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Abstract
We discuss common features and differences in the fully differential cross
sections (FDCS) for the electron-impact double ionization of He evaluated using
the convergent close-coupling (CCC) method and various methods that utilize
the three-body Coulomb wavefunctions (3C and C4FS). The calculations are
restricted to the first Born approximation with respect to the interaction of the
fast projectile with the target. In contrast to the similar (γ , 2e) reactions, where
predictions of all the above theories qualitatively agree, there is a systematic
difference between the FDCS calculated in the CCC and the 3C-type theories
which is amplified as the momentum transfer from the projectile to the target
increases. We argue that this fact is an indication that the P partial wave of a
two-electron final state wavefunction is well described by the 3C model, but
higher partial waves are poorly treated.

The angular and energy-resolved detection of the double ionization fragments following fast
electron impact on atomic targets (the so-called (e, 3e) reaction) is a powerful tool to study few-
particle dynamics. As compared to the fully resolved double ionization upon the absorption of
a single VUV photon (the (γ , 2e) reaction), the momentum q transferred from the projectile
to the target in a (e, 3e) process can be varied in a wide range. In the dipolar regime, under the
condition q � 1, the incoming electron beam induces predominantly two-electron electric-
dipole transitions in the target and the (e, 3e) and (γ , 2e) processes are directly related. In
contrast, in the collisional regime, where q � 1 is more substantial, higher multipoles provide
significant contributions. Ultimately, in the impulsive regime q > 1, the ionization event can
be described as a binary knock-out collision of the projectile with the target.

0953-4075/02/010015+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK L15

http://stacks.iop.org/jb/35/L15


L16 Letter to the Editor

The helium atom is an ideal target to study the (e, 3e) reaction since its electronic structure
is relatively well understood and the final state of the ion is a bare nucleus. The (e, 3e)
experiments on He have been reported by the Orsay group (Taouil et al 1998, Lahmam-Bennani
et al 2001) and by the Freiburg group (Dorn et al 1999, 2001a, 2001b). Both experiments
involved fast (few keV) incident electrons and low energy (few eV) ejected electrons. In the
Orsay experiments the momentum transfer was small (q < 1), whereas the use of the cold
target recoil ion momentum spectroscopy (COLTRIMS) allowed the Freiburg group to detect
simultaneously both the q < 1 and q > 1 ionization events. In both experiments the fully
differential cross section (FDCS) was measured. The absolute FDCS were reported by the
Orsay group, whereas only relative data were obtained from the Freiburg experiments.

From a formal theoretical point of view the description of the (e, 3e) reaction entails
the knowledge of the scattering states of an interacting system which consists of four
charged particles (three electrons in the field of the He2+ ion) as well as the evaluation of
a correspondingly complicated series of scattering amplitudes (Berakdar 2001b). To render
possible the numerical evaluation of (e, 3e) cross sections one considers kinematical situations
in which the fast incoming electron transfers a small momentum to the target q ∼< 1 and ejects
two slow electrons. In this case the following simplifying assumptions are reasonable. The
fast projectile is represented by a plane wave and its interactions with the target can be treated
perturbatively by way of the Born series. Most practical computations are restricted to the
first non-vanishing term in the Born series (the first Born approximation—FBA). However, the
motion of the two slow ejected electrons in the presence of the residual ion has to be treated
nonperturbatively. The latter process constitutes a Coulomb three-body problem and a number
of approaches have been developed to treat this problem computationally. Differences between
various computational methods may result in different FBA results even if the experimental
kinematics ensures the applicability of the FBA.

