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The tunnel conductance through a disordered spacer
s studied in the linear response theory at zero temper-
ature. It is shown that the conductance is proportional
to the product of surface densities of states of metals
separated by the spacer when the disorder is strong.
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1. Introduction

Ferromagnetic tunnel junctions comprised of two
ferromagnetic metals separated by thin insulating
spacer exhibit large magnetoresistance (TMR). Al-
though TMR was observed more than one decade ago,
the magnitude of the effect was only a few %.!"2) Re-
cently, TMR up to 40% is observed in Fe/Al,03/Fe®)
and CoFe/Al,03/Co* systems.

This noble phenomenon originates from the spin de-
pendent tunneling across the insulating spacer. Theo-
retical explanations of TMR are based on the tunnel-
ing Hamiltonian theory or scattering theory for one-
body potential barrier. In the tunneling Hamiltonian
theory, the tunnel conductance is proportional to the
product of the densities of states (DOS’s) of met-
als separated by the spacer.’) By applying the tun-
neling Hamiltonian theory to the ferromagnetic tun-
nel junctions, TMR ratio is expressed in terms of
the spin polarization (P) of ferromagnetic metals as
TMR =2P?/(1+ P?).12) When we use the observed
values of P, TMR ratio obtained in experiments can
be explained semi-quantitatively. On the other hand,
Slonczewski” solved the Schrodinger equation of the
pseudo 1-dimensional rectangular potential barrier in
the free electron model and discussed the dependence
of TMR ratio on the barrier height. The dependences
of TMR ratio on the barrier thickness and the applied
bias voltage have also been discussed.8)-10)

In the tunneling Hamiltonian theory, the phase
mermory of the wave function is assumed to be lost dur-
ing tunnel process due to the inelastic scatterings. In
Slonczewski’s approach, on the other hand, the wave
function of the tunneling electron is treated explicitly.
However, disorder is not taken into account in his the-
ory.

Actual materials must include disorder, especially
around interfaces between insulating spacer and met-
als. In this work, the conductance is calculated for
a model including strong disorder keeping the band
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gap open in the spacer. We use scattering theory to
treat the wave function correctly and clarify the impor-
tant ingredients which govern the tunnel conductance
through the disordered spacer. Linear response theory,
i.e., Kubo formula and coherent potential approxima-
tion are used to calculate the conductance at zero tem-
perature and at zero bias limit. It will be shown that
the conductance is proportional to the product of the
surface DOS’s of metals separated by the spacer.

2. Model and Method

We consider a trilayer consisting of two semi-infinite
metallic leads separated by a spacer of L atomic layers.
This trilayer is described by the single orbital tight-
binding model on a simple cubic lattice and (001) axis
is taken for stacking a layers. In order to take into ac-
count the disorder and band gap, we assume following
substitutional-type disorder in the spacer. The Harmil-
tonian of the system is

H=-t >

(c{,lvcj‘f,‘a + H.c.)

(aD.G4)e
e, 6, (1)
ileo
where ci(? is annihilation (creation) operator of elec-

tron at site i in /-th plane with spin o. Here, [ labels
the layer plane normal to the (001) axis and i denotes
the site within the layer plane. In Eq.(1), ¢ is trans-
"fer integral and the summation ((i, ), (3, 7)) runs over
nearest-neighbor sites. The on-site potential ui; at
site i in I-th plane takes constant value ug in both left
(I <0) and right (I > L + 1) leads while it takes u
or —u randomly with equal probability in the spacer
(1 <1< L). We take the random potential u large to
open the gap in the band of the spacer.

In order to treat the disorder, the single site coher-
ent potential approximation (CPA)'" is adopted. One
of the advantages of the CPA is that the band gap of
the spacer can be reproduced for large u. The conduc-
tance through the disordered spacer is calculated by
using Kubo formula'?) at zero temperature. Because
there is no translational invariance in the current di-
rection, the vertex correction to the conductance does
not disappear. The vertex correction is calculated by
the approximation consistent with the CPA in order
to satisfy the current conservation.'®) Since we concen-
trate ourselves on the transport property at the zero
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bias limit, the inelastic scattering (see, e.g., Zhang and
Levy'") is not included in our calculation.

