magnetic field~in our case, spin plays the
role of magnetic field since, as far as time reversal proper
are concerned, ‘‘spin’’ and ‘‘magnetic’’ fields are equiva
lent!, this is a requirement imposed by the underlying mic
scopic time reversal symmetry. However, in case of th
terminal device, there is no such restriction on the cond
tance; rather, a more generalized symmetry relation ex
involving all terminals, as shown by Bu¨ttiker.9 Hence, to
perform magnetization sensitive scanning tunneling micr
copy with a nonmagnetic tip, it is necessary to use a t
terminal tip.7

In this work we report numerical simulation results of th
three terminal STM device within the single-band tigh
binding model, using the recursive Green-function meth
and the Landauer-Bu¨ttiker formula for conductance.10 We
have developed a model to take into account spin-scatte
within the single-band tight-binding model.

This paper is organized as follows. In Sec. II we introdu
the single-band tight-binding model including the spin-or
interaction and the three terminal STM device. Section
briefly describes the method of calculation. In Sec. IV w
present some numerical results and discussion.

II. MODEL AND METHOD

A cross section of the system in thexy plane, for the
calculation of spin sensitivity of the proposed two termin
nonmagnetic tip, is shown in Fig. 1. The system consists
©2001 The American Physical Society24-1
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three regions,~i! the ferromagnetic lead~labeled 1 in Fig. 1!,
~ii ! the central region, and~iii ! the two nonmagnetic termi
nals ~labeled as 2 and 3 in Fig. 1!. The central region is
composed of an insulating tip, such as those routinely use
perform atomic force microscopy, coated on two oppos
faces by a thin metallic film. The metallic coating has thic
nessd. This is shown in the central region where the emp
circles depict vacuum, black circles correspond to insulat
sites, and the rest correspond to metallic sites~hatched
circles! and the impurities~stars!. Between the ferromagneti
surface~gray circles in Fig. 1! and the tip there is a vacuum
layer of one lattice spacing~empty circles in Fig. 1!. The tip
is placed symmetrical with respect to thexz plane. Current
flows along the two faces of the tip, which makes an angle
645 degrees with thex axis. The structure shown in Fig.
consists of three semi-infinite leads (2`< i<1 andNx11
< i<`) separated by the tip region 1< i<Nx . The thickness
of the metallic coating on the tip isda wherea is the lattice
constant and the cross section of the system is (Nya3Nza),
whereNy andNz are the number of sites along they andz
axes. For numerical calculation we have takenNy5Nz
520, Nx510, and the metallic coating on the tip has a thic
ness of four lattice spacings, i.e.,d54, as shown in Fig. 1.

We model the system shown in Fig. 1 as a single-ba
tight-binding Hamiltonian with nearest neighbor hopping p
rameter t. To obtain the appropriate form of single-ban
tight-binding Hamiltonian including spin-orbit interaction
we discretize the following single-band Hamiltonian in co
tinuum, on a simple-cubic lattice:

H5
P̂2

2m*
1V~r !1

D

2
mW ~r !•sW 1l„“V~r !3sW …• P̂, ~1!

where the first two terms are the usual kinetic and poten
energies while the third and fourth terms represent excha

FIG. 1. Cross section of tip geometry shown in thexy plane.
Gray circles denote the ferromagnetic sample; the empty cir
depict vacuum; black circles correspond to insulating sites; and
rest correspond to metallic sites~hatched circles! and the impurities
~stars! in the tip. This figure shows one typical realization of th
disorder.
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and spin-orbit interaction, respectively;m* is the effective
mass of an electron;D is the exchange splitting;mW is a unit
vector in the direction of magnetization of FMs and is giv
by (cosf sinu,sinf sinu,cosu); sW is the Pauli operator; and
P̂ is the momentum operator. The discretized form of t
Hamiltonian reads

H5 (
r ,s,s8

S « rdss81
D r

2
mW r•sW ss8D cr ,s

1 cr ,s81t (
^r ,r8&s

cr ,s
1 cr8,s

1Hso, ~2!

whereHso is expressed as

Hso52 iaso

3 (
r ,s,s8,i , j ,k,ng

ngD« r1gak ,r1naj
cr ,s

† cr1naj 1gak
sss8

i e i jk .