An efficient and (in most cases) accurate way to describe a three-body Coulomb system
is provided by the three Coulomb waves (3C) method (Brauner et al 1989). This method was
applied to the (e, 3e) process on He by Joulakian et al (1992), Joulakian and Dal Cappello
(1993), and most recently by Muktavat and Srivastava (2001). In the 3C theory the three-body
system (the two slow electrons and the He2+ ion) is broken down into three decoupled two-
body subsystems. The latter are then treated to all orders of perturbation theory, i.e. isolated
two-body scattering events are correctly described by the 3C model, whereas the modification
of the two-particle scattering due to the presence of a third charged particle is not taken into
account. Such a three-body coupling occurs through cross terms of the kinetic energy operator.
These terms are most important at lower energies and/or small distances, and hence the 3C
theory becomes justifiable for large inter-particle separation or at high energies (Berakdar
2001a). We note that the separation of small and large distances is energy dependent here.
Similarly, the 3C theory performs well in the high energy regime or when, in a scattering
reaction, isolated two-body collisions are dominant.

A more recent non-perturbative method to treat the Coulomb three-body problem was
developed by Bray and Stelbovics (1992) and applied to the (e, 3e) on He by Kheifets et al
(1999a, 1999b). In this fully numerical convergent close-coupling (CCC) method only one of
the two slow electrons is described by a Coulomb wave whereas the other electron is treated as
a pseudo-state of the He+ ion. Inelastic scattering of the Coulomb wave on the He+ ion results
in promotion of the bound electron to the positive energy pseudo-state thus creating a doubly
ionized final state. A similar approach was taken independently by Knyr et al (2001).

Up to now, due to numerical complexity, the close-coupling calculations of the (e, 3e)
on He were limited to the FBA. The second Born correction was estimated only on the basis
of the 3C theory (El Mkhanter and Dal Cappello 1998, Grin et al 2000). It was found that
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the first Born term was clearly dominant. However, the second Born correction was sizeable
even at large incident electron energies. A further non-perturbative method that goes beyond
the FBA was suggested by Berakdar (1997) and applied to the (e, 3e) on He by Lahmam-
Bennani et al (1999). This method is a generalisation of the 3C approach to a four-body
system, however the interaction of the scattered projectile electron with the rest of the system
is described on the basis of effective charges yielding thus a correlated four-body final state
(C4FS). Recently, an incremental many-body Green function technique has been utilized by
Berakdar (2000) to derive the four-body Green function and applied to the calculation of
the (e, 3e) cross section. However, due to the numerical complexity only a limited set of
calculations is available (Berakdar 2000).

Comparison of the experimental and theoretical FDCS produced mixed results. The first
experiment of the Orsay group performed at a very high incident energy of 5.5 keV in the
collisional q ∼< 1 regime (Taouil et al 1998) was qualitatively understood by applying the
dipole selection rules (Lahmam-Bennani et al 1999). However, detailed comparison of the
shape of the measured and calculated FDCS showed strong deviation at some angles (Kheifets
et al 1999). Comparison was much worse for the magnitude of the FDCS which varied greatly
from one calculation to another (Kheifets et al 1999, Lahmam-Bennani et al 1999, Knyr
et al 2001) and none of them agreed with the absolute measurements of the Orsay group.
Recently, the Orsay group reported the experimental FDCS at the incident energy of 1 keV
(Lahmam-Bennani et al 2001). These results have been compared with the 3C, C4FS and
the CCC calculations. Considerable deviations between theory and experiment have been
observed which have been assigned to contributions of scattering processes whose description
goes beyond the FBA. This proposition seems reasonable in view of the relatively low energy
of the incident electron. On the other hand, results of the Freiburg experiments at the incident
energy of 2 keV, both in the dipole regime (Dorn et al 2001a) and the impulsive regime (Dorn
et al 2001b), have been compared with the FBA–CCC calculations. The theory explained well
the main features of the experimental FDCS. Only minor deviations of the experiment from
the symmetry expected in an FBA regime could not be reproduced by the FBA–CCC theory.