3. Results

First, we show the calculated results of the DOS’s
of spacer and lead in Figs. 1(a) and (b), respectively.
Here, the chemical potential (Fermi energy) is cho-
sen at £ = 0. In Fig. 1(a), the gap appears around
the chemical potential as the random potential w in-
creases. However, the DOS is finite even if the gap
(pseudo-gap) appears for large u. This is because the
electron penetrates into spacer from the leads due to
the proximity effect. The DOS’s of the lead near the
interface shows the oscillatory behavior. This behav-
lor for large u is almost the same as that of the surface
DOS.

In Fig. 2, the calculated results of the conductance I
are shown in logarithmic scale for various thicknesses
L of the spacer as functions of u. Here, we take the
on-site potential uy of the leads zero. It can be seen
that I' decreases as the gap appears in the DOS of the
spacer with increasing u. It is also seen that T’ decrease
with increasing L.

In order to examine the relation between the elec-
tronic structure of the leads and I, we shift the DOS’s
of the leads by changing up. We define the energy e
as € = 6t — up that denotes the relative energy be-
tween the chermical potential and the bottom of the
band of the leads. In Fig. 3(a), the calculated results
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Fig.1 Calculated results of the local DOS’s of (a) the spacer

and (b) the lead. Here, we take L = 2 and ug = 0. (a) Chained,
dotted and solid curves are the DOS's for w/t = 2,6 and 10,
respectively. (b) Solid, dotted and chained curves are the DOS’s
at { =0,-1 and —2, respectively for u/t = 10,
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of the normalized conductance I'(e)/T(6t) are shown
for various values of u. Here, the dependence of I'(6t)
on u has been already shown in Fig. 2. In Fig. 3(b),
the channel number N, and the square of the surface
DOS (Dsgp) of the semi-infinite metallic lead normal-
ized with respect to those values at € = 6t are shown.
In the ballistic limit, the conductance is known to be
proportional to the channel number N. that is the
number of the states contributing to the transport.

ult

Fig. 2 Calculated results of the conductance as functions of u
for various values of L. Here, we take up = 0. Solid, dotted,
chained and broken curves are I' for L = 1,2,3 and 4, respec-
tively.
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Fig. 3 Calculated results of (a) the normalized conductance
for various values of u and (b) the channel number (broken
curve) and Lhe square of the surface DOS of the semi-infinite
metallic lead (solid curve) as functions of e. In (a), bro-
ken, chained, dotted and solid curves are normalized ' for
uft = 2,58 and 14, respectively.




When u is small, the shape of I'(e)/I'(6t) is similar
to that of N.(e)/Nc(6t). As u increases, the shape of
['(€)/T'(6t) becomes narrow and I'(e)/I'(6t) converges
to {Dsp(€)}2/{Dsy(6t)}?. Therefore, it is considered
that T' o Dsp? in strong disordered limit,

4. Discussion and Conclusion

In the linear response theory, the conductance at

zero temperature is expressed as!®)1%)
[ = 2’ 4ROk 2 K K’ 9
= "5—243 (G DY Imfif Im fg (2)
K.k’

where Gll‘“f is the interlayer Green's function between
1-st and L-th planes and fi(g) is the surface Green’s
function of the left (right) lead. Here, k = (kz,ky)
is the element of the wave vector parallel to the layer
planes and the bracket {- - -) denotes the statistical av-
erage due to the disorder. If the k,k' dependence of
(|G:‘t 2) is neglected, the summations over k and k'
run independently, then, the conductance is propor-
tional to the product of the surface DOS’s of the leads.
In our results, I is also proportional to D:SF" when u is
large. Then, it is considered that (|G'f:g 2} in Eq.(2)
becomes independent of k and k' in strong disordered
limit.

In conclusion, the conductance through the strong
disordered spacer is proportional to the products of
the surface DOS’s of the leads. Our results suggest
that the spin polarization in the expression of TMR
ratio should be interpreted as the spin polarization of
the surface DOS of ferromagnetic metals for strong
disordered tunnel junctions.
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