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The temperature dependence of interlayer exchange coufii® is studied theoretically within the
asymptotic theory with preasymptotic corrections included, and by employiradp &mitio approach based on
the Green function formulation of the IEC. In this paper an efficient method for calculating integrals involving
the Fermi-Dirac distribution by representing the occurring integrands by a sum of complex exponentials is
discussed. In particular a method which allows us to extract separately the temperature-dependence of the
short-period(SPQ and long-periodLPO) oscillations in the case of Co/Cu/@®)) trilayers from computed
values is suggested. Furthermore, a detailed discussion of predictions of asymptotic theory is given. It is found
that in the limit of a large spacer thickneNsab initio calculations confirm the results of asymptotic theories
for SPO for a variety of trilayer geometries, namely, that the oscillation amplitudes depend on the temperature
T ascNT/sinhcNT). On the other hand, for the case of the LPO this simple form does not apply. We explain
this behavior by large preasymptotic corrections necessary for the LPO. The combined effect of the tempera-
ture and the disorder in the spacer is also discu§&il63-18209)03234-4

[. INTRODUCTION extension to disordered systems.
Up to now there are very few studies of the temperature
The oscillatory interlayer exchange couplifEC) be-  dependence of the IE€S a systematic study on ab initio

tween magnetic layers separated by a nonmagnetic spadewvel and a verification of conclusions of model theories is
has attracted considerable attention in the literatis®me missing entirely. This is very important as a reliable deter-
Refs. 1-3 for recent reviews on this subjedthe physical mination of the oscillation amplitude is still a challenge to
origin of such oscillations is attributed to quantum interfer-the experiment, not to mention the temperature dependence.
ences due to a spin-dependent confinement of electrons ldnder such circumstanced initio calculations play an ex-
the spacer. The periods of the coupling oscillations with retremely important role because they serve as a kind of nu-
spect to the spacer thickness can be correlated to the geomerical experiment that can be used to test model theories
etry of the spacer Fermi surface, a relation that has been usedider well defined conditions which are not attainable in
in numerous experiments. First-principles formulations ofexperiments.
the IEC, which are not limited by model-like or The temperature dependence of the IEC can be ascribed
semiempirical approaches have appeared recently. They cato two different mechanismsti) Thermal excitations of
be divided into two groups, namely, direct evaluations byelectron-hole pairs across the Fermi level as described by the
subtracting the total energies of the parallel and antiparalldFermi-Dirac function with electron-phonon and electron-
orientation of magnetizations in the magnetic lajesdi-  magnon interactions supposingly being less importén.
rect calculations of the IEC energies by using the magnetidhermal excitations of spin waves in magnetic slabs and
force theoren®. The present approathbelongs to the latter particularly at their interfaces reducing the interfilm ex-
group by making systematic use of surface Green functionshange. This mechanism was discussed on a model level
which in turn not only allow to determine the IEC in a fast using arguments based on statistical mechanics for a Heisen-
and reliable manndthe numerical effort scales linearly with berg model, see Ref. 9, leading te-a(T/T¢)*? dependence
the number of layers in the systgnbut also facilitate an of the IEC.
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In this paper we limit ourselves to temperature variationsThe energy integratiofcontourC) is performed parallel to
of the IEC caused by the Fermi-Dirac statistics. In this casehe real axisz=E+i0, whereE extends in principle from
the temperature dependence of the IEC can be evaluated ei-« to «. The Tr denotes the trace over angular momenta
ther analytically or numerically. The analytical approach as4 = (Im), the spin index ¢=1,]), and all atomic layers of
sumes the limit of a large spacer thickness, for which all thehe system. The Green functions for the antiferromagnetic
oscillatory contributions to the energy integral cancel outand ferromagnetic alignments are denotedGa$ and GF,
with exception of those at the Fermi energy. The energyespectively. The integration ovey is restricted to the sur-
integral is then evaluated by a standard saddle-point methogace Brillouin zone of ared)gg,. We remark that Eq(2)

