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Abstract
We study polarons confined in parabolic quantum wells and parabolic
quantum well wires within the framework of the fractional-dimensional
space approach. In this scheme, the real confined ‘polaron plus parabolic
confining potential’ system is mapped into an effective
fractional-dimensional bulk in which the polaron behaves in an unconfined
way, and the fractional dimension is essentially related to the degree of
confinement of the actual system. We find analytical expressions which
allow a very simple estimation of the corresponding polaron corrections.
The fractional-dimensional theoretical results are shown to be in overall
agreement with previous, more detailed, calculations.

1. Introduction

Recent remarkable progress in device physics has made
it possible to fabricate a wide variety of low-dimensional
semiconductor systems. A great deal of research effort has
been devoted to the study of these structures because of
their potential applications in a wide range of electronic and
optoelectronic devices. In particular, the electron–LO–phonon
interaction leading to the polaron effect may be significantly
modified by the confinement (e.g. it is well established that
both the binding energy and the effective mass of the polaron
increase as the confinement increases). These modifications
in the polaron effect can strongly influence the optical and
transport properties of the heterostructures. The polaron has
therefore been the subject of intense investigations for a long
time.

At earlier stages, polarons in bulk material have been
investigated and a wide variety of mathematical techniques
have been applied to the study of the polaron problem (see, for
example [1, 2]). The polaron effects in heterostructures are,
however, quite different from those in bulk materials. In the
former case, a variety of phonon modes arises as a consequence
of the presence of the heterointerfaces. The separation of
optical phonons in a slab into confined and interfaces modes
was, firstly, performed in [3, 4]. The studies of bulk-
like phonon modes [5], slab modes [6], interface or surface
modes [5], and coupled modes [7] in semiconductor quantum
wells have also been the subject of intense research. In
these low-dimensional systems, the phonon spectrum and the

electron–phonon interaction were found to be strongly
dependent on both the geometrical shape and the parameters
of the constituent materials (see, for example [8, 9]).
Consequently, a rigorous treatment of the electron–phonon
interaction in such heterostructures requires the consideration
of the different phonon modes as well as the geometrical
configuration of the system. The polaron problem in quantum
wells then becomes too complicated [8–15]. In systems
with parabolic confinement, the situation becomes more
simple, since the interaction with interface phonons can be
ignored because of the absence of an abrupt interface [16].
This simplification makes it possible to obtain the polaron
corrections in parabolic quantum dots within second-order
perturbation theory in an analytical way [17]. Nevertheless,
the polaronic corrections in parabolic quantum wells (PQWs)
and parabolic quantum well wires (PQWWs) cannot be
obtained in a simple analytical form [10, 18]. The purpose
of this paper is to formulate a simplified model to estimate,
analytically, the polaron corrections in PQWs and PQWWs,
within a reasonable accuracy.

Of particular interest to this paper is the original approach
proposed by He [19, 20]. In this approach the anisotropic
(or confined) interactions in the real three-dimensional (3D)
space are treated as isotropic (or unconfined) interactions
in an effective fractional-dimensional environment, which
dimension constitutes a measure of the degree of anisotropy
(or confinement) of the actual physical system. The main
advantage of this approach lies in the fact that all the
information about a perturbation (confinement or anisotropy)
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can be introduced in a single value—the dimensionality. Thus,
given this simple value, the real system can be modelled
in a simple analytical way. In the past few years, the
fractional-dimensional space approach has been successfully
used in modelling exciton [21–26], magnetoexciton [27–30],
biexciton [31, 32] and impurity states [25, 33, 34] in semi-
conductor heterostructures. The Stark shift of excitonic
complexes [35] and the refractive index in quantum well
structures [36] have also been studied within the fractional-
dimensional space approach.

