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The temperature dependence of interlayer exchange coupling~IEC! is studied theoretically within the
asymptotic theory with preasymptotic corrections included, and by employing anab initio approach based on
the Green function formulation of the IEC. In this paper an efficient method for calculating integrals involving
the Fermi-Dirac distribution by representing the occurring integrands by a sum of complex exponentials is
discussed. In particular a method which allows us to extract separately the temperature-dependence of the
short-period~SPO! and long-period~LPO! oscillations in the case of Co/Cu/Co~001! trilayers from computed
values is suggested. Furthermore, a detailed discussion of predictions of asymptotic theory is given. It is found
that in the limit of a large spacer thicknessN ab initio calculations confirm the results of asymptotic theories
for SPO for a variety of trilayer geometries, namely, that the oscillation amplitudes depend on the temperature
T ascNT/sinh(cNT). On the other hand, for the case of the LPO this simple form does not apply. We explain
this behavior by large preasymptotic corrections necessary for the LPO. The combined effect of the tempera-
ture and the disorder in the spacer is also discussed.@S0163-1829~99!03234-8#
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I. INTRODUCTION

The oscillatory interlayer exchange coupling~IEC! be-
tween magnetic layers separated by a nonmagnetic sp
has attracted considerable attention in the literature~see
Refs. 1–3 for recent reviews on this subject!. The physical
origin of such oscillations is attributed to quantum interfe
ences due to a spin-dependent confinement of electron
the spacer. The periods of the coupling oscillations with
spect to the spacer thickness can be correlated to the g
etry of the spacer Fermi surface, a relation that has been
in numerous experiments. First-principles formulations
the IEC, which are not limited by model-like2 or
semiempirical3 approaches have appeared recently. They
be divided into two groups, namely, direct evaluations
subtracting the total energies of the parallel and antipara
orientation of magnetizations in the magnetic layers4 or di-
rect calculations of the IEC energies by using the magn
force theorem.5 The present approach6,7 belongs to the latter
group by making systematic use of surface Green functi
which in turn not only allow to determine the IEC in a fa
and reliable manner~the numerical effort scales linearly wit
the number of layers in the system!, but also facilitate an
PRB 600163-1829/99/60~13!/9588~8!/$15.00
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extension to disordered systems.
Up to now there are very few studies of the temperat

dependence of the IEC,2,8 a systematic study on anab initio
level and a verification of conclusions of model theories
missing entirely. This is very important as a reliable det
mination of the oscillation amplitude is still a challenge
the experiment, not to mention the temperature depende
Under such circumstancesab initio calculations play an ex-
tremely important role because they serve as a kind of
merical experiment that can be used to test model theo
under well defined conditions which are not attainable
experiments.

The temperature dependence of the IEC can be ascr
to two different mechanisms:~i! Thermal excitations of
electron-hole pairs across the Fermi level as described by
Fermi-Dirac function with electron-phonon and electro
magnon interactions supposingly being less important.~ii !
Thermal excitations of spin waves in magnetic slabs a
particularly at their interfaces reducing the interfilm e
change. This mechanism was discussed on a model l
using arguments based on statistical mechanics for a Hei
berg model, see Ref. 9, leading to 12a(T/TC)3/2 dependence
of the IEC.
9588 ©1999 The American Physical Society
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In this paper we limit ourselves to temperature variatio
of the IEC caused by the Fermi-Dirac statistics. In this c
the temperature dependence of the IEC can be evaluate
ther analytically or numerically. The analytical approach
sumes the limit of a large spacer thickness, for which all
oscillatory contributions to the energy integral cancel o
with exception of those at the Fermi energy. The ene
integral is then evaluated by a standard saddle-point met

The numerical approach, in which the integrals contain
the Fermi-Dirac distribution function as well as the integ
over the wave vectors are computed directly, is in princi
exact, not limited by the thickness or any assumptions c
cerning the phase of the integrand, however, it may be
merically very demanding, in particular for low temper
tures. In this paper we develop an efficient numerical met
for reliably determining the temperature dependence over
whole relevant temperature range including low tempe
tures. Realistic multilayers usually exhibit more than one
riod, e.g., the prototype multilayer Co/Cu/Co~001! has short-
period oscillations~SPO! as well as long-period~LPO!
oscillations. As compared to the SPO, the LPO are usu
more robust with respect to interface imperfections. The te
perature dependence of the SPO and LPO is generally
ferent. In here we present a method which allows to de
mine the temperature dependence of the SPO and LPO o
ab initio level based on the fact that a discrete Fourier tra
form of calculated oscillations exhibits usually well sep
rated peaks for the SPO and LPO. This method thus all
to confirm or discard certain conclusions of asymptotic th
ries. The approach presented here is also applicable to d
dered systems with randomness in the spacer, in the m
netic layers, or at interfaces.10