The numerical approach, in which the integrals containingfollows from the Lloyd formula
the Fermi-Dirac distribution function as well as the integral
over the wave vectors are computed directly, is in principle B. Model theory
exact, not limited by the thickness or any assumptions con- . ] ] )
cerning the phase of the integrand, however, it may be nu- In model type theories the quantity(k;,z) in Eq. (2) is
merically very demanding, in particular for low tempera- @Pproximated by
tures. In this paper we develop an efficient numerical method
for reliably determining the temperature dependence over the Y(ky E+i0)~ stzM (K, JE)ela( BN 3)
whole relevant temperature range including low tempera- ™
tures. Realistic multilayers usually exhibit more than one pe- . . . .
riod, e.g., the prototypg muItiIaye?/Co/Cu/(DOl) has short-p In this expressionq(k;,E)=k, —k; is the difference be-
period oscillations(SPO as well as long-periodLPO) tween the wave vectors of an e_Iectron propagatlng through
oscillations. As compared to the SPO, the LPO are usualljfe Spacer in the-z and —z directions(thez axis is taken to
more robust with respect to interface imperfections. The temP€ Perpendicular to the layer plane; thickness is expressed in
perature dependence of the SPO and LPO is generally difinits ofd, whered is the spacing bet\_/veen atomic plan_es, and
ferent. In here we present a method which allows to deterWave vectors are expressed in units af)1/Here a single
mine the temperature dependence of the SPO and LPO on gAntribution has been _con.S|dered; in the general case there
ab initio level based on the fact that a discrete Fourier trans@'€ Several such contributions, due to multiple bands in the
form of calculated oscillations exhibits usually well sepa-SPacer material and to higher harmkonE(c'f., higher order
rated peaks for the SPO and LPO. This method thus allowt'Ms IN an expansion in powers ‘E?ﬁ( I"®N) but the calcu-
to confirm or discard certain conclusions of asymptotic theolation of the various contributions is exactly the same. Thus,
ries. The approach presented here is also applicable to disd@r the sake of simplicity, a single contribution is considered

dered systems with randomness in the spacer, in the mag_ere. As explicitly indicatedj(k| ,E) varies with the energy
netic layers, or at interface®. and with the in-plane wave vectéy. The other factor in

Eq. (3) is the complex amplitudé (k;,E) which depends

on the spin-asymmetry of the reflection coefficients at the
Il. THEORY spacer-ferromagnet interfaces.
A. Formalism The asymptotic approximation is based upon the observa-
. . . . tion that, because of the strong variation of the Fermi-Dirac
The multilayer system is considered to consist of threefunction at the Fermi energy, and because of the rapid varia-

partj, .aheenlll-mﬂmte Ieftt_andt a nght magr|1et|c Su_lt_’ﬁysltef?ion of the exponential factor witk andk, the behavior of
sanawichingil nonmagnetic atomic Spacer layers. -ihe le g.(3) at largeN is dominated by the contributions of states

SUSSI\BA/SteT centlains thef ?rem:-i?tfifnite nonma{gnetlicbsusb_stra the Fermi energi ., such that the spanning vector of the

Elr;ly thea r(ijglr]?:tc sﬁz(se;i,tgm ceon?aingr;&?]ge?glly gif?e;er‘)![ml Fermi surfaceq(k; ,E), is stationary with respect K - .In
o . ) general there may be several such stationary spanning vec-

semi-infinite nonmagnetic subsrate g, atomic layers of tors, each of them giving rise to an oscillatory component of

S : : the interlayer exchange coupling; the various components are
ally be semi-infinite. The exchange coupling enefgT) is labeled by the indext,

given by the difference of the grand canonical potentials for . . . o .
. : . . Assuming that in the vicinity ok andEg M (k| ,E) is a
the antiferromagnetiCAF) and ferromagneti¢F) alignments smooth function ofk; and E, it can be approximately re-

of the magnetic slabs, olaced by a constaril,.