In this paper we extend the fractional-dimensional space
formalism to the case of polarons confined in PQWs and
PQWWs. Thus, the real confined ‘polaron plus parabolic
confining potential’ system is mapped into an effective
fractional-dimensional bulk in which the polaron behaves in
an unconfined way, and the fractional dimension is essentially
related to the degree of confinement of the actual system.
The paper is organized as follows. In section 2, we present
the Fröhlich-like Hamiltonian describing the electron–LO–
phonon interaction in a fractional-dimensional space. The
corresponding fractional-dimensional polaronic corrections in
the weak-coupling limit are obtained in section 3, within
second-order perturbation theory. In section 4, the polaron
binding energy and effective mass in a PQW are obtained
for varying the inverse parabolic well confinement frequency.
The results are compared with the results reported by other
researchers. In section 5, we consider the polaron problem
in a PQWW, and we compare our results with calculations
by other authors. Finally, conclusions are summarized in
section 6.

2. The electron–phonon Hamiltonian in
fractional-dimensional spaces

A Fröhlich-like Hamiltonian describing the electron–phonon
interaction in a D-dimensional space was proposed years
ago by Peeters et al [37]. Basically, the authors used the
properties of vector spaces in funding the coupling coefficient
of the electron–phonon interaction. However, the fractional-
dimensional space is not, in general, a vector space [38].
This fact, at first sight, makes us question the validity of
the procedures used in [37] when extending the dimensional
parameter to non-integer values. Nevertheless, one can
straightforwardly demonstrate that the use of vector properties
in obtaining the coupling coefficient of the electron–phonon
interaction can be avoided by introducing the definition of
fractional-dimensional Fourier transform [38]. Thus, the
results obtained by Peeters et al [37] can actually be extended
to fractional values of the dimension, as will be shown.

It is worth remarking that, although the fractional-
dimensional space is not, in general, a vector space, one
can trace a certain number of mutually perpendicular lines.
A remarkable fact is that, for non-integer values of the
dimension D of the space, the maximal number s of mutually
perpendicular lines can even be greater than D (see [38]).
Of course, when D is an integer we have D = s. The
set of s mutually perpendicular lines can then be regarded
as a set of orthogonal axes along which we can define certain
pseudocoordinates. Thus, it is possible to describe the position
of the electron by introducing an s-component pseudovector r.

In the same way we can define the wave pseudovectors q and
k corresponding to the phonons and the electron, respectively.
The Hamiltonian of the electron–phonon interaction in a
fractional-dimensional space can then be written as

Ĥ e−ph =
∑

q

[
Cq(D)b̂q exp(iq · r) + C∗

q(D)b̂†q exp(−iq · r)]
(1)

where b†q(bq) is the creation (annihilation) operator for
a phonon with wave pseudovector q, and Cq(D) is the
fractional-dimensional coupling coefficient of the electron–
phonon interaction.

By considering now that the basic interaction
characterizing the electron motion in D dimensions remains
Coulomb-like (∼1/r) [37] we obtain

Cq(D) = −ih̄ωLO

(
FD(q)α

VD

)1/2 (
h̄

2mωLO

)1/4

(2)

where

FD(q) = (2π)D/2
∫ ∞

0
dr rD−1(qr)1−D/2JD/2−1(qr)

1

r
(3)

is the fractional-dimensional Fourier transform [38] of the
Coulomb-like potential. In the above equations, m represents
the electron effective mass, α is the Fröhlich constant, ωLO

denotes the bulk LO-phonon limiting frequency, VD is the
fractional-dimensional volume of the crystal to which Born–
von Karman periodicity conditions are applied, and Jν(x)

represent the Bessel functions. Note that by introducing
the fractional-dimensional transform we avoid the use of any
property concerning vector spaces.

After the corresponding integration in equation (3) we
obtain from equation (2) the coupling coefficient

Cq(D) = −ih̄ωLO

[
(4π)(D−1)/2�[(D − 1)/2]α

qD−1VD

]1/2

×
(

h̄

2mωLO

)1/4

(4)

characterizing the electron–phonon interaction in the
fractional-dimensional bulk.

3. The fractional-dimensional polaronic corrections

In this paper, we consider that the Fröhlich constant is small
(α � 1) and, consequently, we deal only with the weak-
coupling case.