II. THEORY

A. Formalism

The multilayer system is considered to consist of th
parts, a semi-infinite left and a right magnetic subsyst
sandwichingN nonmagnetic atomic spacer layers. The l
subsystem contains the semi-infinite nonmagnetic subs
and ML atomic layers of the left ferromagnetic slab. Sim
larly, the right subsystem contains the~generally different!
semi-infinite nonmagnetic substrate andMR atomic layers of
the right ferromagnetic slab. The magnetic slabs can eve
ally be semi-infinite. The exchange coupling energyEx(T) is
given by the difference of the grand canonical potentials
the antiferromagnetic~AF! and ferromagnetic~F! alignments
of the magnetic slabs,7

Ex~N,T!5VAF~T!2VF~T!5Im I ~T!,

I ~T!5E
C

f ~T,z!C~z!dz, ~1!

where f (T,z) is the Fermi-Dirac distribution function, and

C~z!5
1

p

1

VSBZ
E d2kic~ki ,z!,

c~ki ,z!5Tr@ ln GAF~ki ,z!2 ln GF~ki ,z!#. ~2!
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The energy integration~contourC) is performed parallel to
the real axis,z5E1 i0, whereE extends in principle from
2` to `. The Tr denotes the trace over angular mome
L5( lm), the spin index (s5↑,↓), and all atomic layers of
the system. The Green functions for the antiferromagn
and ferromagnetic alignments are denoted asGAF and GF,
respectively. The integration overki is restricted to the sur-
face Brillouin zone of areaVSBZ. We remark that Eq.~2!
follows from the Lloyd formula.11

B. Model theory

In model type theories the quantityc(ki ,z) in Eq. ~2! is
approximated by2

c~ki ,E1 i0!'
VSBZ

p
M ~ki ,E!eiq(ki ,E)N. ~3!

In this expression,q(ki ,E)[kz
12kz

2 is the difference be-
tween the wave vectors of an electron propagating thro
the spacer in the1z and2z directions~thez axis is taken to
be perpendicular to the layer plane; thickness is expresse
units ofd, whered is the spacing between atomic planes, a
wave vectors are expressed in units of 1/d). Here a single
contribution has been considered; in the general case t
are several such contributions, due to multiple bands in
spacer material and to higher harmonics~i.e., higher order
terms in an expansion in powers ofeiq(ki ,E)N) but the calcu-
lation of the various contributions is exactly the same. Th
for the sake of simplicity, a single contribution is consider
here. As explicitly indicated,q(ki ,E) varies with the energy
E and with the in-plane wave vectorki . The other factor in
Eq. ~3! is the complex amplitudeM (ki ,E) which depends
on the spin-asymmetry of the reflection coefficients at
spacer-ferromagnet interfaces.2

The asymptotic approximation is based upon the obse
tion that, because of the strong variation of the Fermi-Di
function at the Fermi energy, and because of the rapid va
tion of the exponential factor withE andki , the behavior of
Eq. ~3! at largeN is dominated by the contributions of state
at the Fermi energyEF , such that the spanning vector of th
Fermi surface,q(ki ,E), is stationary with respect toki .12 In
general there may be several such stationary spanning
tors, each of them giving rise to an oscillatory component
the interlayer exchange coupling; the various components
labeled by the indexa.

Assuming that in the vicinity ofki
a andEF M (ki ,E) is a

smooth function ofki and E, it can be approximately re
placed by a constantM0a

M ~ki ,E!'M0a . ~4!

The wave vectorq(ki ,E) can be expanded in the vicinity o
ki andEF as

q~ki ,E!'Qa1
2~E2EF!

\vFa
2

~kx2kx
a!2

kxa
2

~ky2ky
a!2

kya
,

~5!

wherevFa is the Fermi velocity, andkxa and kya are the
curvature radii of the Fermi surface atki

a ~the x andy axes
are chosen so as to eliminate the term proportional tokxky).
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Finally, since only the neighborhood ofki
a contributes sig-

nificantly to the integral, the integration range forkx andky
can be formally extended to (2`,1`). Then, we obtain
easily2

Ex~N,T!5(
a

Aa

N2
sin~QaN1Fa!ta~N,T!, ~6!

where the amplitude and the phase are given by

AaeiFa5
p

2
\vFa~kxa!1/2~kya!1/2M0a . ~7!