EN,T)=0(T)—QFT)=ImI(T), M (kj,E)~Mo, . (4

The wave vectog(k;,E) can be expanded in the vicinity of
I(T)= fcf(T,Z)‘I’(z)dz, (1) kjandEg as

2E-Ep)  (kkp)?  (ky—k)?

ﬁVFa Kxa Kya

wheref(T,z) is the Fermi-Dirac distribution function, and a(ky E)~ Q.+

®)

wherevg, is the Fermi velocity, andc,, and «,, are the
curvature radii of the Fermi surface Iq”ﬁ (the x andy axes
(k| 2)=Tr[InGA(k;,2) — In GF(k),2)]. (2)  are chosen so as to eliminate the term proportionél,kg).

1 1
W(z)= ;@f d?ky(k; ,2),



9590 V. DRCHAL et al. PRB 60

Finally, since only the neighborhood kﬁ contributes sig-
nificantly to the integral, the integration range fgrandk,
can be formally extended to—(«,+«). Then, we obtain

easily’ Q)
Z
»
A W
ENT)=2 =2 SiNQN+P)t(N.T), (6 ~
“ N =
where the amplitude and the phase are given by :\ZQ
w
id,_ T 12 12
Aae “= EhVFa(Kxa) (Kya) MOO(' (7)
O 1 1 1 1
The temperature dependence is then dgivgnthe function 0 100 200 300 400 500
Temperature T (K)
C.NT )
t, (N, T)= = , (8) FIG. 1. £,(N,T)/&E,(N,0) as a function of the temperatufeor
sinh(c,NT) a trilayer consisting of semi-infinite @@01) slabs sandwiching a
with fcc-Cu spacer. The different curves refer to different spacer thick-
nesseN (N=9, 14, 19, 24, 29, and 34 from top to bottom
_ 27kg o) Co. Clearly enough, this approximation is the better the

c

a

thicker the Co slabs are and may be not justified for a single
monolayer Co slabs.

The most remarkable result of this analytic approach is that In order to determine the parameters of the complex ex-
the scaling factot(N,T) depends on the product of spacer ponentials(A3), we evaluated the functio®(y) at the 40
thicknessN and temperatur@. In the preasymptotic region Matsubara energies corresponding Tte=25 K. We found
(small spacer thicknegshe functional form oft(N,T) dif- that between 25 and 100 K the results depend only weakly
fers from that of Eq(8) due to a rapid variation of the phase on the actual value of. Note that such calculations have to
of the integrand of the IE€In this case preasymptotic cor- be performed only once. The calculations were carried out

hivg

rections are non-negligible. for spacer thicknesses up to 80 monolayers and for tempera-
tures up to 500 K(in steps 10 K for different trilayers of
C. Ab initio approach Co/Cu/C@001), namely, for semi-infinite Co slabs, and for

_ o o _ finite Co slabs. It is well knowh™!" that for thick magnetic
We employ the tight-binding linear muffin-tin orbital gjans the short-period oscillatiofSPO dominate and the
(TB-LMTO) method and the technique of surface Greenyqntihytions from the long-period oscillatiofisPO) can be
functions>!*to determine¥ (z). The details can be found in neglected
Ref. 7. The integral containing the Fermi-Dirac function in '
Eqg. (1) can be calculated by a standard method based on the
Gaussian quadrature along the cont@uand a summation
over the enclosed Matsubara polsse, e.g., Ref.)7 Since In model studies® one typically makes use of the
the Matsubara poles depend on the temperature, the functiasymptotic theory in order to obtain the temperature depen-
W(2) has to be evaluated for each temperature under considience of the IEC. Recent papé&r$ however, demonstrate
eration. A new integration method which is described in thethat preasymptotic corrections may be quite important in
Appendix allows to substantially speed up such calculationssome casesAb initio theories, similarly to experiment, pro-
vide the IEC for a set of spacer thicknesses and temperatures.
D. Details of calculations This in turn requires a sophisticated analysis and visualiza-
tion of calculated results.

