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Abstract
The use of inelastic low-energy neutron scattering from a many-electron target
is envisaged as a tool for the investigation of electronic correlation. Specifically,
numerical calculations are carried out to estimate the probability that an
incoming neutron beam knocks out the nucleus of a helium atom, leaving
behind two interacting continuum electrons. The signatures of the electronic
correlation and of the electron–electron scattering dynamics in the calculated
cross sections are discussed and the proposed method is contrasted with other
existing many-particle spectroscopic tools.

For the investigation of electronic correlation and few-particle scattering dynamics in atoms
and molecules a number of methods have been put forward (see the recent monograph [1] for
an overview). The basic principle has been to prepare a system in a well defined state and to
monitor its response to an external perturbation. The perturbation is usually induced by an
impinging charged particle beam, e.g. electrons, positrons, protons, etc, or due to the absorption
of photons. The advantage of these probing beams is that they are widely available and their
properties can be controlled with sufficient accuracy. In addition, the coupling of these beams
to atomic matter is sizeable so that the scattering cross sections are measurable with present day
technology. On the other hand, one encounters several undesirable effects when it comes to
extracting information exclusive to the target: a charged beam interacts with the constituents of
atoms via the infinite-range Coulomb force, which implies that multiple scattering between the
beam’s particles and the excited atoms is generally strong and persists to very large distances.
Therefore, it is, in general, not straightforward to disentangle from the measured scattering
cross sections information that can be assigned purely to the target dynamic. This undesirable
feature can be avoided, to a certain extent, by choosing appropriate scattering geometries, as
specified below, or by utilizing single VUV photons to disturb the target. However, photons in
the VUV regime provide only energy but no appreciable momentum to the target. In addition,
only certain partial waves are excited due to the nature of the electric-dipole photon–electron
interaction.
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This study explores the possibility of utilizing neutrons as a tool to investigate the electronic
correlation in atoms. The idea is to switch off the nucleus by an instantaneous interaction that
is transparent for the electrons [2]. After the nucleus is removed the initially bound electronic
cloud fragments into individual interacting electrons that are then resolved asymptotically in
energies and escape angles. There are two main sources of neutron-induced perturbations:
the strong interaction with the nuclei and the magnetic interaction with existing (nuclear and
electronic) magnetic moments of the target. In addition, there are a number of higher-order
coupling terms that are described in [3] and will not be of relevance for the present study. The
strong interaction potential V of neutrons with the nucleus is sizeable: however, its extension
is much smaller than the wavelength of the neutron (we are looking at neutrons with energies
less than 100 keV). Therefore, the potential V is well approximated by a contact, isotropic
interaction. Within the Born approximation, its form is given by the Fermi pseudo-potential [4]
as

V (rn) = gδ(rn) (1)

where rn is the relative distance between the neutron and the nucleus. The coupling constant
g is given by g = b(2πh̄2/µnα) where µnα is the reduced mass of the neutron–nucleus system
and b is the scattering length which depends on the specific nucleus and on the net nuclear spin.
For the sake of simplicity we consider He(1Se) as a target in which case the contributions of the
two electrons to the magnetic scattering cancel each other and the nucleus (the α particle) has
no net magnetic moment, i.e. the potential (1) is the only source of perturbation we consider
for the neutron scattering from He(1Se).

The aim of the present letter is to provide, within a realistic model, a numerical estimate
of the cross section for the knock-out of the α particle and the subsequent emission of the two
electrons with momenta k1 and k2.

When the neutron collides with the helium nucleus, the two electrons of He will always
stick to the moving α particle if the momentum transfer is small. As we will see explicitly
below, this is due to the small mass of the electron (as compared to that of the α particle).
Therefore, events with very large momentum transfer are necessary to get the electrons off
the nucleus. To catch these fine details in a theoretical description it is imperative to account
for effects due to the finite nuclear mass. For a formulation in the centre-of-mass system we
therefore utilize the set of Jacobi coordinates which are displayed in figure 1.

The fully differential cross section in the centre-of-mass system is given by [5] (atomic
units (au) are used hereafter, i.e. h̄ = 1 = a0 and the unit mass and unit charge are those of the
electron)

σ(k1, k1, Kn) = (2π)4 µn T

Kn0
|T |2 δ(Ei − Ef ) d3k1 d3k1 d3Kn. (2)

Here Kn0 and Kn are the initial and final channel momenta, respectively, that are conjugate
to the coordinate Rn (cf figure 1) and µn T = (mn(mα + 2))/(mn + mα + 2) (where mn and
mα are the masses of the neutron and the α particle, respectively). The momenta k1 and k2

are conjugate to r1 and r2, respectively. The initial and the final channel total energies are
denoted by Ei and Ef . The transition matrix element T is given by