~3!

Herecr ,s
1 is the creation operator of an electron with spins

at site r , « r is the on-site energy, andD« r1gak ,r1naj

5« r1gak
2« r1naj

, ai is the lattice basis vector along axisi,

sss8
i denotes the Pauli matrix elements, andaso is the di-

mensionless spin-orbit parameter. The dummy indiceng
takes the values6. The summation̂r ,r 8& runs over neares
neighbor sites. The symbole ijk is the Levi-Civita’s totally
antisymmetric tensor, wherei jk label the three coordinate
axis.

The tight-binding parameters in Eqs.~2! and ~3! are re-
lated with the parameters in Eq.~1! in the following way:

t52
\2

2m* a2
, ~4!

aso5
l\

a2
. ~5!

The above tight-binding model includes two factors: sp
dependent band structure and spin-independent disorder
band structure takes into account the difference in the den
of states and the Fermi velocity between the two spin co
ponents in the ferromagnet. The disorder represents
structural defects in the real STM tip and is the source
spin-orbit scattering; it also takes the form of spin indepe
dent random variation in the atomic on-site energies. In pr
ence of disorder, the spin-orbit coupling term causes hopp
along the diagonal and is the source of spin-flip scattering
this sense, this model is equivalent to the next-near
neighbor~nnb! tight-binding model, except that in the usu
nnb tight-binding model, hopping amplitude to the nex
nearest neighbor is fixed while in our model it depends
disorder strength and the spin of the electron. Hence wit
this model spin-relaxation length is determined by disor
strength.
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III. THEORY

As shown in Fig. 1, the ferromagnet and the left and rig
faces of the tip, are connected to three reservoirs at chem
potentialsV1 , V2, andV3, respectively. LetI 1 , I 2, andI 3 be
the corresponding incoming currents in the thr
terminals.9,10

The currents are related to potentials by

I p5 (
qÞp

Gpq~Vp2Vq!. ~6!

The above expression is gauge invariant and the curr
conservation law( i I i50 requires thatGpq5Gqp be satis-
fied.

The calculation of the conductance of the structure
based upon the nonequilibrium Green’s-functi
formalism.11,12 When applied to the multiterminal ballisti
mesoscopic conductor, we obtain the following result for
conductance:10

Gpq5
e2

h
Tr@GqGRGpGA#. ~7!

Herep andq enumerates the three terminals, and the
per indices R and A refer to the retarded and advanced G
function of the whole structure, taking leads into accou
Here Gp(q) is the self-energy function for the isolated ide
leads which are given byGp(q)5t2Ap(q) , whereAp(q) is the
spectral density in the respective lead when it is decoup
from the structure. The trace is over space and spin deg
of freedom, and all the matrices in Eq.~4! are of size (2Ny
3Nz,2Ny3Nz), where Ny and Nz are a number of sites
along they and z directions and the factor of 2 takes in
account the spin degree of freedom. All the quantities in
above equations are evaluated at the Fermi energy. To
culate the required Green function we use the well-kno
recursive Green’s-function method.13

IV. RESULTS AND DISCUSSION

In this section, we present numerical results for a sys
of cross section (20320) in theyz plane and a length of 10
lattice spacing along thex direction. The number of metallic
layers on the tip, i.e.,d in Fig. 1 is taken to be four lattice
spacings. The hopping parameter,t, is the same for all pairs
and set to21 for numerical calculation. The on-site energi
in the leads and on the metal coating on the tip is set to
zero, while in the vacuum layer it isevac54.0utu, and in the
insulating region in the tip it ise ins510.0utu. The Fermi level
throughout the calculation is kept fixed ate f53utu above the
bottom of the band. For disorder, we consider the Ander
model in which a random on-site energy, characterized
square distribution of widthW, is added to the on-site energ
of a perfect case. In our case, disorder is added only in
metallic coating on the tip; everywhere else the system
perfect.