IIl. RESULTS AND DISCUSSION

The numerical studies were performed for {861 direc-
tion of a parent fcc lattic@ corresponding to the experimen-
tal lattice spacing of Cu. In each case, the magnetic layers
are Co layers, the spacer and the substrate layers are formedThe simplest wa$® of presenting the results is to plot
by Cu layersa conventional trilayer geomefryAll calcula-  directly £,(N,T) as a function of the spacer thickness for a
tions are based on self-consistent potentials of bulk fcc-Cliew chosen temperatures. Such a representation is, however,
and bulk fcc-Co aligned to a common Fermi enetfywe  obscured by the standai™? decay of the oscillation am-
have performed self-consistent calculations for CuTat plitudes and hardly demonstrates more than the simple fact
=500 K and found a negligible influence of finite tempera-that the oscillations are damped by finite temperatures.
tures on the potentials and hence also on the Fermi energternatively’ one can present the ratiy(N, T)/E(N,0), or,
and the shape of the Fermi surface. We neglected a changewiore generally, the rati€,(N,T)/E(N,T,) where T, is
magnetic moments in the Co slabs with temperature becaus®me chosen temperature. In  Fig. 1 the ratio
the temperatures considered in this study=G00 K) are  &(N,T)/&(N,0) for a set of spacer thicknesses roughly cor-
small as compared to the Curie temperature 1360 K of bulkesponding to the maxima &2 &,(N,T) is plotted. We ob-

A. The case of a single oscillation period
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T (K) FIG. 3. &(N,T)/&E(N,0) plotted as a function af=NT for a
trilayer consisting of semi-infinite @601 slabs sandwiching a
fcc-Cu spacer. The thick line refers gdsinh(¢), é&=c NT with ¢

2 .
. FIG. 2. N. E.X(N’T) as "?‘.f“.r“?“"“ of the temperatu?fefqr a =0.000195 K! as obtained by a least-square fit to the computed
trilayer consisting of semi-infinite G601 slabs sandwiching a data

fcc-Cu spacer. The different curves refer to different spacer thick-
nesseN: N=7 (full line), N=22 (dashed ling andN=19 (dotted

line). The latter casésee also Fig. llis used to highlight a different B. The case of more than one oscillation period

behavior ofN=7 andN=22 cases in comparison witi= 19, as The mode of analyzing the results as presented in Fig. 3 is
well as the fact that they correspond to the transient regime betweeinapplicable for the case of more than one oscillation
the ferromagnetic and antiferromagnetic coupling. period!'? Below we sketch an alternative visualization

, o ... based on discrete Fourier transformations, by which various
serve a systematic decrease of the oscillation amplltudeg
I

: oee > eriods corresponding to separated peaks can be distin-
with temperature which, in accordance with the model resulf, ished.

in Eq. (8), is more pronounced for thicker spacers. Ror In general, the interlayer exchange coupling energy in the

=9 the decay of the oscillation amplitude with temperature; sy mpiotic regime of large spacer thickness can be viewed as
is in close agreement with curvd) in Fig. 3 of Ref. 8 5 gum of several contributions from nonequivalent extremal

(semiempirical multiband tight-binding modelt is impor- vectorskff of the spacer Fermi surfadeallipers? as given

tant to exclude the preasymptotic region and, in particular, t%y Eq.(6). We wish to resolve the individual contributions to

consider only cases with a well defined type of couplingg (N,T) and then to check the functional form tf(N,T)
(either ferromagnetic or antiferromagnetisince otherwise, :Xf[é ()], Eq. (8), wheref (&)= ¢/sinh(g), £=c,x andx
as illustrated in Fig. 2, one obtains results which can signifi-_ NTaas v;/ell és t’o find the values of thé coeffciyci’engs
cantly deviate from the expected behavior. In particular, the Le"[ us first introduce the auxiliary function
cases plotted in Fig. 2 correspond to layers close to the tran-
sition between the ferromagnetic and the antiferromagnetic T
coupling, i.e., to the case for whidi? £(N,T) is close to Fy(N, Teg) =N2 gx( NWeﬁ) (10)
zero.