The temperature dependence is then given2 by the function

ta~N,T!5
caNT

sinh~caNT!
, ~8!

with

ca5
2pkB

\vF
a

. ~9!

The most remarkable result of this analytic approach is
the scaling factort(N,T) depends on the product of spac
thicknessN and temperatureT. In the preasymptotic region
~small spacer thickness! the functional form oft(N,T) dif-
fers from that of Eq.~8! due to a rapid variation of the phas
of the integrand of the IEC.8 In this case preasymptotic co
rections are non-negligible.

C. Ab initio approach

We employ the tight-binding linear muffin-tin orbita
~TB-LMTO! method and the technique of surface Gre
functions13,14to determineC(z). The details can be found in
Ref. 7. The integral containing the Fermi-Dirac function
Eq. ~1! can be calculated by a standard method based on
Gaussian quadrature along the contourC and a summation
over the enclosed Matsubara poles~see, e.g., Ref. 7!. Since
the Matsubara poles depend on the temperature, the fun
C(z) has to be evaluated for each temperature under con
eration. A new integration method which is described in
Appendix allows to substantially speed up such calculatio

D. Details of calculations

The numerical studies were performed for the~001! direc-
tion of a parent fcc lattice15 corresponding to the experimen
tal lattice spacing of Cu. In each case, the magnetic lay
are Co layers, the spacer and the substrate layers are fo
by Cu layers~a conventional trilayer geometry!. All calcula-
tions are based on self-consistent potentials of bulk fcc
and bulk fcc-Co aligned to a common Fermi energy.16 We
have performed self-consistent calculations for Cu atT
5500 K and found a negligible influence of finite temper
tures on the potentials and hence also on the Fermi en
and the shape of the Fermi surface. We neglected a chan
magnetic moments in the Co slabs with temperature bec
the temperatures considered in this study (T<500 K! are
small as compared to the Curie temperature 1360 K of b
at
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Co. Clearly enough, this approximation is the better
thicker the Co slabs are and may be not justified for a sin
monolayer Co slabs.

In order to determine the parameters of the complex
ponentials~A3!, we evaluated the functionF(y) at the 40
Matsubara energies corresponding toT525 K. We found
that between 25 and 100 K the results depend only wea
on the actual value ofT. Note that such calculations have
be performed only once. The calculations were carried
for spacer thicknesses up to 80 monolayers and for temp
tures up to 500 K~in steps 10 K! for different trilayers of
Co/Cu/Co~001!, namely, for semi-infinite Co slabs, and fo
finite Co slabs. It is well known6,5,17 that for thick magnetic
slabs the short-period oscillations~SPO! dominate and the
contributions from the long-period oscillations~LPO! can be
neglected.

III. RESULTS AND DISCUSSION

In model studies2,3 one typically makes use of th
asymptotic theory in order to obtain the temperature dep
dence of the IEC. Recent papers,8,18 however, demonstrate
that preasymptotic corrections may be quite important
some cases.Ab initio theories, similarly to experiment, pro
vide the IEC for a set of spacer thicknesses and temperatu
This in turn requires a sophisticated analysis and visual
tion of calculated results.

A. The case of a single oscillation period

The simplest way7,8 of presenting the results is to plo
directly Ex(N,T) as a function of the spacer thickness for
few chosen temperatures. Such a representation is, how
obscured by the standardN22 decay of the oscillation am
plitudes and hardly demonstrates more than the simple
that the oscillations are damped by finite temperatur
Alternatively8 one can present the ratioEx(N,T)/Ex(N,0), or,
more generally, the ratioEx(N,T)/Ex(N,T0) where T0 is
some chosen temperature. In Fig. 1 the ra
Ex(N,T)/Ex(N,0) for a set of spacer thicknesses roughly c
responding to the maxima ofN2 Ex(N,T) is plotted. We ob-