The electron self-energy due to the electron–LO–phonon
interaction in the weak-coupling approximation can be
calculated within second-order perturbation theory. The
energy of a fractional-dimensional polaron in the ground state
is given by

E = E
(0)
k +

∑
k′

|〈1k′, 0k, 1q |Ĥ e−ph|0k′ , 1k, 0q〉|2
Ēk − Ēk′

(5)

where

Ēk = 〈
0q, 1k, 0k′

∣∣Ĥ (0)
∣∣0k′, 1k, 0q

〉 = E
(0)
k (6)
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and

Ēk′ = 〈
1k′ , 0k, 1q

∣∣Ĥ (0)
∣∣1q, 0k, 1k′

〉 = E
(0)
k′ + h̄ωLO (7)

are the unperturbed electron energies corresponding to the
initial and intermediate states, respectively.

In the above equations, |0k′ , 1k, 0q〉 denotes the initial
state with one electron in the state k, zero electrons in k′ and
zero phonons. The assumption of the absence of phonons
in the initial state is usually fulfilled for low temperatures.
The interpretation of the intermediate states |1q, 0k, 1k′ 〉 is
analogous to that of the initial states.

Taking into account the fact that the free electron motion
in a fractional-dimensional space can be described by a plane
wave [38], and after the corresponding integration over the
volume VD in the matrix elements present in equation (5), we
obtain

E − E
(0)
k = 2m

h̄2

∑
k′,q

|Cq(D)|2|�[k′ − k + q]|2
k2 − k′2 − R−2

p
(8)

where Rp =
√

2mωLO
h̄

is the polaron radius and �(x) represents
the Kronecker delta function (�(x) = 1 if x = 0, and
�(x) = 0 if x = 0). This function, as in the integer-
dimensional bulk case, is an expression of the momentum
conservation law.

Now, by approximating the summation over q in
equation (8) by an integral

∑
q

· · · ≈ VD

(2π)D

2π(D−1)/2

�[(D − 1)/2]

×
∫ ∞

0

∫ π

0
. . . qD−1(sin θ)D−2 dq dθ (9)

and after the standard procedures, we obtain from equation (8)
the following expression for the polaron energy

E = −g1(D)αh̄ωLO +
h̄2k2

2m∗ (10)

where
m∗ = m

1 − g2(D)α
(11)

is the polaron effective mass.
In equations (10) and (11) the D-dependent functions

g1(D) and g2(D) are given, respectively, by

g1(D) =
√
π

2

�[(D − 1)/2]

�[D/2]
(12)

and

g2(D) =
√
π

4

�[(D − 1)/2]

D�[D/2]
. (13)

In equations (9), (12) and (13) �(x) represents the gamma
function.

The set of equations (10)–(13) determines the polaronic
corrections in a fractional-dimensional bulk. It is straightfor-
ward to check that these equations recover the well-known
forms in both the exact two-dimensional (2D) and three-
dimensional (3D) limits [39].

4. Polaron in a parabolic quantum well

In this section, we study the behaviour of a polaron confined
in a PQW, within the framework of the fractional-dimensional
space approach. In this approach, the actual 3D ‘polaron
plus PQW’ system is considered as a polaron in an effective
fractional-dimensional bulk, which dimension constitutes a
measure of the degree of confinement of the real system. The
question which arises is then how to calculate the appropriate
value of the dimensional parameter, i.e. the effective dimension
that would model the real system. At earlier stages, Mathieu
and co-workers introduced a heuristic model for calculating
the appropriate dimensionality in the case of confined
excitons. Although their method is physically not strictly
substantiated, it provides an accurate parametrization of the
exciton binding energy in rectangular quantum wells [21, 22],
quantum well wires [23] and superlattices [24]. More
recently, de Dios-Leyva and co-workers [25] have developed
a systematic procedure for determining the dimensionality of
the effective medium in modelling exciton and impurity states
in quantum wells [25, 26], multiple quantum wells [30, 33] and
superlattices [34]. However, for the sake of simplicity, in this
paper we consider a procedure analogous to that in [21–24].

Following Christol et al [23], since the dimensional
parameter is a measure of the degree of confinement of the
real system embedded in a 3D Euclidean space, it can be
determined by

D = βx + βy + βz (14)

where βx , βy and βz are the ratios of the homothetic reduction
of the unit length for the directions x, y and z in the real
physical space, respectively.