Clearly, incident electron energy in (e, 3e) reactions can always be taken sufficiently
low so that there is a need for higher Born corrections. However, at this stage, even the
FBA calculations from different models strongly disagree. This could be seen in a recent
work by Lahmam-Bennani et al (2001) where the 3C and C4FS calculations, while very
close to each other, were far apart from the CCC calculation. In contrast, similar (γ , 2e)
calculations performed with the 3C and CCC models produced very close, if not identical,
results (Cvejanović et al 2000, Bolognesi et al 2001, Dawson et al 2001).

In this letter we trace the emerging difference between the close-coupling and Coulomb-
waves based theories using the cross-over of the (e, 3e) reaction from the dipolar regime in
which it is identical to the (γ , 2e) reaction to the collisional regime. The kinematics of the
Orsay experiment lie in the latter regime. The full set of theoretical FDCS is presented here of
which only a small sub-set have been reported previously in (Lahmam-Bennani et al 2001).

The evolution of the FDCS from the dipolar to the collisional regime is illustrated in
figure 1. Here we show results of the CCC calculations for the (γ , 2e) and (e, 3e) reactions at
ejected electron energies of E1 = E2 = 10 eV. Geometries of the (γ , 2e) and (e, 3e) reactions
are depicted at the bottom panels. In the case of the (e, 3e) reaction the kinematics of the Orsay
experiment (Lahmam-Bennani et al 2001) are used, where the incident electron (momentum
vector k0 along the z direction) has 1 keV energy. In the case of the (γ , 2e) reaction the
coplanar geometry is chosen in which both photoelectrons (momentum vectors k1, k2) are
detected in the polarisation plane of the linearly polarized light. The escape angles of the
two photoelectrons θ1 and θ2 are measured with respect to the electric field vector E which is
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Figure 1. The FBA–CCC calculations of the He (γ , 2e) and (e, 3e) fully differential cross sections at
ejected electron energies of E1 = E2 = 10 eV (top left and right panels, respectively). Geometries
of the (γ , 2e) and (e, 3e) reactions are illustrated in the bottom panels. Cross sections are exhibited
in contour plots as functions of the escape angles θ1 and θ2. The areas of large cross section are
indicated by darker shades of grey. The straight lines indicate the areas of vanishing cross section
according to the dipole selection rules (dash-dotted lines) and Pauli exclusion principle (dashed
line). The arrows show the directions of the electric field vector ±E and the momentum transfer
vector ±q for the (γ , 2e) and (e, 3e) reactions, respectively. The angular range accessible in the
Orsay experiment contains the peaks denoted by A and B in the plots, see text.

directed along the z axis. We use contour plots to exhibit FDCS as a function of the escape
angles θ1 and θ2. The areas of larger cross section are indicated by darker shades of grey.

The (γ , 2e) FDCS vanishes along the dipole nodal lines θ1 ± θ2 = ±180◦. In the case of
the low-q (e, 3e) reaction the cross section also remains small along the lines θ1 − θ2 = ±180◦

and θ1 + θ2 = ±180◦ − 2θq , where θq = 21◦ is the momentum transfer angle for the chosen
kinematics. Both cross sections are symmetric with respect to the electron interchange θ1 ↔ θ2

since E1 = E2.
The angular range accessible in the Orsay experiments is restricted to the angles containing

the two peaks, marked A and B. These peaks are identical in the (γ , 2e) reaction because
the directions +E and −E are fully equivalent due to a negligible momentum of the photon
k = ω/c � 1. This is not so in the (e, 3e) reaction since the momentum transfer q is finite.
As we observe in the right plot of figure 1 the peak A acquires more intensity relative to the
weaker peak B. The peak A is aligned closer to the direction of the momentum transfer +q

and it is convenient to label it as a binary peak. Conversely, the peak B is positioned closer to
the vector −q and we shall call it the recoil peak. It is natural that the asymmetry between the
binary and recoil peaks increases as the momentum transfer q grows.