T = g
〈
ϕKn0(Rn)φ

′(r1, r2, r12) |δ(rn)| ϕKn
(Rn)φ(r1, r2, r12)

〉
(3)

= g

(2π)3

〈
φ′(r1, r2, r12)| exp(−iq · [r1/(mα + 1) + r2/(mα + 2)])|φ(r1, r2, r12)

〉
. (4)

Here ϕK(Rn) is a plane wave describing the neutron–target relative motion with a momentum
vector K and q = Kn0 − Kn is the momentum transfer vector. The initial bound state and
the final continuum state of the helium atom are described by the wavefunctions φ(r1, r2, r12)

and φ′(r1, r2, r12), respectively.
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Figure 1. The set of Jacobi coordinates for the neutron–He system, as used in this letter. r1 is
the relative coordinate between the electron labelled e1 and the α particle. The relative coordinate
between the centre-of-mass of this system (marked by B) and the second electron (labelled e2) is
denoted by r2. The relative position of the neutron with respect to the centre-of-mass of the He
atom (A) is Rn, whereas the relative distance of the neutron with respect to the α particle is denoted
by rn.

Before evaluating numerically the integrals (4), the formal structure of the transition matrix
element (4) deserves several remarks:

• It is clear from equation (4) that, if q is small, T becomes a direct overlap of different
eigenstates of the same Hamiltonians and therefore vanishes. Therefore, the value of q

must be of the order of mα , i.e. the incident energy of the neutron has to be large enough
and the neutron must recoil back, transferring its whole kinetic energy to the nucleus.

• The perturbation operator in equation (4) is a product of single-particle operators.
Therefore, if the initial and final state are expressible in terms of independent single-
particle orbitals, i.e. if the electronic correlation is neglected, the transition matrix element
vanishes.

• For the double ionization by charged-particle impact, e.g. by electrons or charged ions, one
obtains transition matrix elements that have a similar structure as shown by equation (4):
however, this is the case only under the assumption that the projectile moves freely in the
initial and final channels. Conventionally, this condition is justified for swift (relativistic)
collisions with a small momentum transfer [5, 6], i.e. close to the optical limit. From a
formal point of view the neglect of the distortion of the charged projectile motion during
the collision is based on perturbative arguments whose range of validity is a priori not
clear, in particular for Coulomb systems. In contrast, for neutrons equation (4) is valid in
as much as the Fermi pseudo-potential (1), i.e. as long as the wavelength of the neutrons
is appreciable (on the length scale of the strong force). This makes neutrons vital for
investigating, in a non-perturbative way, collisions in atomic systems with very large
momentum transfer. The price to be paid for this advantage is that the neutron scattering
cross sections are very low, as detailed below.

The cross section (2) scales as the square of the scattering length which is of the order of a few
fermis. Thus, one can expect the cross section for neutron scattering to be much smaller than
for charged-particle or photon impact. For a more precise estimate of the cross section one can
model the initial state wavefunction of helium φ(r1, r2, r12) by a symmetrized three-parameter
Hylleraas type wavefunction. The final three-body continuum state φ′(r1, r2, r12) is described
approximately by a three-body Coulomb (3C) wavefunction, which consists of a product of
three Coulomb waves each describing the two-body scattering between the electrons and the α
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Figure 2. The cross section as a function of the emission angle θ2 of one of the electrons with
respect to the momentum transfer direction. The other electron is detected under a fixed angle
θ1 = 45◦, as marked by the arrow. The two electrons have the same energy of 50 eV. The initial
kinetic energy of the neutron–He relative motion is 10 keV. Upon collision with the nucleus, the
neutron is reflected at an angle of 175◦ with respect to its initial direction. The full curve shows
the full numerical calculations as described in the text whereas the broken curve is the result when
the electron–electron final-state interaction is switched off.

particle and the mutual electron–electron scattering. Such a model yielded reasonable results
for the double ionization by photon [7] and electron impact [8]. As we were dealing with fast
ejected electrons (in the target frame) we did not attempt to employ more elaborate models
that correct for some of the shortcomings of the 3C theory, for such corrections can be deemed
marginal at higher escape energies of the electrons.