In the case of a PQW extended along the z-direction, the
motion in the (x, y)-plane is free and we get βx = βy = 1.
The ratio of the homothetic reduction of the unit length in
the z-direction produced by the confinement effects can be
calculated through the relation

βz = 1 − exp[−ξ ] (15)

where

ξ = length of confinement

effective characteristic length of interaction
. (16)

Equations (14)–(16) have been successfully used in
modelling exciton states in semiconductor quantum wells
[21–24]. In the case of an exciton confined in an infinitely
deep quantum well we have, for instance, ξ = Lw/(2a0) [21],
where Lw represents the well width and a0 is the effective Bohr
radius of the 3D exciton. The dimensionality is then given by
D = 3 − exp[−ξ ].

Now we consider a polaron confined in a PQW determined
by a parabolic potential extending from z = −∞ to z = ∞.
The confining potential can be written as

V (z) = m

2
$2z2 (17)

where $ represents the confinement frequency. In this case,
the effective characteristic length of the electron–phonon
interaction is the polaron radius

Rp =
√

h̄

2mωLO
. (18)
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On the other hand, the confinement length lz can be defined,
as the root mean square position of the electron resulting from
the harmonic confinement alone, i.e.

lz = 〈z2〉1/2 =
√

h̄

m$
. (19)

There is, however, another convenient possibility in defining
the confinement length, as pointed out by Kyrychenko and
Kossut [40]. These authors have shown that the first zero
of the third derivative of the oscillator wavefunction can be
successfully used as the confinement length characterizing the
problem of an exciton confined in a PQW. From this point of
view we have

lz =
√

3h̄

m$
(20)

for the ground state.
In what follows, we refer to equations (19) and (20) as the

approximations 1 and 2, respectively.
The dimensional parameter can be calculated through the

simple relation

D = 3 − exp

[
− lz

Rp

]
. (21)

By now substituting the above equation into equations
(10)–(13) we can estimate in a very simple way the energy
and the effective mass of the confined polaron.

The polaron binding energy as a function of the inverse
parabolic well confinement frequency ωLO/$ is displayed in
figure 1(a), where we compare our results with the calculations
by Hai et al [10]. One can see that the fractional-dimensional
polaron binding energy calculated within approximation 1
is in reasonable agreement with the results in [10]. The
maximal discrepancy between both results is about 6.2%
(0.23 meV). On the other hand, the agreement is excellent
for approximation 2.

Figure 1(b) shows a comparison between the fractional-
dimensional polaron effective mass, for varying ωLO/$, and
the corresponding calculations by Hai et al [10]. One can see
that the agreement between our results and those obtained in
[10] is quite good (especially for approximation 1).

It is worth noting that both the polaron binding energy
and the polaron effective mass plotted in figure 1 refer to
their 2D corresponding values, i.e. �Er = �E/�E2D and
�mr = �m/�m2D.

The dependence of the dimensional parameter, calculated
within approximations 1 and 2, on ωLO/$ is shown in
figure 1(c). A similar trend can be appreciated for both
approximations. The fractional dimension starts from the
value D = 2 for an infinite parabolic well confinement
frequency ($ → ∞, (ωLO/$) → 0). As $ increases,
the confinement becomes weaker and weaker leading to an
increase in the dimensionality that reaches the value D = 3
at $ → 0. However, the increase in the dimension as the
confinement decreases is faster for approximation 2.

A comparison between our results and those reported
by Yildirim and Erçelebi [18] for a polaron confined in
a PQW is displayed in figure 2. There is clearly a
good agreement between our results and the corresponding
calculations performed in [18]. Note that in figure 2 we have
used the same notation as in [18].
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Figure 1. Inverse parabolic well confinement frequency dependence
of: (a) the binding energy, (b) the polaron effective mass, and (c) the
corresponding fractional dimension for a polaron confined in a
PQW.

The fractional dimension corresponding to the results
shown in figures 2(a) and (b) is displayed in (c) as a function
of ω = $/ωLO. Again, the transition between the 2D and 3D
limits when the confinement decreases is quite apparent.
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Figure 2. (a) The polaron binding energy, (b) the phonon correction
to the effective mass and (c) the corresponding fractional dimension
as functions of the parabolic confinement frequency for PQWs and
PQWWs.