The most important prediction of the model presented inThe interlayer exchange coupling energiégN,T) are
t?]?gi(nzeslz ;r;?jt ttehnipleErgtudrz,gel\T'?S[szg g‘g(g??ﬁgrdoefrsﬁtgaceévaluated for the temperatur@s=T.4/N that depend on

i ! S . both the fictitious temperaturé&.s and the numbeiN of
verify this prediction, in Fig. Z,(N,T)/&(N,0) is plotted as Lt e
a fufr{ctionpof the parame'?e«z?\(IT. It) sr;((()uld)be Fr)mted that SPacer layers. The fictitious temperatiig plays the role of

each point in the plot represents a separate calculation atthe productNT. The contributions of the individual callipers

a, o . .
given temperature and spacer thickness. The asymptotic b&ll to éX(N.'T) can fbe identified from the peaks in the dis-
havior is obtained by restricting the spacer thicknesiNto crete Fourier transform

=20 and by explicitly excluding a few cases with very small N,

values ofN? £(N,T) (e.g., the case withN=22). It is seen _ :

that the calculated values &E(N, T)/&(N,0) can be fitted O Ten) = N, oN, 71 N=2N1 eXPIAN) (N, Tet).
rather well by a least-square fit to the functiéfsinh(), & (11

=c NT with c=1.95x10 4 K™ 1. It is evident from Fig. 3 _ _ _ _
that for large spacer thicknesses and a numerically deteBY inserting Eqs(6) and(10) into Eq. (11), we find
mined constant the model predictions are reasonably well
confirmed: The value otg=1.85x10 * K~ ! reported in

Ref. 12, which in turn is based on the use of experimental
Fermi surface parameters, is in a rather good agreement with

the present result. where

F(ATe) =2 Jo(a)f(CuTer), (12)
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TABLE |. Least-square fits of the coefficients and c, for
Co/Cu/Co multilayers with varying thicknesd of the Co slabs.
The position of the peak of the discrete Fourier transformatianp is
andA is the rms error of the fit. Both short- and long-period oscil-

lations are present for finite Co slabs, while the amplitudes of long-

period oscillations are suppressed for semi-infinite Co slabs.

Short period Long period

M q A cs (K™h q A c (K™

o0 2.48 0.0003 0.000195

5 2.48 0.0002 0.000190 1.21 0.0002 0.000275
1 2.43 0.0003 0.000194 0.94 0.1367 0.000249

1 N2
=— xp(igN)A, si N+ o
Ial0= {27 (2%, OPIANIALSINQN+ )

13

is the contribution of callipetr to the discrete Fourier trans-
form at T=0 K. As this quantity has a sharp peak@y,,
well separated from other peaks @f,; (a' # @), the tem-
perature factoff ,(T.x) can be found from Eq(12) by ne-
glecting the contributions from other callipers, namely,

F(da, Ten)

f(caTeff)~ F(q 0)

(14
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T T T T T
1.00 .
cs = 0.000190
075 ¢1 = 0.000275
C
[_1
2
= 050 |
025
0.00
0 5 10 15 20 25 30
Tegt /1000 (K)

FIG. 5. The functionf(T), Eq. (17), calculated as a ratio of
the absolute values of the discrete Fourier transformations of
N2E(N, Teq) for the subseN e 20-60 and a set of temperatures
T for two finite Co slabs each five monolayers thick embedded in
a Cu spacer. The calculated validi&amonds and heavy dotsor-
responding to the sho(g) and long(L) period oscillations, respec-
tively, are shown together with their least-square fftgdl lines)
represented by ,(x) =cx/sinh(c,X), «=S,L; cg=0.000190 and
¢, =0.000275.