FIG. 1. Ex(N,T)/Ex(N,0) as a function of the temperatureT for
a trilayer consisting of semi-infinite Co~001! slabs sandwiching a
fcc-Cu spacer. The different curves refer to different spacer th
nessesN (N59, 14, 19, 24, 29, and 34 from top to bottom!.
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serve a systematic decrease of the oscillation amplitu
with temperature which, in accordance with the model res
in Eq. ~8!, is more pronounced for thicker spacers. ForN
59 the decay of the oscillation amplitude with temperatu
is in close agreement with curve~1! in Fig. 3 of Ref. 8
~semiempirical multiband tight-binding model!. It is impor-
tant to exclude the preasymptotic region and, in particular
consider only cases with a well defined type of coupli
~either ferromagnetic or antiferromagnetic!, since otherwise,
as illustrated in Fig. 2, one obtains results which can sign
cantly deviate from the expected behavior. In particular,
cases plotted in Fig. 2 correspond to layers close to the t
sition between the ferromagnetic and the antiferromagn
coupling, i.e., to the case for whichN2 Ex(N,T) is close to
zero.

The most important prediction of the model presented
Ref. 2 is that the IEC depends on the product of spa
thickness and temperature,z5NT @see Eq.~8!#. In order to
verify this prediction, in Fig. 3Ex(N,T)/Ex(N,0) is plotted as
a function of the parameterx5NT. It should be noted tha
each point in the plot represents a separate calculation
given temperature and spacer thickness. The asymptotic
havior is obtained by restricting the spacer thickness toN
>20 and by explicitly excluding a few cases with very sm
values ofN2 Ex(N,T) ~e.g., the case withN522). It is seen
that the calculated values ofEx(N,T)/Ex(N,0) can be fitted
rather well by a least-square fit to the functionj/sinh(j), j
5c NT with c51.9531024 K21. It is evident from Fig. 3
that for large spacer thicknesses and a numerically de
mined constantc the model predictions are reasonably w
confirmed: The value ofcS51.8531024 K21 reported in
Ref. 12, which in turn is based on the use of experimen
Fermi surface parameters, is in a rather good agreement
the present result.

FIG. 2. N2Ex(N,T) as a function of the temperatureT for a
trilayer consisting of semi-infinite Co~001! slabs sandwiching a
fcc-Cu spacer. The different curves refer to different spacer th
nessesN: N57 ~full line!, N522 ~dashed line!, andN519 ~dotted
line!. The latter case~see also Fig. 1! is used to highlight a differen
behavior ofN57 andN522 cases in comparison withN519, as
well as the fact that they correspond to the transient regime betw
the ferromagnetic and antiferromagnetic coupling.
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B. The case of more than one oscillation period

The mode of analyzing the results as presented in Fig.
inapplicable for the case of more than one oscillati
period.1,12 Below we sketch an alternative visualizatio
based on discrete Fourier transformations, by which vari
periods corresponding to separated peaks can be di
guished.

In general, the interlayer exchange coupling energy in
asymptotic regime of large spacer thickness can be viewe
a sum of several contributions from nonequivalent extrem
vectorskuu

a of the spacer Fermi surface~callipers!2 as given
by Eq.~6!. We wish to resolve the individual contributions t
Ex(N,T) and then to check the functional form ofta(N,T)
5 f @ca(x)#, Eq. ~8!, where f (j)5j/sinh(j), j5cax, andx
5NT, as well as to find the values of the coefficientsca .

Let us first introduce the auxiliary function

Fx~N,Teff!5N2 ExS N,
Teff

N D . ~10!

The interlayer exchange coupling energiesEx(N,T) are
evaluated for the temperaturesTN5Teff /N that depend on
both the fictitious temperatureTeff and the numberN of
spacer layers. The fictitious temperatureTeff plays the role of
the productNT. The contributions of the individual calliper
kuu

a to Ex(N,T) can be identified from the peaks in the di
crete Fourier transform

F~q,Teff!5
1

N22N111 (
N5N1

N2

exp~ iqN!Fx~N,Teff!.

~11!

By inserting Eqs.~6! and ~10! into Eq. ~11!, we find

F~q,Teff!5(
a

Ja~q! f ~caTeff!, ~12!

where

-

en

FIG. 3. Ex(N,T)/Ex(N,0) plotted as a function ofx5NT for a
trilayer consisting of semi-infinite Co~001! slabs sandwiching a
fcc-Cu spacer. The thick line refers toj/sinh(j), j5c NT with c
50.000 195 K21 as obtained by a least-square fit to the compu
data.
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Ja~q!5
1

N22N111 (
N5N1

N2

exp~ iqN!Aa sin~QaN1Fa!