Before we go over to the discussion of our results,
briefly mention the correspondence between the physica
rameters and the model parameters. The relevant phy
16542
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parameters are the mean free path, spin-relaxation le
Fermi energy, and spin polarization of the ferromagnet at
Fermi level while the model parameters are on-site ene
hopping energy, exchange splitting, and spin-orbit coupl
parameters. Physical parameters are related to the mode
rameters in the following way:

l m5
utu
p
Ae f

utu
1

N3D~e f !^~V2V̄!2&c

a, ~8!

l so5 l mAtso

tm
[

3l mutu
2uasoue f

, ~9!

P5
N↑~e f !2N↓~e f !

N↑~e f !1N↓~e f !
[

Ae f1D2Ae f2D

Ae f1D1Ae f2D
, ~10!

where l m , l so, and P are the elastic mean free path, sp
relaxation length, and spin polarization of the ferromagn
respectively. Herea is lattice spacing and̂•••&c represents
the configuration averaging. Other symbols have the sa
meaning as defined in Sec. II. Below we present some
merical results for one typical realization of the disorder. W
have not performed disorder averaging.

In Fig. 2 we have plotted the conductanceG12 andG13 as
a function of magnetization angleu with respect to thez
axis. We rotate the magnetization in theyz plane such that
the magnetization is always perpendicular to thex axis, or in
other words, the anglef does not change and has a fixe
value of 90°. To be specific, whenu50 andf590°, mag-
netization is parallel to thez axis, while foru590° andf
590° the magnetization is parallel to they axis. We have
takene f53utu, aso50.02, andD52.4utu, and the Anderson
disorder strength isW51utu. This set of parameters corre
sponds to a mean free path ofl m580a, spin relaxation length
of l so525l m , and polarization isP550%. We notice that
the conductance shows approximately cos(u) as a function of
angle, which is expected since, in our geometry, the tip
placed symmetrically to thexz plane. However, because o
disorder, the effective axis in the system does not coinc

FIG. 2. Conductance (G12 and G13) versusu plot for the two
terminals for a fixed value off590. The other parameters chose
for this figure aree f53.0utu, D52.4utu, aso50.02, andW51utu.
4-3
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with the chosen spin quantization axis, i.e.,z axis; and also
since the structure considered is three dimensional so
scattering plane is not fixed, hence the conductance varia
with magnetization angle does not show an exact cosine
havior. Also we notice that the variation ofG13 is opposite
that ofG12. This is in agreement with the underlying micro
scopic time-reversible symmetry which requires that the t
terminal conductance should be symmetric under time re
sal. To verify this point, we have plotted in Fig. 3 the sum
(G121G13)/2, where we see that the two terminal condu
tance is symmetric with respect to magnetization angleu.
Also, the magnitude of oscillation is much smaller than
ther G12 or G13. This is due to the fact that the variation o
G12 or G13 with u is of first order with respect to the spin
orbit coupling, whereas the variation ofG121G13 is of sec-
ond order with respect to spin-orbit coupling. Actually, t
latter can be viewed as related to the anisotropic magnet
sistance of ferromagnets, whereas the former is related to
extraordinary Hall effect.

In Fig. 4 we plot spin asymmetry as a function of th
polarization of the ferromagnet for terminal 2. We have d
fined the spin asymmetry as

FIG. 3. Plot of the average two-terminal conductance (G12

1G13)/2 vsu. The other parameters are the same as those in Fi

FIG. 4. Spin asymmetryA, as a function of polarization for
different disorder strengths. The other parameters aree f53.0utu and
aso50.02.
16542
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G12

max2G12
min

G12
max1G12

min
, ~11!