To illustrate this approach, we have performed calcula-

tions for 20<N=<60 of spacer layers and for 30 effective
temperaturesT .. The calculated values df(c,NT), Eq.

fit yields a value otg=1.95x 10 * K1, which is in a good

(14), were then fitted by the least-square method to the as@greement with the value extracted from experimental data

sumed form, Eq(8). The quality of the fit as given by the
rms error, is displayed in the Table I.
For semi-infinite Co slab&-ig. 4, Table } a good-quality

T T T T T
1.00 .
0.75 ¢ =0.000195
5
=
2
=050
025
0-00 1 1 1 1 1
0 5 10 15 20 25 30
Ters /1000 (K)

FIG. 4. The functiorf (T ) for two semi-infinite Co slabs sand-
wiching a Cu spacer, E@17), calculated as the ratio of the absolute
values of the discrete Fourier transformationsNSE, (N, Teg) for
the subseN € 20—60 and a set of temperaturBg;. The calculated

and the value corresponding to Fig. 3. Equally good agree-
ment for thecg of the SPO is found for finite magnetic lay-
ers, namely, for the case of the five monolayer sidhg. 5,
Table ) and single monolayer slaki§able |. It should be
noted that the values a@f as determined from different sub-
sets are quite robust, namely, the results NolO<N=<50

and 26=N=280 differ only by five percent from those for
20<N=60.

The case of the LPO is different. For five monolayer slabs
(Fig. 5, Table }, the least-square fit is still of good quality
yielding ¢, =2.75x10" % K™%, and is very robust with re-
spect to various subsets Nf This value should be compared
with ¢, =1.42x10 4 K~ as obtained from using experi-
mental Fermi surface parametéfsThe case of single mono-
layer slabs gives a poor quality fiarge rms error, Table) |
which also strongly depends on the choice of subsets used
for the discrete Fourier transformation. We can thus con-
clude that the temperature factiic ,NT) for the LPO in the
single monolayer system differs considerably from the ex-
pected functional form, Eq8). This, together with the fact
that also the period of the LPO depends strongly on the
thickness of the Co layer and on the subletised in the
Fourier analysis, is a clear indication of strong preasymptotic
corrections as discussed in detall in Refs. 8 and 18.

One source of preasymptotic corrections which has a
strong influence on the temperature dependence of the cou-

values(diamonds corresponding to the short-period oscillations are pling is the variation ofM (k| ,E) with respect toE. If this

shown together with their least-square fiigll line) represented by
fg(Xx) =cex/sinh(csx), cs=0.000195.

variation is strong, then it cannot be neglected any longer. As
shown in Ref. 18, one then obtains
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TABLE II. Least-square fits of the coefficierts for semi-  given in Table Il. Disorder leads to a somewhat larger addi-
infinite Co slqbs sandwiching an alloy spacer. The position of thetional damping as compared to the case of a pure Cu spacer
peak of the discrete Fourier transformatiorgiand A denotes the (see Table)l In full agreement with the qualitative conclu-

rms error of the fit. Only short-period oscillations are present forsjons in Ref. 21 the damping for a CuZn spacer is smaller as
semi-infinite Co slabs. The case of ideal Cu spacer is also showngompared to CuNi or CuAu spacers.

Short period

spacer q A cs (K™h IV. CONCLUSIONS

Cu 2.48 0.0003 0.000195 We have investigated the effect of temperature on inter-
CugsNiy5 2.77 0.0052 0.000259 layer exchange coupling assuming that the main mechanism
CusAUsg 2.66 0.0132 0.000247 consists in thermal excitations of electron-hole pairs as de-
CuygZnys 2.06 0.0047 0.000200 scribed by the Fermi-Dirac function. We have used a spin-

polarized surface Green function technique within the tight-
binding linear muffin-tin orbital method and the Lloyd
A, formulation of the integrated density of states. The occurring
E(NT)=2 —sin(QN+®,)f(c,NT) integrals are calculated by means of an efficient method of
« [N representing the integrands containing the Fermi-Dirac dis-
tribution by a sum of complex exponentials. For a given
(15) geometry one has to determine the parameters of the expo-
nentials only once and then the IEC is obtained very quickly
and reliably for any reasonable temperature. Our calculations
r Co/Cu/Cd00)) trilayers confirm a simple functional de-