~13!

is the contribution of callipera to the discrete Fourier trans
form at T50 K. As this quantity has a sharp peak atQa ,
well separated from other peaks atQa8 (a8Þa), the tem-
perature factorf a(Teff) can be found from Eq.~12! by ne-
glecting the contributions from other callipers, namely,

f ~caTeff!'
F~qa ,Teff!

F~qa,0!
. ~14!

To illustrate this approach, we have performed calcu
tions for 20<N<60 of spacer layers and for 30 effectiv
temperaturesTeff . The calculated values off (caNT), Eq.
~14!, were then fitted by the least-square method to the
sumed form, Eq.~8!. The quality of the fit as given by the
rms error, is displayed in the Table I.

For semi-infinite Co slabs~Fig. 4, Table I! a good-quality

TABLE I. Least-square fits of the coefficientscS and cL for
Co/Cu/Co multilayers with varying thicknessM of the Co slabs.
The position of the peak of the discrete Fourier transformationq
andD is the rms error of the fit. Both short- and long-period osc
lations are present for finite Co slabs, while the amplitudes of lo
period oscillations are suppressed for semi-infinite Co slabs.

Short period Long period
M q D cS (K21) q D cL (K21)

` 2.48 0.0003 0.000195
5 2.48 0.0002 0.000190 1.21 0.0002 0.00027
1 2.43 0.0003 0.000194 0.94 0.1367 0.00024

FIG. 4. The functionf (Teff) for two semi-infinite Co slabs sand
wiching a Cu spacer, Eq.~17!, calculated as the ratio of the absolu
values of the discrete Fourier transformations ofN2Ex(N,Teff) for
the subsetNP20–60 and a set of temperaturesTeff . The calculated
values~diamonds! corresponding to the short-period oscillations a
shown together with their least-square fits~full line! represented by
f S(x)5cSx/sinh(cSx), cS50.000195.
-

s-

fit yields a value ofcS51.9531024 K21, which is in a good
agreement with the value extracted from experimental d
and the value corresponding to Fig. 3. Equally good agr
ment for thecS of the SPO is found for finite magnetic lay
ers, namely, for the case of the five monolayer slabs~Fig. 5,
Table I! and single monolayer slabs~Table I!. It should be
noted that the values ofcS as determined from different sub
sets are quite robust, namely, the results forN 10<N<50
and 20<N<80 differ only by five percent from those fo
20<N<60.

The case of the LPO is different. For five monolayer sla
~Fig. 5, Table I!, the least-square fit is still of good qualit
yielding cL52.7531024 K21, and is very robust with re-
spect to various subsets ofN. This value should be compare
with cL51.4231024 K21 as obtained from using exper
mental Fermi surface parameters.12 The case of single mono
layer slabs gives a poor quality fit~large rms error, Table I!
which also strongly depends on the choice of subsets u
for the discrete Fourier transformation. We can thus c
clude that the temperature factorf (caNT) for the LPO in the
single monolayer system differs considerably from the
pected functional form, Eq.~8!. This, together with the fac
that also the period of the LPO depends strongly on
thickness of the Co layer and on the subsetN used in the
Fourier analysis, is a clear indication of strong preasympto
corrections as discussed in detail in Refs. 8 and 18.

One source of preasymptotic corrections which has
strong influence on the temperature dependence of the
pling is the variation ofM (ki ,E) with respect toE. If this
variation is strong, then it cannot be neglected any longer.
shown in Ref. 18, one then obtains

-

FIG. 5. The functionf (Teff), Eq. ~17!, calculated as a ratio o
the absolute values of the discrete Fourier transformations
N2Ex(N,Teff) for the subsetNP20–60 and a set of temperature
Teff for two finite Co slabs each five monolayers thick embedded
a Cu spacer. The calculated values~diamonds and heavy dots! cor-
responding to the short~S! and long~L! period oscillations, respec
tively, are shown together with their least-square fits~full lines!
represented byf a(x)5cax/sinh(cax), a5S,L; cS50.000190 and
cL50.000275.
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Ex~N,T!5(
a

FAa

N2
sin~QaN1Fa! f ~caNT!

1
Ba

N3
cos~QaN1Fa!g~caNT!G , ~15!

where Ba is related to the energy derivative ofM (ki ,E).
The temperature dependence of the correction is given
~see Fig. 1 of Ref. 18!

g~j!5
j2 coshj

sinh2j
. ~16!