5. Polaron in a parabolic quantum well wire

In this section we generalize the formulae of the previous
section to the case of a polaron confined in a PQWW

determined by an isotropic harmonic potential

V (z) = m

2
$2ρ2 (22)

where ρ =
√
x2 + y2 is the radial polar coordinate of the

electron.
In the present case, the motion in the z-direction is free

and therefore βz = 1. The confinement in the (x, y)-plane is
characterized by βx and βy(βx = βy = 1 − exp[−ξ ]). Hence,
the dimensional parameter can be now written as

D = 3 − 2 exp[−ξ ]. (23)

While the effective characteristic length of interaction
remains the polaron radius (Rp), the confinement length lρ
can be calculated through a straightforward extension of the
results obtained in the previous section. Indeed, the analogue
of approximation 1 (see equation (19)) is now

lρ = 〈ρ2〉1/2 =
√

2h̄

m$
. (24)

On the other hand, it is not difficult to prove that the first
zero of the third derivative of the 2D oscillator wavefunction
coincides, precisely, with equation (20). Hence approximation
2 gives

lρ =
√

3h̄

m$
. (25)

In figure 2(a) we show the fractional-dimensional binding
energy of a polaron confined in a PQWW as a function of the
parabolic confinement frequency ω = $/ωLO. Our results
obtained through the approximations 1 (equation (24)) and 2
(equation (25)) are compared with the calculations reported
by Yildirim and Erçebeli [18]. A qualitative agreement
can clearly be seen. However, the increase in the polaron
binding energy with ω becomes very fast and the discrepancy
between our calculations and those in [18] becomes too large
in the region of strong confinement. One can expect that, in
this region, the present fractional-dimensional model cannot
provide accurate values because the expressions for the polaron
corrections (see equations (10) and (11)) diverge at D = 1.
On the other hand, recent studies concerning polarons in
cylindrical and planar quantum well wires with parabolic
confinement potential for arbitrary electron–phonon coupling
[41] has revealed that the weak and intermediate coupling
regimes become shorter when the strength of confinement
increases. Consequently, the perturbative treatment of the
electron–phonon interaction becomes questionable in the
region of strong confinement.

The confinement frequency dependence of the effective
mass of a polaron in a PQWW is shown in figure 2(b), where
an overall agreement between our results and those in [18] can
be appreciated.

The behaviour of the fractional dimension for varying
the parabolic well wire confinement frequency is displayed
in figure 2(c). The dimension starts from the value D = 3
in the absence of confinement (ω → 0) and decreases as
the confinement increases. The one-dimensional limit is then
approached for a very strong confinement (ω → ∞).
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6. Conclusions

In conclusion, the fractional-dimensional space approach has
been extended to the study of polarons confined in PQWs
and PQWWs. In this approach, the real confined ‘polaron
plus parabolic confining potential’ system is modelled into
an effective fractional-dimensional environment in which the
polaron remains unconfined, and the fractional dimension
is a measure of the degree of confinement of the real
system. Analytical expressions for the corresponding polaron
corrections have been found. In the region of weak
confinement, these expressions allow us, within a good
accuracy, to estimate the polaron binding energy and effective
mass in a very simple way, avoiding the tedious and
complicated calculations arising in the standard treatments.
In the strong confinement region the fractional-dimensional
polaron corrections are found to agree only qualitatively with
previous, more detailed, theoretical results.
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[34] Reyes-Gómez E, Oliveira L E and de Dios-Leyva M 1999

J. Appl. Phys. 85 4045
[35] Thilagam A 1997 Phys. Rev. B 56 4665
[36] Tanguy C, Lefebvre P, Mathieu H and Elliot R J 1997

J. Appl. Phys. 82 798
[37] Peeters F M, Xiaoguang W and Devreese J T 1986 Phys. Rev.

B 33 3926
[38] Stillinger F H 1977 J. Math. Phys. 18 1224
[39] Devreese J T 1996 Polarons, Encyclopedia of Applied Physics

vol 14 (New York: VCH Publishers) pp 383–413
[40] Kyrychenko F and Kossut J 1998 Semicond. Sci. Technol. 13

1076
[41] Pokatilov E P, Fomin V M, Devreese J T, Balaban S N and

Klimin S N 1999 Physica E 4 156

155