B.
+ mcos{QaNJr(I)a)g(caNT)

where B, is related to the energy derivative 8 (k| ,E).
The temperature dependence of the correction is given b

Fia. 1 of Ref. 1 endence of the IEC on the product of temperature and
(see Fig. 1 of Ref. 18 spacer thickness, namely,(N,T)=¢&,(N,0)[ &/sinh()],
&2 coshé whereé=c NT, valid for largeN. We found, however, that
9(é)=————F5. (16)  in the preasymptotic regime and for very small coupling am-
sintfé plitudes the actual temperature dependence can significantly
As the reflection coefficient of minority electrons witg ~ deviate from this simple form. The present study shows a

=0 for thin layers of Co embedded in @001) varies rather different temperature dependence of the short- and long-

strongly with energysee Refs. 2 and 19this causes a large period oscillations, the latter decay faster than the former.

departure from the asymptotic behavior for the long period’V& have also found that for one monolayer thick magnetic
oscillation. slabs the temperature dependence is more complicated than

those predicted by simple models. It should be mentioned
that within the present method also the combined effect of
temperature and disordércan be studied.

The present method is also applicable to the case of dis-
ordered samples, in particular, it allows us to study the com-
bined effect of temperature and alloyingé?irrgthe spacer. By ACKNOWLEDGMENTS
employing the vertex-cancellation theor generaliza- . . .
tion to random alloys is straightforward, namely, only a sub-t tTh|s| Vltl/lortk IS ?sf’"’!” of activities O:; tget(;en;er ;or Con}pg-._
stitution of the Green functions in EQ) by their configu- ational Material science sponsored by the Academy ot Sci
rationally averaged counterparts is needfbiith exception ences of the Czech Republic. Financial support for this work
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emy Sciences of the Czech RepulfiRroject A1010828 the

One of the main resuits of asymptotic theories is that thj”;roject “Scientific and Technological Cooperation between

temperature dependence of the oscillation amplitudes is r 2
lated to details of the spacer Fermi surface. The spacer Fer iermany and the Czech Republic,” the Center for the Com-

surface can be strongly influenced by alloying because th utational Materials Science in Vien@Z 45.442 and GZ
{

C. Combined effect of the temperature and disorder

. : 5.420, and the TMR Network “Interface Magnetism” of
electron concentration changes and the alloy Fermi surface S
modified?® The most obvious effect of alloying is the change Oe European CommissiofContract No. EMRX-CT96-
of the periods of oscillations connected with the change 010 89.
the corresponding callipers. We refer to a recent gager
more details concerning the semi-infinite C_o slabs sandwich- APPENDIX: NUMERICAL TREATMENT
ing the alloy spacer Ggy_,M,, whereM =Ni, Au, and Zn. OF THE TEMPERATURE DEPENDENCE
The coefficients g for short-period oscillations which for the
model of semi-infinite Co slabs also dominate in the case of The integral in Eq(1) can be recast into a more suitable
alloy spacers, are summarized in Table Il for three typicaform using the analytic properties of the functioh(z),
alloy spacers. Alloying of the Cu spacer with ¥n) impu-  namely, (i) ¥(z) is holomorphic in the upper half of the
rities reducegextend$ oscillations periods while the effect complex plane anéii) z¥(z)—0 for z—o, Imz>0. Let us
of Au atoms is rather small. The temperature dependence tefine a complex functio®(y)=—i V(Eg+iy) of a real
thus again of the forng/sinh(), £&=cgNT with valuescgas  variabley, y=0. Then afT=0 K,
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T M M M
I(0)=f0 ®(y)dy, (AL > BuFmik=2>, A exppi[yo+hk]) X Bpexp(phm)
m=0 j=1 m=0
while atT>0 K, =0. (A9)
_ S The coefficient3,, are found from the condition that the
'™ ZWkBTkZ1 P, (A2) recurrence relation§A8) hold also for the functionb(y).