As the reflection coefficient of minority electrons withki
50 for thin layers of Co embedded in Cu~001! varies rather
strongly with energy~see Refs. 2 and 19!, this causes a large
departure from the asymptotic behavior for the long per
oscillation.

C. Combined effect of the temperature and disorder

The present method is also applicable to the case of
ordered samples, in particular, it allows us to study the co
bined effect of temperature and alloying in the spacer.
employing the vertex-cancellation theorem,10 a generaliza-
tion to random alloys is straightforward, namely, only a su
stitution of the Green functions in Eq.~2! by their configu-
rationally averaged counterparts is needed.14 With exception
of this change the analysis described in the previous sect
remains unchanged.

One of the main results of asymptotic theories is that
temperature dependence of the oscillation amplitudes is
lated to details of the spacer Fermi surface. The spacer F
surface can be strongly influenced by alloying because
electron concentration changes and the alloy Fermi surfac
modified.20 The most obvious effect of alloying is the chan
of the periods of oscillations connected with the change
the corresponding callipers. We refer to a recent paper21 for
more details concerning the semi-infinite Co slabs sandw
ing the alloy spacer Cu1002xMx , whereM5Ni, Au, and Zn.
The coefficientscS for short-period oscillations which for th
model of semi-infinite Co slabs also dominate in the case
alloy spacers, are summarized in Table II for three typi
alloy spacers. Alloying of the Cu spacer with Ni~Zn! impu-
rities reduces~extends! oscillations periods while the effec
of Au atoms is rather small. The temperature dependenc
thus again of the formj/sinh(j), j5cSNT with valuescS as

TABLE II. Least-square fits of the coefficientcS for semi-
infinite Co slabs sandwiching an alloy spacer. The position of
peak of the discrete Fourier transformation isq andD denotes the
rms error of the fit. Only short-period oscillations are present
semi-infinite Co slabs. The case of ideal Cu spacer is also sho

Short period
spacer q D cS (K21)

Cu 2.48 0.0003 0.000195
Cu85Ni15 2.77 0.0052 0.000259
Cu50Au50 2.66 0.0132 0.000247
Cu75Zn25 2.06 0.0047 0.000200
y

d

s-
-

y

-

ns

e
e-
mi
e
is

f

h-

f
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is

given in Table II. Disorder leads to a somewhat larger ad
tional damping as compared to the case of a pure Cu sp
~see Table I!. In full agreement with the qualitative conclu
sions in Ref. 21 the damping for a CuZn spacer is smalle
compared to CuNi or CuAu spacers.

IV. CONCLUSIONS

We have investigated the effect of temperature on in
layer exchange coupling assuming that the main mechan
consists in thermal excitations of electron-hole pairs as
scribed by the Fermi-Dirac function. We have used a sp
polarized surface Green function technique within the tig
binding linear muffin-tin orbital method and the Lloy
formulation of the integrated density of states. The occurr
integrals are calculated by means of an efficient method
representing the integrands containing the Fermi-Dirac
tribution by a sum of complex exponentials. For a giv
geometry one has to determine the parameters of the e
nentials only once and then the IEC is obtained very quic
and reliably for any reasonable temperature. Our calculati
for Co/Cu/Co~001! trilayers confirm a simple functional de
pendence of the IEC on the product of temperature
spacer thickness, namely,Ex(N,T)5Ex(N,0) @j/sinh(j)#,
wherej5c NT, valid for largeN. We found, however, tha
in the preasymptotic regime and for very small coupling a
plitudes the actual temperature dependence can significa
deviate from this simple form. The present study show
different temperature dependence of the short- and lo
period oscillations, the latter decay faster than the form
We have also found that for one monolayer thick magne
slabs the temperature dependence is more complicated
those predicted by simple models. It should be mention
that within the present method also the combined effec
temperature and disorder21 can be studied.
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APPENDIX: NUMERICAL TREATMENT
OF THE TEMPERATURE DEPENDENCE

The integral in Eq.~1! can be recast into a more suitab
form using the analytic properties of the functionC(z),
namely, ~i! C(z) is holomorphic in the upper half of the
complex plane and~ii ! zC(z)→0 for z→`, Im z.0. Let us
define a complex functionF(y)52 i C(EF1 iy) of a real
variabley, y>0. Then atT50 K,
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I ~0!5E
0

1`

F~y!dy, ~A1!

while at T.0 K,

I ~T!52pkBT(
k51

`

F~yk!, ~A2!

whereyk5pkBT(2k21) are Matsubara energies andkB is
the Boltzmann constant. In the limit ofT→0, I (T)→I (0)
continuously.