where to findG12
max andG12

min we generate a curve, as show
in Fig. 3, for each set of parameters, and from those po
we get the corresponding maximum and minimum valu
This is necessary since the variation of conductance w
magnetization angle does not follow exact cosine behav
and the maxima and minima need not to occur exactly
zero andp, respectively. We have fixed Fermi energy ate f
53utu andaso50.02. Different curves in Fig. 4 correspond
to disorder strengthsW51utu ~solid line!, W52utu ~dotted
line!, W52.5utu ~dot-dashed line!, and W54utu ~dashed
line!. The corresponding mean free paths are, respectiv
80a, 10a, 6a, and 3a. Although all these curves correspon
to different mean free paths, the ratiol so / l m is the same for
all the curves and is equal to 25 since this ratio is determi
by Fermi energy and spin-orbit coupling strength, which a
kept fixed here. We see that for a fixed disorder strength
spin asymmetry increases linearly with the polarization, or
other words, spin asymmetry is directly proportional to t
polarization of the ferromagnet. However, for a fixed pola
ization value, spin asymmetry shows a nonmonotonic beh
ior. As we increase disorder strength, spin asymmetry fi
increases and then starts decreasing. This shows that the
asymmetry is maximum when the system is in the quasib
listic regime, since the multiple scattering destroys the s
asymmetry effect. This is clearly visible in Fig. 4 where sp
asymmetry is maximum for a fixed value of polarization a
disorder strengthW52utu corresponding to a mean free pa
of 10a, while it is minimum forW54utu corresponding to a
mean free path of 3a lattice spacings. The order of magn
tude of spin asymmetry is 5%, which is in good agreem
with the prediction in Ref. 7.

In Fig. 5 we have studied the behavior of spin asymme
as a function of spin-orbit coupling parameteraso . The other
parameters are the same as in Fig. 4. We notice that
spin-asymmetry shows a linear behavior for small values
aso<0.03. For largeraso , the linear behavior is no longe
seen because for a fixed disorder~i.e., fixed l m!, as we in-

2.

FIG. 5. Spin asymmetryA, as a function ofl m / l so for different
disorder strengths. The other parameters aree f53.0utu and D
52.4utu. The corresponding value of polarization is 50%.
4-4
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creaseaso, correspondingly,l so ~i.e., spin-relaxation path!
decreases. Hence the higher-order effect in spin-orbit c
pling starts dominating, so we no longer observe a lin
behavior. Also, we see that for a fixedaso, spin asymmetry
shows a maximum at a disorder strength of aroundW
52utu. This is in harmony with the results presented in F
4. The typical value of spin asymmetry is of the order of 5
So from the results of Figs. 4 and 5 we can say with co
dence that the efficiency of the proposed three terminal S
device would be maximum when the device operates in
quasiballistic regime.

In summary, we have developed a model to take i
account spin-orbit scattering within the single-band tig
binding model. Using this model, we have done numeri
calculations of magnetic scanning tunneling microscopy w
a nonmagnetic tip. The order of magnitude of the spin asy
metry is about 5%, which is in good agreement with t
qualitative estimate given in Ref. 7 and the effect is ma
mum when the device operates in the quasiballistic regi
The spin asymmetry of the present effect is sma
,
.

hy

16542
u-
r

.

.
-
M
e

o
-
l

h
-

-
e.
r

than the one obtained in the spin-valve tunneling structu
However, it has some advantages. In particular, since the
is nonmagnetic, it is insensitive to an external magnetic fie
This allows one to study the domain structure as a funct
of the applied field. Furthermore, the problem of the mag
tostatic interaction between the tip and the magnetic sam
is avoided, which, in the case of a magnetic tip, would g
rise to undesirable magnetic forces between the tip and
sample, which are likely to influence the domain structu
Another important advantage of this technique is that
measuring separately the currentsI 2 and I 3 of the two tip
terminals, and by combining them appropriately, one c
separate the weak magnetic contrast from the dominan
pographic contrast. The sumI 21I 3 depends only on the to
pography, whereas the magnetic information is contained
the differenceI 21I 3. Besides all these advantages, it has
intrinsic limitation that the only in-plane components can
studied. Also, since multiple scattering diminishes the sp
asymmetry effect, it is necessary that the device operates
quasiballistic regime. However, to construct such a tip wo
be experimentally challenging.
s

s

ne,
1M. Juliere, Phys. Lett.54A, 225 ~1975!; S. Maekawa and U.
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