As stated above, for a sizeable cross section, one has to ensure high momentum transfer
to the nucleus. Therefore, for the sake of illustration we consider the situation where the
incoming neutron has a 10 keV incident energy (with respect to the target’s centre-of-mass).
Upon encounter with the nucleus the neutron is back-reflected at 175◦ with respect to the
incidence direction. This case with a recoil velocity of about 0.3 au does not really correspond
to a swift removal of the residual ion. However, as shown below, fingerprints of the initial-
state electronic correlation can still be traced down. The advantage of choosing this ‘adiabatic
situation’ is that the cross section is still sizeable (compared to a sudden removal of the nucleus)
and the energies involved are well below the nuclear fragmentation threshold. Figure 2 shows
the angular distribution of one of the electrons (electron 2) when the other electron is detected
under an angle θ1 with respect to q̂. Both electrons have the same energy of 50 eV. The
most favourable situation for the two-electron emission is the back-to-back configuration.
This is not only due to the electron–electron repulsion which leads to a vanishing electronic
density of state around the fixed electron: if we switch off the final-state electron–electron
interaction (broken curve in figure 2) (while maintaining the use of a correlated initial state),
the cross section becomes smaller since electronic correlation is essential for the two-electron
transition. However, the two electrons still prefer to recede in opposite directions, i.e. with
zero total linear momentum of the electron pair. Roughly speaking, one can say after the α

particle has been swept out by the neutron the electron pair is left behind without a confining
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Figure 3. (a) The cross section as a function of the mutual electron–electron emission angle
θ12 and of the angle β = tan−1 (k1/k2). The total energy of the electron pair is constant and
equal to 170 eV. Both electrons are emitted with equal angles to the left and to the right of the
incidence direction. The energy and the scattering angle of the neutron are as in figure 2. (b)
The same as in figure 3(a): however, the total energy of the electron pair is increased to 400 eV.
(c) For a total energy of 400 eV of the electron pair, the initial two-electron probability density
is shown in the momentum space, i.e. φ̃∗(k1, k2)φ(k1, k2) is shown as a function of the variables
β = tan−1(k1/k2) and θ12 = cos−1(k̂1 · k̂2) that have been defined in figure 3(a). Here φ̃(k1, k2)

is the double Fourier transform of the (position space) two-electron initial bound state used in
figures 3(a) and (b). (d) The same as in figure 3(b): however, an initial state without angular
electron–electron correlation has been employed.

potential and therefore fragments in the opposite direction. We recall that this fragmentation
mode is forbidden for electric dipole transitions due to parity conservation, i.e. for small q/mα

(cf equation (4)) the angular distribution of figure 2 has a node instead of a peak for electron
emission in opposite directions.

To trace the footprints of initial-state correlation in the cross section the following situation
is considered in figure 3. The emission angles θ ′

1 and θ ′
2 of the two electrons are varied

simultaneously with respect to the incident direction such that θ ′
1 = −θ ′

2. For a fixed total
energy Etot of the electron pair we quantify the (Etot) energy sharing between the two escaping
electrons by the angle β = tan−1(k1/k2). In figure 3(a) Etot = 170 eV and the cross
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section is shown as a function of the electron–electron mutual angle θ12 = θ ′
1 − θ ′

2 and β.
As has been observed in figure 2, the two electrons propagate into the asymptotic region,
most probably in opposite directions and with equal energies (θ12 = 180◦, β = 45◦). As
demonstrated by figure 3(b), this situation changes when the total energy of the pair is increased
to Etot = 400 eV. Here we notice the appearance of additional shoulder structures whose origin
can be pinned down by considering, as done in figure 3(c), the momentum-space two-electron
probability density of the initial state which is given by φ̃∗(k1, k2)φ̃(k1, k2). Here φ̃ is the
double Fourier transform of φ. The structures in the cross section depicted in figure 3(b)
are readily comprehensible from figure 3(c) and from the fact that the final-state electron–
electron interaction implies a vanishing two-electron density of state at 0◦ = θ12 = 360◦. For
completeness we show in figure 3(d) the cross section for the case of figure 3(b) evaluated
with a Slater-type initial-state wavefunction. In this case φ̃∗(k1, k2)φ̃(k1, k2) does not show
any angular dependence and consequently the cross section possesses only one peak when the
electrons escape with zero total linear momentum k1 = −k2.

In conclusion, we considered theoretically the possibility of knocking out the nucleus
from an atomic target by means of the strong nuclear force exerted by an incoming neutron
beam. To utilize this reaction for the study of the electronic correlation we investigated the
cross section for the emission of two electrons, and proposed and implemented a numerical
method for the evaluation of the cross sections. The purpose of this letter has been to provide,
at least theoretically, a rough picture of the physics one may expect in such a process. Clearly,
the absolute values of the fully differential cross sections in the situations we discussed in this
letter are far too small to be detected at present. However, over the past few years impressive
progress has been made in multi-particle coincidence techniques [9, 10] and in neutron beam
treatment which gives hope for the future realization of the proposed experiments.

I would like to thank Robert Moshammer and Joachim Ullrich for stimulating and interesting
discussions on this topic.
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