In figure 2 we present the CCC calculated (e, 3e) FDCS restricted to the bottom-right
corner of figure 1, where experiment exists. We also show the corresponding FDCS from the
3C and C4FS calculations as well as the experiment of Lahmam-Bennani et al (2001). We see
that the results of the 3C and C4FS calculations are quite close. This is expected, as for higher
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Figure 2. Contour plots of the (e, 3e) FDCS at the kinematical conditions of the experiment by
Lahmam-Bennani et al (2001). The escape angles of the two slow ejected electrons θ1 and θ2
are shown on the axes. Only the quadrant of the experimentally accessible range of angles is
displayed. Top left—CCC calculation, top right—3C calculation, bottom left—C4FS calculation,
bottom right—experiment. The dashed line indicates the symmetry axis of the FBA model.

impact energies and small momentum transfer the C4FS tends to the 3C case. Unlike the CCC
theory, the 3C and C4FS place more intensity on the recoil peak as compared to a weaker
binary peak. In addition, FDCS is significant at θ1 ∼ 360◦ and θ2 ∼ 180◦ in the 3C and C4FS
calculations whereas it is strongly suppressed by the remnant dipole selection rule in the CCC
calculation. The measurement of Lahmam-Bennani et al (2001) indicates a somewhat larger
intensity in the area of the binary peak. This peak is displaced relative to the symmetry axis
of the FBA model indicated by the dotted line. All the presented calculations are symmetric
with respect to this line.

A similar divergence of the CCC and 3C calculations, and the 3C theory with experiment,
was also encountered when comparing the cross sections of the (γ , 2e) and (e, 2e) reactions.
While the main structures in the measured (e, 2e) cross sections were present in the 3C
calculations, the relative intensities, the absolute magnitudes, and the positions of the peaks
were not well predicted at lower energies. The terms in the Hamiltonian that are responsible
for this shortcoming of the 3C method have been identified (Berakdar 2001a), however till
now there are no numerical calculations that estimate correctly their relative importance in
various regions of the phase space. The two-electron continuum states of the (e, 2e) and the
(γ , 2e) processes are identical. Nonetheless, at low incident energies (few times the ionization
potential), the 3C theory describes well the angular correlation in the two-electron continuum
of the (γ , 2e) reaction (Bolognesi et al 2001, Cvejanović et al 2000, Dawson et al 2001) but
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is clearly at variance with the experimental (e, 2e) angular distributions (Berakdar et al 1999).
This situation can be understood by recalling the fact that with increasing q the number of
relevant partial waves of the final state wavefunction increases. The 3C theory fails to represent
these partial waves adequately.

In conclusion, we studied the (e, 3e) FDCS by means of the accurate fully numerical
CCC method and by use of the analytical 3C model. Both approaches produce similar results
in the dipolar q � 1 regime when the (e, 3e) reaction is equivalent to the (γ , 2e) reaction
but notably disagree in the collisional q ∼< 1 regime. From this comparison we conclude
that the 3C model treats the dipole component of the two-electron continuum adequately
but has serious difficulties in describing other partial waves whose contributions grow with
increasing q. It should be noted that the region of the configuration space which is relevant
for the calculations of the cross sections of the (e, 3e) and (γ , 2e) reactions is limited by the
extent of the helium atom ground state wavefunction. Therefore the asymptotic properties
of the 3C final state wavefunction play a minor role when it comes to evaluating the FDCS.
In essence, the asymptotic behaviour of the 3C wavefunction is a byproduct of the fact that
two-body collisions are treated accurately and multiple higher-order collisions are negligible
asymptotically. The decisive shortcoming of the 3C is the neglect of the short-range kinetic
energy coupling terms which seem to gain more importance with increasing q. Although the
impulsive q > 1 regime is not explicitly studied here, results of Dorn (2001) at q = 2 indicate
that the 3C theory deviates very strongly from the experiment. On the other hand, the CCC
theory qualitatively agrees with the experimental data.