Without loss of generality we can assuig= 1. In this way

wherey,= wkgT(2k—1) are Matsubara energies akgl is we obtain

the Boltzmann constant. In the limit &f—0, 1(T)—1(0)
continuously. M

The functionW(z) is rapidly oscillating forz just above E ® . Bp=—Dy, (A10)
the real axis and it is strongly damped fomoving deep into m=1
the upper half-plane. One can thus expect that the functiofyich represents a set bi— M inhomogeneous linear equa-
@ (y) can be represented by a sum of a few complex expoggns forM unknown coefficient,,. If N=2M these equa-

nentials tions can be solved by standard methods. In most cases,
M however, one wishes to use more function valdgs than
d(y)~F(y), Fy)=D A exppiy), A necessaryN>2M) in order to eliminate possible computa-
¥)=F) ¥ J'Zl j eXPP;Y) (43) tional errors and to obtain a better fit. Optimized coefficients
B, can be obtained from dinear least-square fit, or
pseudoinversidtt of the [(N—M)xM] matrix of the left-
hand side of Eq(A10). The resulting equations read

where theA; are complex amplitudes and thpg complex
wave numbers (R@;]<0).
The evaluation of (T) is then straightforward, since the

sum overk in Eq. (A2) represents for eagh; from Eq.(A3) M /N-M N—M
a geometrical series. The result is mzl ( gl (Di*+k<bm+k) B=— kgl OF, D,
M
A All
((M=-27eT 2, ST~ exi— kaTh) here th isk d | o a)j 1
=1 Bl Pj)— — 7Kl Pj Ad) where the asterisk denotes a complex conjugate, an
A4 <M.
which for T=0 K gives Once the coefficient8,, are known, Eq.(A6) can be

solved. The rootg; can be determined for example as the
A eigenvalues of the companion matfixThe wave numbers
1(0)=— 21 o (A5)  are then determined a5=log(z;)/h. The function®(y) is
=2 H bounded or even tends to zero fpr +. Consequently,

Yn.N=1,...N. For a given se{®,}, the parameters, The amplitudes\; are given by the following set of inho-
andp; can be found by using nonlinear least-square fit methNOYENEOUS linear equations

ods. Here we present a much simpler, more efficient and M

reliable method for finding the parametes and p; in Eq. _ _

(A3). Let z;=exp(p;h), then there always exist coefficients 121 EXHP;YiA; = P, (AL2)

B,,,m=0,1,... M, such that o )
that are solved again directly fdd=2M, or by a linear

M M least-square fit foN>2M,
> Bmexp(pjhm)= > Bmzjm=0 (AB)
m=0 m=0 M N N
for all j=1,... M, becauseV +1 M-dimensional vectors j§=:1 n§=:l exf (pf" + pJ)Yn]Ajerzl exp(p; yn) P
(z1', ... zy) are always linearly dependent. Léy,}, n (A13)

=1,... N,N=2M, be an equidistant set, i.e.,
Although we have never encountered such a case in our

Yn=Yothn,n=1,...N. (A7) calculations, Eq(A6) can have one or more multiple roots
The valuesF,=F(y,) then fulfill (M +1)-recurrence rela- (with multiplicities P;). In such a case basis functions of a
tions more general form, namelyy*exp(p;y)}, A=0.,1, ... P;,
have to be considered and E@\13) should be modified
M accordingly.
mE_O BmFm+k=0, (A8) The numbemM of complex exponentials needed to repre-

sent®(y) is usually not known in advance. Therefore we
for 1I<sksN—M, as readily follows by inserting Eq$A3)  have variedV in a broad range, say between 2 and 12, and
and (A7) into Eq. (A8) and using Eq(A6), selected a value that gave the best fidg(y).
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