The functionC(z) is rapidly oscillating forz just above
the real axis and it is strongly damped forz moving deep into
the upper half-plane. One can thus expect that the func
F(y) can be represented by a sum of a few complex ex
nentials

F~y!'F~y!, F~y!5(
j 51

M

Aj exp~pjy!, ~A3!

where theAj are complex amplitudes and thepj complex
wave numbers (Re@pj #,0).

The evaluation ofI (T) is then straightforward, since th
sum overk in Eq. ~A2! represents for eachpj from Eq.~A3!
a geometrical series. The result is

I ~T!522pkBT(
j 51

M
Aj

exp~pkBTpj !2exp~2pkBTpj !
,

~A4!

which for T50 K gives

I ~0!52(
j 51

M
Aj

pj
. ~A5!

The function F(y) attains the valuesFn5F(yn) for
yn , n51, . . . ,N. For a given set$Fn%, the parametersAj
andpj can be found by using nonlinear least-square fit me
ods. Here we present a much simpler, more efficient
reliable method for finding the parametersAj and pj in Eq.
~A3!. Let zj5exp(pjh), then there always exist coefficien
Bm ,m50,1, . . . ,M , such that

(
m50

M

Bm exp~pjhm!5 (
m50

M

Bmzj
m50 ~A6!

for all j 51, . . . ,M , becauseM11 M -dimensional vectors
(z1

m, . . . ,zM
m) are always linearly dependent. Let$yn%, n

51, . . . ,N, N>2M , be an equidistant set, i.e.,

yn5y01hn, n51, . . . ,N. ~A7!

The valuesFn5F(yn) then fulfill (M11)-recurrence rela-
tions

(
m50

M

BmFm1k50, ~A8!

for 1<k<N2M , as readily follows by inserting Eqs.~A3!
and ~A7! into Eq. ~A8! and using Eq.~A6!,
n
-

-
d

(
m50

M

BmFm1k5(
j 51

M

Aj exp~pj@y01hk# ! (
m50

M

Bm exp~pjhm!

50. ~A9!

The coefficientsBm are found from the condition that th
recurrence relations~A8! hold also for the functionF(y).
Without loss of generality we can assumeB051. In this way
we obtain

(
m51

M

Fm1kBm52Fk , ~A10!

which represents a set ofN2M inhomogeneous linear equa
tions forM unknown coefficientsBm . If N52M these equa-
tions can be solved by standard methods. In most ca
however, one wishes to use more function valuesFm than
necessary (N.2M ) in order to eliminate possible computa
tional errors and to obtain a better fit. Optimized coefficie
Bm can be obtained from alinear least-square fit, or
pseudoinversion22 of the @(N2M )3M # matrix of the left-
hand side of Eq.~A10!. The resulting equations read

(
m51

M S (
k51

N2M

F i 1k* Fm1kDBm52 (
k51

N2M

F i 1k* F i ,

~A11!

where the asterisk denotes a complex conjugate, and< i
<M .

Once the coefficientsBm are known, Eq.~A6! can be
solved. The rootszj can be determined for example as t
eigenvalues of the companion matrix.23 The wave numbers
are then determined aspj5 log(zj )/h. The functionF(y) is
bounded or even tends to zero fory→1`. Consequently,
wave numbers with Re@pj #.0 have to be discarded.

The amplitudesAj are given by the following set of inho
mogeneous linear equations

(
j 51

M

exp~pjyk!Aj5Fk , ~A12!

that are solved again directly forN52M , or by a linear
least-square fit forN.2M ,

(
j 51

M

(
n51

N

exp@~pi* 1pj !yn#Aj5 (
n51

N

exp~pi* yn!Fn .

~A13!

Although we have never encountered such a case in
calculations, Eq.~A6! can have one or more multiple roo
~with multiplicities Pj ). In such a case basis functions of
more general form, namely,$ylexp(pjy)%, l50,1, . . . ,Pj ,
have to be considered and Eq.~A13! should be modified
accordingly.

The numberM of complex exponentials needed to repr
sent F(y) is usually not known in advance. Therefore w
have variedM in a broad range, say between 2 and 12, a
selected a value that gave the best fit ofF(y).
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