Depending on the value of the momentum transfer the (e, 3e) reaction can be performed
in very different dipolar, collisional and impulsive regimes. This is in contrast to the (γ , 2e)
reaction which corresponds to the (e, 3e) reaction only in one particular dipolar regime. This
dynamical richness of the (e, 3e) reaction makes it a useful tool for a stringent test for newly
developed theories of the atomic ionization (Pindzola et al 1999, Rescigno et al 1999, Malegat
et al 2000).

Generally, higher Born corrections have to be included into theoretical models of the (e, 3e)
reaction. However, before this is attempted, convergent FBA results have to be determined.
This convergence between different FBA models has already been achieved in a related process
of the electron impact single ionization (e, 2e reaction) which leaves the ion in an excited state
(Kheifets et al 1999a, Marchalant et al 1999). The present work is aimed to stimulate the
establishment of such convergence in (e, 3e) collisions.

The authors wish to thank Professor A Lahmam-Bennani for providing experimental data in
numerical form.

References

Berakdar J 1997 Phys. Rev. A 55 1994–2003
Berakdar J 2000 Phys. Rev. Lett. 85 4036–9
Berakdar J 2001a Recent Research Development in Physics vol 2 (Trivandrum, India: Transworld Research Network)
Berakdar J 2001b Phys. Rev. A 63 012706
Berakdar J, Briggs J S, Bray I and Fursa D V 1999 J. Phys. B: At. Mol. Opt. Phys. 32 895–913
Bolognesi P, Camilloni R, Coreno M, Turri G, Berakdar J, Kheifets A and Avaldi L 2001 J. Phys. B: At. Mol. Opt.

Phys. 34 3193–203
Brauner M, Briggs J and Klar H 1989 Z. Phys. D 11 257–8
Bray I and Stelbovics A T 1992 Phys. Rev. A 46 6995–7011
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Dorn A, Moshammer R, Schröter C D, Zouros T J M, Schmitt W, Kollmus H, Mann R and Ullrich J 1999 Phys. Rev.

Lett. 82 2496–9
El Mkhanter R and Dal Cappello C 1998 J. Phys. B: At. Mol. Opt. Phys. 31 301–12
Grin M, Dal Cappello C, El Mkhanter R and Rasch J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 131–41
Joulakian B, Dal Cappello C and Brauner M 1992 J. Phys. B: At. Mol. Opt. Phys. 25 2863–71
Joulakian B and Dal Cappello C 1993 Phys. Rev. A 47 3788–95
Kheifets A, Bray I and Bartschat K 1999a J. Phys. B: At. Mol. Opt. Phys. 32 L433–8
Kheifets A S, Bray I, Duguet A, Lahmam-Bennani A and Taouil I 1999b J. Phys. B: At. Mol. Opt. Phys. 32 5047–65
Knyr V A, Nasyrov V V and Popov Y 2001 Sov. Phys.–JETP 92 789–94
Lahmam-Bennani A, Duguet A, Gaboriaud M N, Taouil I, Lecas M, Kheifets A S, Berakdar J and Dal Cappello C

2001 J. Phys. B: At. Mol. Opt. Phys. 34 3073–87
Lahmam-Bennani A, Taouil I, Duguet A, Lecas M, Avaldi L and Berakdar J 1999 Phys. Rev. A 59 3548–55
Malegat L, Selles P and Kazansky A K 2000 Phys. Rev. Lett. 85 4450–3
Marchalant P J, Rasch J, Whelan C T, Madison D H and Walters H R J 1999 J. Phys. B: At. Mol. Opt. Phys. 32

L705–10
Muktavat K and Srivastava M K 2001 J. Phys. B: At. Mol. Opt. Phys. 34 2975–82
Pindzola M S, Mitnik D and Robicheaux F 1999 Phys. Rev. A 59 4390–8
Rescigno T N, Baertschy M, Isaacs W A and McCurdy C W 1999 Science 286 2474–9
Taouil I, Lahmam-Bennani A, Duguet A, Lecas M and Avaldi L 1998 Phys. Rev. Lett. 81 4600–3


