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Abstract

The tunnel conductance through a disordered spacer is studied in the linear response theory at zero temperature. It is
shown that the conductance is proportional to the product of the surface densities of states of metals separated by the
spacer and tunnel magnetoresistance ratio is expressed in terms of spin polarization of the surface density of states of
ferromagnetic metals when the disorder is strong. ( 1999 Elsevier Science B.V. All rights reserved.
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Since the discovery of giant magnetoresistance in mag-
netic multilayers [1], a considerable number of studies
have been made on the spin dependent transport
phenomena in magnetic nano-structures. One of the
examples is the tunnel magnetoresistance (TMR) in fer-
romagnetic tunnel junctions. Recently, a large TMR ratio
as much as 30% has been observed in Fe/Al

2
O

3
/Fe [2]

and CoFe/Al
2
O

3
/Co [3] systems.

There are several theoretical works to explain the
TMR. They can be classi"ed into two approaches ac-
cording to the treatment of the wave function of tunnel
electrons. One is based on the tunnel Hamiltonian
theory. In the tunnel Hamiltonian theory, the tunnel
conductance is proportional to the product of the densit-
ies of states (DOSs) of metals separated by an insulating
spacer and the resultant expression of TMR ratio (TMR)
is given as [4,5]

¹MR"2P2/(1#P2), (1)
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where P denotes the spin polarization of DOS of the
ferromagnetic metals. When we use the observed values
of P [6], TMR ratio obtained in experiments can be
explained semi-quantitatively. The other is based on
the scattering theory of the one-body potential barrier.
Slonczewski [7] solved the SchroK dinger equation of the
rectangular potential barrier without disorder in the free
electron model and discussed the dependence of TMR
ratio on the barrier height. In his theory, TMR ratio has
not been given by a simple expression as Eq. (1). How-
ever, the dependences of TMR ratio on the barrier thick-
ness and the applied bias voltage can be calculated
[8}10].

Real systems, on the other hand, include disorder,
especially near interfaces between the insulating spacer
and the metallic leads. In this work, we clarify the e!ect of
elastic scatterings due to strong disorder on the tunnel
conductance and the TMR. We adopt a model which
includes strong disorder but keeps the band gap open
in the insulating spacer and treat the wave function
properly.

We consider a trilayer consisting of two semi-in"nite
metallic leads separated by a spacer of ¸ atomic layers.
This trilayer is described by the single orbital tight-
binding model on a simple cubic lattice and the (0 0 1)
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Fig. 1. Calculated results of the local DOSs of the spacer (solid
curve) and the lead (broken curve). Here, we take ¸"2, u/t"10
and up

L
"up

R
"0.

Fig. 2. Calculated results of the conductance in units of 2e2/h.
Chained and solid curves are C for u/t"2 and 8, respectively.
The channel number and the product of the surface DOSs of
semi-in"nite metallic lead are also shown by dotted and broken
curves in arbitrary units.

axis is taken as the stacking direction. In order to take
into account the disorder and band gap, we assume the
following substitutional-type disorder in the spacer. The
Hamiltonian of the system is

HK "!t +
W(i,l),( j,l{)X,p

(csi,l,pcj,l{,p#H.c.)

#+
i,l,p

upi,lcsi,l,p, (2)

where c(s)i,l,p is the annihilation (creation) operator of the
electron at site i in l-th plane with spin p. Here, l labels
the layer plane normal to the (0 0 1) axis and i denotes the
site within the layer plane. In Eq. (2), t is transfer integral
and the summation S(i, l), ( j, l@)T runs over the nearest-
neighbor sites. The on-site potential upi,l at site i in lth
plane takes constant value up

L
in left (l)0) and up

R
right

(l*¸#1) leads while it takes u or !u randomly with
equal probability in the spacer (1)l)¸). We take the
random potential u large to open the gap in the band of
the spacer.

In order to treat the disorder, the single site coherent
potential approximation (CPA) [11] is adopted. The
conductance through the disordered spacer is calculated
by using Kubo formula [12] at zero temperature. The
vertex correction, which depends on the layer, to the
conductance is calculated by evaluating the ladder dia-
grams consistently with the coherent potential in order to
satisfy the current conservation [13]. We ignore spin #ip
scatterings and calculate the TMR ratio by using the two
current model.

First, we show the calculated results of the DOSs of the
spacer and the lead in Fig. 1. Here, both up

L
and up

R
are

taken to be zero and the chemical potential (Fermi
energy) is chosen at E"0. As the random potential u
increases, the gap appears in the DOS of the spacer
around the chemical potential. However, the DOS is
"nite even if the gap (pseudo-gap) appears for large u.
This is because the electron penetrates into the spacer
from the leads due to the proximity e!ect. The DOS of
the lead at the interface is almost the same as the surface
DOS of semi-in"nite metallic lead for large u.

In order to examine the relation between the electronic
structure of the leads and C, we shift the DOSs of the
leads by changing u

0
("up

L
"up

R
). We de"ne the energy

e as e,6t!u
0

that denotes the relative energy between
the chemical potential and the bottom of the band of the
leads. In Fig. 2, the calculated results of the conductance
C are shown with channel number N

#
and square of the

surface DOS (D
SF

) of the metallic leads. In the ballistic
limit (uP0), the conductance is known to be propor-
tional to the channel number which is the number of the
states contributing to the transport. When u is small, the
shape of C is similar to that of N

#
. As u increases, the

shape of C becomes narrow and converges to that of D2
SF

.
Therefore, it is considered that C is proportional to D2

SF
in

strong disordered limit.
Next, we consider the ferromagnetic leads by introduc-

ing the spin dependent up
L
and up

R
. We adopt the local spin

quantization axis for each ferromagnetic lead and de"ne
the spin # and ! to be the majority and minority spin
states for each ferromagnetic lead, respectively. The
potentials of the ferromagnetic leads are chosen as
uB
L(R)

"u
0
GD/2 where D denotes the exchange splitting.

The conductance C
P
in the parallel alignment is given by

C
P
"C

``
#C

~~
by using the two current model. Sim-

ilarly, the conductance C
AP

in the anti-parallel alignment
is given by C

AP
"C

`~
#C

~`
. The TMR ratio is de"ned

as

¹MR,(C
P
!C

AP
)/C

P
. (3)

Calculated results of TMR as functions of e are shown in
Fig. 3 for several values of u. As u increases, TMR becomes
close to 2P2

SF
/(1#P2

SF
) where P

SF
is the spin polarization

of the surface DOS of the metallic leads de"ned as
P
SF
,(D`

SF
!D~

SF
)/(D`

SF
#D~

SF
).

Results obtained in strong disordered limit are similar
to those obtained by using the tunnel Hamiltonian the-
ory but the conductance is proportional to the product of
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Fig. 3. Calculated results of the TMR ratio for several values of
random potential u. Chained, dotted and solid curves are TMR
for u/t"2, 8 and 10, respectively. The broken curve shows the
evaluated value of TMR from Eq. (1) with the spin polarization of
surface DOS instead of that of the DOS of ferromagnetic leads.

the surface DOSs of metallic leads. As for the TMR, P in
Eq. (1) should be interpreted as the spin polarization of
the surface DOS of the ferromagnetic metals for strongly
disordered junctions.
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