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Abstract

The e!ect of disorder on the perpendicular magnetoresistance of magnetic multilayers is investigated theoretically.
Various kinds of disorder are considered: (i) interface substitutional disorder and (ii) bulk disorder in the various layers
and in the leads. The calculations are based upon the non-equilibrium Green's function formalism, together with the
recursion method for calculating the real-space Green's function. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The common wisdom about giant magnetoresistance
(GMR) is that it is due to spin dependent scattering [1].
Although the transport is certainly di!usive for most
systems investigated experimentally, it has been pointed
out that pure ballistic transport as well would lead to
GMR for the perpendicular current geometry [2]. Sub-
sequently, it was proposed that for ballistic perpendicular
transport, the electron con"nement within the layers
would yield a quantum size e!ect, i.e., an oscillatory
behavior of the conductance and of the GMR as a func-
tion of layer thickness [3,4].

In the present paper, we investigate the in#uence of
disorder on perpendicular magnetoresistance, and dis-
cuss the crossover from ballistic to di!usive transport as
disorder increases.

2. Model

The model considered here consists of two ferromag-
netic layers of thickness ¸ separated by a non-magnetic
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spacer layer of thickness D; the structure is sandwiched
between two ideal leads connected to ideal reservoirs. We
use a simple-cubic single-band tight-binding Hamil-
tonian with a nearest-neighbor hopping. The hopping
parameter, t, is the same for all pairs of nearest neighbors
(for numerical calculations, t"!1 will be assumed).
The on-site energy of site i, e

i
, depends on the chemical

nature of the site and (for magnetic sites) on its spin. The
majority spin on-site energy of magnetic sites is taken
equal to the on-site energy of non-magnetic sites, and the
minority spin on-site energy of the magnetic sites is 0.3 DtD
higher than the latter. The Fermi level is taken 0.8 DtD
above the bottom of the band; this corresponds to
a quasi-free-electron case, with quasi-parabolic band
structure and quasi-spherical Fermi surface.

Two kinds of models for disorder are considered:
(i) random substitutional disorder, and (ii) the Anderson
model of disorder. Model (i) is particularly well suited to
study the e!ect of interface interdi!usion. In model (ii),
a random on-site energy (characterized by a square dis-
tribution of width=) is added to the on-site energy of the
perfect case; this is a convenient model for bulk disorder.
For both cases, a periodic (along the in-plane directions)
model of disorder with 10]10 supercell is considered.
We did not perform systematically an average over
disorder con"gurations, but we checked that this
100-sites supercell is large enough for #uctuations to be
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unimportant. For k
,

summations, we take 100 k
,
-points

in the two-dimensional Brillouin zone corresponding to
the supercell; this sampling is equivalent to taking
104 k

,
-points for the perfect case.

3. Theory

The calculation of the conductance of the structure is
based upon the non-equilibrium Green's function for-
malism [5,6]. When applied to the case of a two-terminal
ballistic mesoscopic conductor we obtain the following
result for the conductance [7,8]:
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In the above equation, the upper indices R and A refer to
the retarded and advanced Green's function, respectively;
the lower l and r indices refer to the left and right
reserviors, respectively. Thus, GR

-3
is the o!-diagonal re-

tarded Green's function linking the left reservoir to the
right reservoir; C

-
(respectively, C

3
) are given by

C
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, where A
-
(respectively, A

3
) is the spectral

density in the "rst plane of the left (respectively, right)
reservoir, when it is decoupled from the conductor. All
the quantities in Eq. (1) are taken at the Fermi level. The
conductance obtained here from the non-equilibrium
Green's function formalism, Eq. (1), can be shown to be
equivalent to the ones obtained from the Kubo formula,
and from the Landauer}BuK ttiker formalism [7].

By separating the k
,
-conserving and k

,
-non-conserv-

ing terms, we can separate the ballistic and di!usive
contributions to the total conductance:
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4. Results and discussion

Before considering the problem of perpendicular mag-
netoresistance, we illustrate our method by presenting
the conductance of a non-magnetic layer of thickness up
to 2000 mono-layers (ML), with an Anderson-like dis-
order with width ="1.0DtD. The results are shown in
Fig. 1. For small thicknesses, the transport is quasi-
ballistic, but for thicknesses larger than the mean-free
path (approximately 400 ML here), the transport be-
comes di!usive.

Let us now consider the problem of the perpendicular
magneto-resistance. We de"ne the magnetoresistance as 1

A,(G
F
!G

AF
)/(G

F
#G

AF
). The results are displayed in

Fig. 1. Conductance of a disordered non-magnetic layer as
a function of layer thickness.

Fig. 2. Magneto-resistance: (a) perfect case; (b) interface inter-
di!usion (2 layers of substitutional disorder); (c) bulk disorder
in spacer layer (Anderson model,="0.5DtD); (d) 400 disordered
layers in left lead (Anderson model,="0.5DtD).

Fig. 2. The magneto-resistance of the perfect system (Fig.
2a) exhibits the oscillations due to the quantum size e!ect
[4]. We have investigated the case of interface interdi!u-
sion (Fig. 2b) by including two planes of random substi-
tutional alloy: it appears that the latter in#uences only
weakly the magnetoresistance. We have also performed
calculations treating the interface alloy within the virtual
crystal approximation: the magnetoresistance (not
shown here) is almost identical to the &exact' one (Fig. 2b);
the e!ect of interface interdi!usion is thus merely to
replace the abrupt interface by a graded interface, which
reduces the re#ectivity, but produces little di!use scatter-
ing.

It we include bulk disorder in the spacer (Anderson
model of disorder) the di!use scattering leads to reduc-
tion of the magneto-resistance for large spacer thickness,
but the quantum size e!ect is still present (Fig. 2c).

1Note that present de"nition di!ers from the one used by
other authors, who normalize the magneto-resistance by G

F
in-

stead of G
F
#G

AF
as done here; the present convention gives

values strictly bound between !1 and #1, and gives numer-
ical values that are smaller by typically a factor 2.
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Fig. 3. Minority-spin conductance for the ferromagnetic con"g-
uration. (a)}(d) same as Fig. 2.

Next we simulate the e!ect of disorder in the leads by
including a rather thick (400 ML) disordered region (An-
derson model of disorder) in the left lead 2 (Fig. 2d). This
yields a signi"cant reduction of magneto-resistance: this
is easily explained as the e!ect of an additional resistance
in series with the multilayer. The other e!ect is that the
quantum size e!ect is strongly perturbed.

In order to understand better the e!ect of disorder on
the quantum size e!ect, we show in Fig. 3 the minority-
spin contribution to the conductance of the ferromagnet-
ic alignment (which is the one giving rise to the quantum
size e!ect here). We see that, for a disordered lead
(Fig. 3d), the amplitude of the conductance oscillation is
reduced by a factor of 4, while the conductance itself is

2For technical reasons, disorder could not be included con-
veniently for both leads, but results with 2 disordered leads may
be expected to be similar to the one obtained with 1 disordered
lead.

only reduced by 30 percent. Thus, this suggests that
di!use scattering in the leads supresses the quantum size
e!ect (here it is not completely supressed because the
disordered region is rather thin and the ballistic conduc-
tance still accounts for 70 percent of the total conduc-
tance).
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